1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
use alga::general::{ClosedAdd, ClosedMul};
#[cfg(feature = "std")]
use matrixmultiply;
use num::{One, Signed, Zero};
#[cfg(feature = "std")]
use std::mem;

use base::allocator::Allocator;
use base::constraint::{
    AreMultipliable, DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint,
};
use base::dimension::{Dim, Dynamic, U1, U2, U3, U4};
use base::storage::{Storage, StorageMut};
use base::{DefaultAllocator, Matrix, Scalar, SquareMatrix, Vector};

impl<N: Scalar + PartialOrd + Signed, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
    /// Computes the index of the vector component with the largest value.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::Vector3;
    /// let vec = Vector3::new(11, -15, 13);
    /// assert_eq!(vec.imax(), 2);
    /// ```
    #[inline]
    pub fn imax(&self) -> usize {
        assert!(!self.is_empty(), "The input vector must not be empty.");

        let mut the_max = unsafe { self.vget_unchecked(0) };
        let mut the_i = 0;

        for i in 1..self.nrows() {
            let val = unsafe { self.vget_unchecked(i) };

            if val > the_max {
                the_max = val;
                the_i = i;
            }
        }

        the_i
    }

    /// Computes the index of the vector component with the largest absolute value.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::Vector3;
    /// let vec = Vector3::new(11, -15, 13);
    /// assert_eq!(vec.iamax(), 1);
    /// ```
    #[inline]
    pub fn iamax(&self) -> usize {
        assert!(!self.is_empty(), "The input vector must not be empty.");

        let mut the_max = unsafe { self.vget_unchecked(0).abs() };
        let mut the_i = 0;

        for i in 1..self.nrows() {
            let val = unsafe { self.vget_unchecked(i).abs() };

            if val > the_max {
                the_max = val;
                the_i = i;
            }
        }

        the_i
    }

    /// Computes the index of the vector component with the smallest value.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::Vector3;
    /// let vec = Vector3::new(11, -15, 13);
    /// assert_eq!(vec.imin(), 1);
    /// ```
    #[inline]
    pub fn imin(&self) -> usize {
        assert!(!self.is_empty(), "The input vector must not be empty.");

        let mut the_max = unsafe { self.vget_unchecked(0) };
        let mut the_i = 0;

        for i in 1..self.nrows() {
            let val = unsafe { self.vget_unchecked(i) };

            if val < the_max {
                the_max = val;
                the_i = i;
            }
        }

        the_i
    }

    /// Computes the index of the vector component with the smallest absolute value.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::Vector3;
    /// let vec = Vector3::new(11, -15, 13);
    /// assert_eq!(vec.iamin(), 0);
    /// ```
    #[inline]
    pub fn iamin(&self) -> usize {
        assert!(!self.is_empty(), "The input vector must not be empty.");

        let mut the_max = unsafe { self.vget_unchecked(0).abs() };
        let mut the_i = 0;

        for i in 1..self.nrows() {
            let val = unsafe { self.vget_unchecked(i).abs() };

            if val < the_max {
                the_max = val;
                the_i = i;
            }
        }

        the_i
    }
}

impl<N: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
    /// Computes the index of the matrix component with the largest absolute value.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::Matrix2x3;
    /// let mat = Matrix2x3::new(11, -12, 13,
    ///                          21, 22, -23);
    /// assert_eq!(mat.iamax_full(), (1, 2));
    /// ```
    #[inline]
    pub fn iamax_full(&self) -> (usize, usize) {
        assert!(!self.is_empty(), "The input matrix must not be empty.");

        let mut the_max = unsafe { self.get_unchecked(0, 0).abs() };
        let mut the_ij = (0, 0);

        for j in 0..self.ncols() {
            for i in 0..self.nrows() {
                let val = unsafe { self.get_unchecked(i, j).abs() };

                if val > the_max {
                    the_max = val;
                    the_ij = (i, j);
                }
            }
        }

        the_ij
    }
}

impl<N, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
where N: Scalar + Zero + ClosedAdd + ClosedMul
{
    /// The dot product between two vectors or matrices (seen as vectors).
    ///
    /// Note that this is **not** the matrix multiplication as in, e.g., numpy. For matrix
    /// multiplication, use one of: `.gemm`, `.mul_to`, `.mul`, the `*` operator.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::{Vector3, Matrix2x3};
    /// let vec1 = Vector3::new(1.0, 2.0, 3.0);
    /// let vec2 = Vector3::new(0.1, 0.2, 0.3);
    /// assert_eq!(vec1.dot(&vec2), 1.4);
    ///
    /// let mat1 = Matrix2x3::new(1.0, 2.0, 3.0,
    ///                           4.0, 5.0, 6.0);
    /// let mat2 = Matrix2x3::new(0.1, 0.2, 0.3,
    ///                           0.4, 0.5, 0.6);
    /// assert_eq!(mat1.dot(&mat2), 9.1);
    /// ```
    #[inline]
    pub fn dot<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<N, R2, C2, SB>) -> N
    where
        SB: Storage<N, R2, C2>,
        ShapeConstraint: DimEq<R, R2> + DimEq<C, C2>,
    {
        assert!(
            self.nrows() == rhs.nrows(),
            "Dot product dimensions mismatch."
        );

