1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};

use num::Zero;
use num_complex::Complex;

use na::allocator::Allocator;
use na::dimension::Dim;
use na::storage::Storage;
use na::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar};

use lapack;

/// The cholesky decomposition of a symmetric-definite-positive matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "serde-serialize",
    serde(bound(
        serialize = "DefaultAllocator: Allocator<N, D>,
         MatrixN<N, D>: Serialize"
    ))
)]
#[cfg_attr(
    feature = "serde-serialize",
    serde(bound(
        deserialize = "DefaultAllocator: Allocator<N, D>,
         MatrixN<N, D>: Deserialize<'de>"
    ))
)]
#[derive(Clone, Debug)]
pub struct Cholesky<N: Scalar, D: Dim>
where DefaultAllocator: Allocator<N, D, D>
{
    l: MatrixN<N, D>,
}

impl<N: Scalar, D: Dim> Copy for Cholesky<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
    MatrixN<N, D>: Copy,
{}

impl<N: CholeskyScalar + Zero, D: Dim> Cholesky<N, D>
where DefaultAllocator: Allocator<N, D, D>
{
    /