        // So we do some special cases for common fixed-size vectors of dimension lower than 8
        // because the `for` loop below won't be very efficient on those.
        if (R::is::<U2>() || R2::is::<U2>()) && (C::is::<U1>() || C2::is::<U1>()) {
            unsafe {
                let a = *self.get_unchecked(0, 0) * *rhs.get_unchecked(0, 0);
                let b = *self.get_unchecked(1, 0) * *rhs.get_unchecked(1, 0);

                return a + b;
            }
        }
        if (R::is::<U3>() || R2::is::<U3>()) && (C::is::<U1>() || C2::is::<U1>()) {
            unsafe {
                let a = *self.get_unchecked(0, 0) * *rhs.get_unchecked(0, 0);
                let b = *self.get_unchecked(1, 0) * *rhs.get_unchecked(1, 0);
                let c = *self.get_unchecked(2, 0) * *rhs.get_unchecked(2, 0);

                return a + b + c;
            }
        }
        if (R::is::<U4>() || R2::is::<U4>()) && (C::is::<U1>() || C2::is::<U1>()) {
            unsafe {
                let mut a = *self.get_unchecked(0, 0) * *rhs.get_unchecked(0, 0);
                let mut b = *self.get_unchecked(1, 0) * *rhs.get_unchecked(1, 0);
                let c = *self.get_unchecked(2, 0) * *rhs.get_unchecked(2, 0);
                let d = *self.get_unchecked(3, 0) * *rhs.get_unchecked(3, 0);

                a += c;
                b += d;

                return a + b;
            }
        }

        // All this is inspired from the "unrolled version" discussed in:
        // http://blog.theincredibleholk.org/blog/2012/12/10/optimizing-dot-product/
        //
        // And this comment from bluss:
        // https://users.rust-lang.org/t/how-to-zip-two-slices-efficiently/2048/12
        let mut res = N::zero();

        // We have to define them outside of the loop (and not inside at first assignment)
        // otherwise vectorization won't kick in for some reason.
        let mut acc0;
        let mut acc1;
        let mut acc2;
        let mut acc3;
        let mut acc4;
        let mut acc5;
        let mut acc6;
        let mut acc7;

        for j in 0..self.ncols() {
            let mut i = 0;

            acc0 = N::zero();
            acc1 = N::zero();
            acc2 = N::zero();
            acc3 = N::zero();
            acc4 = N::zero();
            acc5 = N::zero();
            acc6 = N::zero();
            acc7 = N::zero();

            while self.nrows() - i >= 8 {
                acc0 += unsafe { *self.get_unchecked(i + 0, j) * *rhs.get_unchecked(i + 0, j) };
                acc1 += unsafe { *self.get_unchecked(i + 1, j) * *rhs.get_unchecked(i + 1, j) };
                acc2 += unsafe { *self.get_unchecked(i + 2, j) * *rhs.get_unchecked(i + 2, j) };
                acc3 += unsafe { *self.get_unchecked(i + 3, j) * *rhs.get_unchecked(i + 3, j) };
                acc4 += unsafe { *self.get_unchecked(i + 4, j) * *rhs.get_unchecked(i + 4, j) };
                acc5 += unsafe { *self.get_unchecked(i + 5, j) * *rhs.get_unchecked(i + 5, j) };
                acc6 += unsafe { *self.get_unchecked(i + 6, j) * *rhs.get_unchecked(i + 6, j) };
                acc7 += unsafe { *self.get_unchecked(i + 7, j) * *rhs.get_unchecked(i + 7, j) };
                i += 8;
            }

            res += acc0 + acc4;
            res += acc1 + acc5;
            res += acc2 + acc6;
            res += acc3 + acc7;

            for k in i..self.nrows() {
                res += unsafe { *self.get_unchecked(k, j) * *rhs.get_unchecked(k, j) }
            }
        }

        res
    }

    /// The dot product between the transpose of `self` and `rhs`.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::{Vector3, RowVector3, Matrix2x3, Matrix3x2};
    /// let vec1 = Vector3::new(1.0, 2.0, 3.0);
    /// let vec2 = RowVector3::new(0.1, 0.2, 0.3);
    /// assert_eq!(vec1.tr_dot(&vec2), 1.4);
    ///
    /// let mat1 = Matrix2x3::new(1.0, 2.0, 3.0,
    ///                           4.0, 5.0, 6.0);
    /// let mat2 = Matrix3x2::new(0.1, 0.4,
    ///                           0.2, 0.5,
    ///                           0.3, 0.6);
    /// assert_eq!(mat1.tr_dot(&mat2), 9.1);
    /// ```
    #[inline]
    pub fn tr_dot<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<N, R2, C2, SB>) -> N
    where
        SB: Storage<N, R2, C2>,
        ShapeConstraint: DimEq<C, R2> + DimEq<R, C2>,
    {
        let (nrows, ncols) = self.shape();
        assert!(
            (ncols, nrows) == rhs.shape(),
            "Transposed dot product dimension mismatch."
        );

        let mut res = N::zero();

        for j in 0..self.nrows() {
            for i in 0..self.ncols() {
                res += unsafe { *self.get_unchecked(j, i) * *rhs.get_unchecked(i, j) }
            }
        }

        res
    }
}

fn array_axpy<N>(y: &mut [N], a: N, x: &[N], beta: N, stride1: usize, stride2: usize, len: usize)
where N: Scalar + Zero + ClosedAdd + ClosedMul {
    for i in 0..len {
        unsafe {
            let y = y.get_unchecked_mut(i * stride1);
            *y = a * *x.get_unchecked(i * stride2) + beta * *y;
        }
    }
}

fn array_ax<N>(y: &mut [N], a: N, x: &[N], stride1: usize, stride2: usize, len: usize)
where N: Scalar + Zero + ClosedAdd + ClosedMul {
    for i in 0..len {
        unsafe {
            *y.get_unchecked_mut(i * stride1) = a * *x.get_unchecked(i * stride2);
        }
    }
}

impl<N, D: Dim, S> Vector<N, D, S>
where
    N: Scalar + Zero + ClosedAdd + ClosedMul,
    S: StorageMut<N, D>,
{
    /// Computes `self = a * x + b * self`.
    ///
    /// If be is zero, `self` is never read from.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::Vector3;
    /// let mut vec1 = Vector3::new(1.0, 2.0, 3.0);
    /// let vec2 = Vector3::new(0.1, 0.2, 0.3);
    /// vec1.axpy(10.0, &vec2, 5.0);
    /// assert_eq!(vec1, Vector3::new(6.0, 12.0, 18.0));
    /// ```
    #[inline]
    pub fn axpy<D2: Dim, SB>(&mut self, a: N, x: &Vector<N, D2, SB>, b: N)
    where
        SB: Storage<N, D2>,
        ShapeConstraint: DimEq<D, D2>,
    {
        assert_eq!(self.nrows(), x.nrows(), "Axpy: mismatched vector shapes.");

        let rstride1 = self.strides().0;
        let rstride2 = x.strides().0;

        let y = self.data.as_mut_slice();
        let x = x.data.as_slice();

        if !b.is_zero() {
            array_axpy(y, a, x, b, rstride1, rstride2, x.len());
        } else {
            array_ax(y, a, x, rstride1, rstride2, x.len());
        }
    }

    /// Computes `self = alpha * a * x + beta * self`, where `a` is a matrix, `x` a vector, and
    /// `alpha, beta` two scalars.
    ///
    /// If `beta` is zero, `self` is never read.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::{Matrix2, Vector2};
    /// let mut vec1 = Vector2::new(1.0, 2.0);
    /// let vec2 = Vector2::new(0.1, 0.2);
    /// let mat = Matrix2::new(1.0, 2.0,
    ///                        3.0, 4.0);
    /// vec1.gemv(10.0, &mat, &vec2, 5.0);
    /// assert_eq!(vec1, Vector2::new(10.0, 21.0));
    /// ```
    #[inline]
    pub fn gemv<R2: Dim, C2: Dim, D3: Dim, SB, SC>(
        &mut self,
        alpha: N,
        a: &Matrix<N, R2, C2, SB>,
        x: &Vector<N, D3, SC>,
        beta: N,
    ) where
        N: One,
        SB: Storage<N, R2, C2>,
        SC: Storage<N, D3>,
        ShapeConstraint: DimEq<D, R2> + AreMultipliable<R2, C2, D3, U1>,
    {
        let dim1 = self.nrows();
        let (nrows2, ncols2) = a.shape();
        let dim3 = x.nrows();

        assert!(
            ncols2 == dim3 && dim1 == nrows2,
            "Gemv: dimensions mismatch."
        );

        if ncols2 == 0 {
            return;
        }

        // FIXME: avoid bound checks.
        let col2 = a.column(0);
        let val = unsafe { *x.vget_unchecked(0) };
        self.axpy(alpha * val, &col2, beta);

        for j in 1..ncols2 {
            let col2 = a.column(j);
            let val = unsafe { *x.vget_unchecked(j) };

            self.axpy(alpha * val, &col2, N::one());
        }
    }

    /// Computes `self = alpha * a * x + beta * self`, where `a` is a **symmetric** matrix, `x` a
    /// vector, and `alpha, beta` two scalars.
    ///
    /// If `beta` is zero, `self` is never read. If `self` is read, only its lower-triangular part
    /// (including the diagonal) is actually read.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::{Matrix2, Vector2};
    /// let mat = Matrix2::new(1.0, 2.0,
    ///                        2.0, 4.0);
    /// let mut vec1 = Vector2::new(1.0, 2.0);
    /// let vec2 = Vector2::new(0.1, 0.2);
    /// vec1.gemv_symm(10.0, &mat, &vec2, 5.0);
    /// assert_eq!(vec1, Vector2::new(10.0, 20.0));
    ///
    ///
    /// // The matrix upper-triangular elements can be garbage because it is never
    /// // read by this method. Therefore, it is not necessary for the caller to
    /// // fill the matrix struct upper-triangle.
    /// let mat = Matrix2::new(1.0, 9999999.9999999,
    ///                        2.0, 4.0);
    /// let mut vec1 = Vector2::new(1.0, 2.0);
    /// vec1.gemv_symm(10.0, &mat, &vec2, 5.0);
    /// assert_eq!(vec1, Vector2::new(10.0, 20.0));
    /// ```
    #[inline]
    pub fn gemv_symm<D2: Dim, D3: Dim, SB, SC>(
        &mut self,
        alpha: N,
        a: &SquareMatrix<N, D2, SB>,
        x: &Vector<N, D3, SC>,
        beta: N,
    ) where
        N: One,
        SB: Storage<N, D2, D2>,
        SC: Storage<N, D3>,
        ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,
    {
        let dim1 = self.nrows();
        let dim2 = a.nrows();
        let dim3 = x.nrows();

        assert!(
            a.is_square(),
            "Syetric gemv: the input matrix must be square."
        );
        assert!(
            dim2 == dim3 && dim1 == dim2,
            "Symmetric gemv: dimensions mismatch."
        );

        if dim2 == 0 {
            return;
        }

        // FIXME: avoid bound checks.
        let col2 = a.column(0);
        let val = unsafe { *x.vget_unchecked(0) };
        self.axpy(alpha * val, &col2, beta);
        self[0] += alpha * x.rows_range(1..).dot(&a.slice_range(1.., 0));

        for j in 1..dim2 {
            let col2 = a.column(j);
            let dot = x.rows_range(j..).dot(&col2.rows_range(j..));

            let val;
            unsafe {
                val = *x.vget_unchecked(j);
                *self.vget_unchecked_mut(j) += alpha * dot;
            }
            self.rows_range_mut(j + 1..)
                .axpy(alpha * val, &col2.rows_range(j + 1..), N::one());
        }
    }

    /// Computes `self = alpha * a.transpose() * x + beta * self`, where `a` is a matrix, `x` a vector, and
    /// `alpha, beta` two scalars.
    ///
    /// If `beta` is zero, `self` is never read.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::{Matrix2, Vector2};
    /// let mat = Matrix2::new(1.0, 3.0,
    ///                        2.0, 4.0);
    /// let mut vec1 = Vector2::new(1.0, 2.0);
    /// let vec2 = Vector2::new(0.1, 0.2);
    /// let expected = mat.transpose() * vec2 * 10.0 + vec1 * 5.0;
    ///
    /// vec1.gemv_tr(10.0, &mat, &vec2, 5.0);
    /// assert_eq!(vec1, expected);
    /// ```
    #[inline]
    pub fn gemv_tr<R2: Dim, C2: Dim, D3: Dim, SB, SC>(
        &mut self,
        alpha: N,
        a: &Matrix<N, R2, C2, SB>,
        x: &Vector<N, D3, SC>,
        beta: N,
    ) where
        N: One,
        SB: Storage<N, R2, C2>,
        SC: Storage<N, D3>,
        ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, U1>,
    {
        let dim1 = self.nrows();
        let (nrows2, ncols2) = a.shape();
        let dim3 = x.nrows();

        assert!(
            nrows2 == dim3 && dim1 == ncols2,
            "Gemv: dimensions mismatch."
        );

        if ncols2 == 0 {
            return;
        }

        if beta.is_zero() {
            for j in 0..ncols2 {
                let val = unsafe { self.vget_unchecked_mut(j) };
                *val = alpha * a.column(j).dot(x)
            }
        } else {
            for j in 0..ncols2 {
                let val = unsafe { self.vget_unchecked_mut(j) };
                *val = alpha * a.column(j).dot(x) + beta * *val;
            }
        }
    }
}

impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S>
where N: Scalar + Zero + ClosedAdd + ClosedMul
{
    /// Computes `self = alpha * x * y.transpose() + beta * self`.
    ///
    /// If `beta` is zero, `self` is never read.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::{Matrix2x3, Vector2, Vector3};
    /// let mut mat = Matrix2x3::repeat(4.0);
    /// let vec1 = Vector2::new(1.0, 2.0);
    /// let vec2 = Vector3::new(0.1, 0.2, 0.3);
    /// let expected = vec1 * vec2.transpose() * 10.0 + mat * 5.0;
    ///
    /// mat.ger(10.0, &vec1, &vec2, 5.0);
    /// assert_eq!(mat, expected);
    /// ```
    #[inline]
    pub fn ger<D2: Dim, D3: Dim, SB, SC>(
        &mut self,
        alpha: N,
        x: &Vector<N, D2, SB>,
        y: &Vector<N, D3, SC>,
        beta: N,
    ) where
        N: One,
        SB: Storage<N, D2>,
        SC: Storage<N, D3>,
        ShapeConstraint: DimEq<R1, D2> + DimEq<C1, D3>,
    {
        let (nrows1, ncols1) = self.shape();
        let dim2 = x.nrows();
        let dim3 = y.nrows();

        assert!(
            nrows1 == dim2 && ncols1 == dim3,
            "ger: dimensions mismatch."
        );

        for j in 0..ncols1 {
            // FIXME: avoid bound checks.
            let val = unsafe { *y.vget_unchecked(j) };
            self.column_mut(j).axpy(alpha * val, x, beta);
        }
    }

    /// Computes `self = alpha * a * b + beta * self`, where `a, b, self` are matrices.
    /// `alpha` and `beta` are scalar.
    ///
    /// If `beta` is zero, `self` is never read.
    ///
    /// # Examples:
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # extern crate nalgebra;
    /// # use nalgebra::{Matrix2x3, Matrix3x4, Matrix2x4};
    /// let mut mat1 = Matrix2x4::identity();
    /// let mat2 = Matrix2x3::new(1.0, 2.0, 3.0,
    ///                           4.0, 5.0, 6.0);
    /// let mat3 = Matrix3x4::new(0.1, 0.2, 0.3, 0.4,
    ///                           0.5, 0.6, 0.7, 0.8,
    ///                           0.9, 1.0, 1.1, 1.2);
    /// let expected = mat2 * mat3 * 10.0 + mat1 * 5.0;
    ///
    /// mat1.gemm(10.0, &mat2, &mat3, 5.0);
    /// assert_relative_eq!(mat1, expected);
    /// ```
    #[inline]
    pub fn gemm<R2: Dim, C2: Dim, R3: Dim, C3: Dim, SB, SC>(
        &mut self,
        alpha: N,
        a: &Matrix<N, R2, C2, SB>,
        b: &Matrix<N, R3, C3, SC>,
        beta: N,
    ) where
        N: One,
        SB: Storage<N, R2, C2>,
        SC: Storage<N, R3, C3>,
        ShapeConstraint: SameNumberOfRows<R1, R2>
            + SameNumberOfColumns<C1, C3>
            + AreMultipliable<R2, C2, R3, C3>,
    {
        let ncols1 = self.ncols();

        #[cfg(feature = "std")]
        {
            // matrixmultiply can be used only if the std feature is available.
            let nrows1 = self.nrows();
            let (nrows2, ncols2) = a.shape();
            let (nrows3, ncols3) = b.shape();

            assert_eq!(
                ncols2, nrows3,
                "gemm: dimensions mismatch for multiplication."
            );
            assert_eq!(
                (nrows1, ncols1),
                (nrows2, ncols3),
                "gemm: dimensions mismatch for addition."
            );

            // We assume large matrices will be Dynamic but small matrices static.
            // We could use matrixmultiply for large statically-sized matrices but the performance
            // threshold to activate it would be different from SMALL_DIM because our code optimizes
            // better for statically-sized matrices.
            let is_dynamic = R1::is::<Dynamic>()
                || C1::is::<Dynamic>()
                || R2::is::<Dynamic>()
                || C2::is::<Dynamic>()
                || R3::is::<Dynamic>()
                || C3::is::<Dynamic>();
            // Threshold determined empirically.
            const SMALL_DIM: usize = 5;

            if is_dynamic
                && nrows1 > SMALL_DIM
                && ncols1 > SMALL_DIM
                && nrows2 > SMALL_DIM
                && ncols2 > SMALL_DIM
            {
                if N::is::<f32>() {
                    let (rsa, csa) = a.strides();
                    let (rsb, csb) = b.strides();
                    let (rsc, csc) = self.strides();

                    unsafe {
                        matrixmultiply::sgemm(
                            nrows2,
                            ncols2,
                            ncols3,
                            mem::transmute_copy(&alpha),
                            a.data.ptr() as *const f32,
                            rsa as isize,
                            csa as isize,
                            b.data.ptr() as *const f32,
                            rsb as isize,
                            csb as isize,
                            mem::transmute_copy(&beta),
                            self.data.ptr_mut() as *mut f32,
                            rsc as isize,
                            csc as isize,
                        );
                    }
                    return;
                } else if N::is::<f64>() {
                    let (rsa, csa) = a.strides();
                    let (rsb, csb) = b.strides();
                    let (rsc, csc) = self.strides();

                    unsafe {
                        matrixmultiply::dgemm(
                            nrows2,
                            ncols2,
                            ncols3,
                            mem::transmute_copy(&alpha),
                            a.data.ptr() as *const f64,
                            rsa as isize,
                            csa as isize,
                            b.data.ptr() as *const f64,
                            rsb as isize,
                            csb as isize,
                            mem::transmute_copy(&beta),
                            self.data.ptr_mut() as *mut f64,
                            rsc as isize,
                            csc as isize,
                        );
                    }
                    return;
                }
            }
        }

        for j1 in 0..ncols1 {
            // FIXME: avoid bound checks.
            self.column_mut(j1).gemv(alpha, a, &b.column(j1), beta);
        }
    }

    /// Computes `self = alpha * a.transpose() * b + beta * self`, where `a, b, self` are matrices.
    /// `alpha` and `beta` are scalar.
    ///
    /// If `beta` is zero, `self` is never read.
    ///
    /// # Examples:
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # extern crate nalgebra;
    /// # use nalgebra::{Matrix3x2, Matrix3x4, Matrix2x4};
    /// let mut mat1 = Matrix2x4::identity();
    /// let mat2 = Matrix3x2::new(1.0, 4.0,
    ///                           2.0, 5.0,
    ///                           3.0, 6.0);
    /// let mat3 = Matrix3x4::new(0.1, 0.2, 0.3, 0.4,
    ///                           0.5, 0.6, 0.7, 0.8,
    ///                           0.9, 1.0, 1.1, 1.2);
    /// let expected = mat2.transpose() * mat3 * 10.0 + mat1 * 5.0;
    ///
    /// mat1.gemm_tr(10.0, &mat2, &mat3, 5.0);
    /// assert_relative_eq!(mat1, expected);
    /// ```
    #[inline]
    pub fn gemm_tr<R2: Dim, C2: Dim, R3: Dim, C3: Dim, SB, SC>(
        &mut self,
        alpha: N,
        a: &Matrix<N, R2, C2, SB>,
        b: &Matrix<N, R3, C3, SC>,
        beta: N,
    ) where
        N: One,
        SB: Storage<N, R2, C2>,
        SC: Storage<N, R3, C3>,
        ShapeConstraint: SameNumberOfRows<R1, C2>
            + SameNumberOfColumns<C1, C3>
            + AreMultipliable<C2, R2, R3, C3>,
    {
        let (nrows1, ncols1) = self.shape();
        let (nrows2, ncols2) = a.shape();
        let (nrows3, ncols3) = b.shape();

        assert_eq!(
            nrows2, nrows3,
            "gemm: dimensions mismatch for multiplication."
        );
        assert_eq!(
            (nrows1, ncols1),
            (ncols2, ncols3),
            "gemm: dimensions mismatch for addition."
        );

        for j1 in 0..ncols1 {
            // FIXME: avoid bound checks.
            self.column_mut(j1).gemv_tr(alpha, a, &b.column(j1), beta);
        }
    }
}

impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S>
where N: Scalar + Zero + ClosedAdd + ClosedMul
{
    /// Computes `self = alpha * x * y.transpose() + beta * self`, where `self` is a **symmetric**
    /// matrix.
    ///
    /// If `beta` is zero, `self` is never read. The result is symmetric. Only the lower-triangular
    /// (including the diagonal) part of `self` is read/written.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::{Matrix2, Vector2};
    /// let mut mat = Matrix2::identity();
    /// let vec1 = Vector2::new(1.0, 2.0);
    /// let vec2 = Vector2::new(0.1, 0.2);
    /// let expected = vec1 * vec2.transpose() * 10.0 + mat * 5.0;
    /// mat.m12 = 99999.99999; // This component is on the upper-triangular part and will not be read/written.
    ///
    /// mat.ger_symm(10.0, &vec1, &vec2, 5.0);
    /// assert_eq!(mat.lower_triangle(), expected.lower_triangle());
    /// assert_eq!(mat.m12, 99999.99999); // This was untouched.
    #[inline]
    pub fn ger_symm<D2: Dim, D3: Dim, SB, SC>(
        &mut self,
        alpha: N,
        x: &Vector<N, D2, SB>,
        y: &Vector<N, D3, SC>,
        beta: N,
    ) where
        N: One,
        SB: Storage<N, D2>,
        SC: Storage<N, D3>,
        ShapeConstraint: DimEq<R1, D2> + DimEq<C1, D3>,
    {
        let dim1 = self.nrows();
        let dim2 = x.nrows();
        let dim3 = y.nrows();

        assert!(
            self.is_square(),
            "Symmetric ger: the input matrix must be square."
        );
        assert!(dim1 == dim2 && dim1 == dim3, "ger: dimensions mismatch.");

        for j in 0..dim1 {
            let val = unsafe { *y.vget_unchecked(j) };
            let subdim = Dynamic::new(dim1 - j);
            // FIXME: avoid bound checks.
            self.generic_slice_mut((j, j), (subdim, U1)).axpy(
                alpha * val,
                &x.rows_range(j..),
                beta,
            );
        }
    }
}

impl<N, D1: Dim, S: StorageMut<N, D1, D1>> SquareMatrix<N, D1, S>
where N: Scalar + Zero + One + ClosedAdd + ClosedMul
{
    /// Computes the quadratic form `self = alpha * lhs * mid * lhs.transpose() + beta * self`.
    ///
    /// This uses the provided workspace `work` to avoid allocations for intermediate results.
    ///
    /// # Examples:
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # extern crate nalgebra;
    /// # use nalgebra::{DMatrix, DVector};
    /// // Note that all those would also work with statically-sized matrices.
    /// // We use DMatrix/DVector since that's the only case where pre-allocating the
    /// // workspace is actually useful (assuming the same workspace is re-used for
    /// // several computations) because it avoids repeated dynamic allocations.
    /// let mut mat = DMatrix::identity(2, 2);
    /// let lhs = DMatrix::from_row_slice(2, 3, &[1.0, 2.0, 3.0,
    ///                                           4.0, 5.0, 6.0]);
    /// let mid = DMatrix::from_row_slice(3, 3, &[0.1, 0.2, 0.3,
    ///                                           0.5, 0.6, 0.7,
    ///                                           0.9, 1.0, 1.1]);
    /// // The random shows that values on the workspace do not
    /// // matter as they will be overwritten.
    /// let mut workspace = DVector::new_random(2);
    /// let expected = &lhs * &mid * lhs.transpose() * 10.0 + &mat * 5.0;
    ///
    /// mat.quadform_tr_with_workspace(&mut workspace, 10.0, &lhs, &mid, 5.0);
    /// assert_relative_eq!(mat, expected);
    pub fn quadform_tr_with_workspace<D2, S2, R3, C3, S3, D4, S4>(
        &mut self,
        work: &mut Vector<N, D2, S2>,
        alpha: N,
        lhs: &Matrix<N, R3, C3, S3>,
        mid: &SquareMatrix<N, D4, S4>,
        beta: N,
    ) where
        D2: Dim,
        R3: Dim,
        C3: Dim,
        D4: Dim,
        S2: StorageMut<N, D2>,
        S3: Storage<N, R3, C3>,
        S4: Storage<N, D4, D4>,
        ShapeConstraint: DimEq<D1, D2> + DimEq<D1, R3> + DimEq<D2, R3> + DimEq<C3, D4>,
    {
        work.gemv(N::one(), lhs, &mid.column(0), N::zero());
        self.ger(alpha, work, &lhs.column(0), beta);

        for j in 1..mid.ncols() {
            work.gemv(N::one(), lhs, &mid.column(j), N::zero());
            self.ger(alpha, work, &lhs.column(j), N::one());
        }
    }

    /// Computes the quadratic form `self = alpha * lhs * mid * lhs.transpose() + beta * self`.
    ///
    /// This allocates a workspace vector of dimension D1 for intermediate results.
    /// If `D1` is a type-level integer, then the allocation is performed on the stack.
    /// Use `.quadform_tr_with_workspace(...)` instead to avoid allocations.
    ///
    /// # Examples:
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # extern crate nalgebra;
    /// # use nalgebra::{Matrix2, Matrix3, Matrix2x3, Vector2};
    /// let mut mat = Matrix2::identity();
    /// let lhs = Matrix2x3::new(1.0, 2.0, 3.0,
    ///                          4.0, 5.0, 6.0);
    /// let mid = Matrix3::new(0.1, 0.2, 0.3,
    ///                        0.5, 0.6, 0.7,
    ///                        0.9, 1.0, 1.1);
    /// let expected = lhs * mid * lhs.transpose() * 10.0 + mat * 5.0;
    ///
    /// mat.quadform_tr(10.0, &lhs, &mid, 5.0);
    /// assert_relative_eq!(mat, expected);
    pub fn quadform_tr<R3, C3, S3, D4, S4>(
        &mut self,
        alpha: N,
        lhs: &Matrix<N, R3, C3, S3>,
        mid: &SquareMatrix<N, D4, S4>,
        beta: N,
    ) where
        R3: Dim,
        C3: Dim,
        D4: Dim,
        S3: Storage<N, R3, C3>,
        S4: Storage<N, D4, D4>,
        ShapeConstraint: DimEq<D1, D1> + DimEq<D1, R3> + DimEq<C3, D4>,
        DefaultAllocator: Allocator<N, D1>,
    {
        let mut work = unsafe { Vector::new_uninitialized_generic(self.data.shape().0, U1) };
        self.quadform_tr_with_workspace(&mut work, alpha, lhs, mid, beta)
    }

    /// Computes the quadratic form `self = alpha * rhs.transpose() * mid * rhs + beta * self`.
    ///
    /// This uses the provided workspace `work` to avoid allocations for intermediate results.
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # extern crate nalgebra;
    /// # use nalgebra::{DMatrix, DVector};
    /// // Note that all those would also work with statically-sized matrices.
    /// // We use DMatrix/DVector since that's the only case where pre-allocating the
    /// // workspace is actually useful (assuming the same workspace is re-used for
    /// // several computations) because it avoids repeated dynamic allocations.
    /// let mut mat = DMatrix::identity(2, 2);
    /// let rhs = DMatrix::from_row_slice(3, 2, &[1.0, 2.0,
    ///                                           3.0, 4.0,
    ///                                           5.0, 6.0]);
    /// let mid = DMatrix::from_row_slice(3, 3, &[0.1, 0.2, 0.3,
    ///                                           0.5, 0.6, 0.7,
    ///                                           0.9, 1.0, 1.1]);
    /// // The random shows that values on the workspace do not
    /// // matter as they will be overwritten.
    /// let mut workspace = DVector::new_random(3);
    /// let expected = rhs.transpose() * &mid * &rhs * 10.0 + &mat * 5.0;
    ///
    /// mat.quadform_with_workspace(&mut workspace, 10.0, &mid, &rhs, 5.0);
    /// assert_relative_eq!(mat, expected);
    pub fn quadform_with_workspace<D2, S2, D3, S3, R4, C4, S4>(
        &mut self,
        work: &mut Vector<N, D2, S2>,
        alpha: N,
        mid: &SquareMatrix<N, D3, S3>,
        rhs: &Matrix<N, R4, C4, S4>,
        beta: N,
    ) where
        D2: Dim,
        D3: Dim,
        R4: Dim,
        C4: Dim,
        S2: StorageMut<N, D2>,
        S3: Storage<N, D3, D3>,
        S4: Storage<N, R4, C4>,
        ShapeConstraint:
            DimEq<D3, R4> + DimEq<D1, C4> + DimEq<D2, D3> + AreMultipliable<C4, R4, D2, U1>,
    {
        work.gemv(N::one(), mid, &rhs.column(0), N::zero());
        self.column_mut(0).gemv_tr(alpha, &rhs, work, beta);

        for j in 1..rhs.ncols() {
            work.gemv(N::one(), mid, &rhs.column(j), N::zero());
            self.column_mut(j).gemv_tr(alpha, &rhs, work, beta);
        }
    }

    /// Computes the quadratic form `self = alpha * rhs.transpose() * mid * rhs + beta * self`.
    ///
    /// This allocates a workspace vector of dimension D2 for intermediate results.
    /// If `D2` is a type-level integer, then the allocation is performed on the stack.
    /// Use `.quadform_with_workspace(...)` instead to avoid allocations.
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # extern crate nalgebra;
    /// # use nalgebra::{Matrix2, Matrix3x2, Matrix3};
    /// let mut mat = Matrix2::identity();
    /// let rhs = Matrix3x2::new(1.0, 2.0,
    ///                          3.0, 4.0,
    ///                          5.0, 6.0);
    /// let mid = Matrix3::new(0.1, 0.2, 0.3,
    ///                        0.5, 0.6, 0.7,
    ///                        0.9, 1.0, 1.1);
    /// let expected = rhs.transpose() * mid * rhs * 10.0 + mat * 5.0;
    ///
    /// mat.quadform(10.0, &mid, &rhs, 5.0);
    /// assert_relative_eq!(mat, expected);
    pub fn quadform<D2, S2, R3, C3, S3>(
        &mut self,
        alpha: N,
        mid: &SquareMatrix<N, D2, S2>,
        rhs: &Matrix<N, R3, C3, S3>,
        beta: N,
    ) where
        D2: Dim,
        R3: Dim,
        C3: Dim,
        S2: Storage<N, D2, D2>,
        S3: Storage<N, R3, C3>,
        ShapeConstraint: DimEq<D2, R3> + DimEq<D1, C3> + AreMultipliable<C3, R3, D2, U1>,
        DefaultAllocator: Allocator<N, D2>,
    {
        let mut work = unsafe { Vector::new_uninitialized_generic(mid.data.shape().0, U1) };
        self.quadform_with_workspace(&mut work, alpha, mid, rhs, beta)
    }
}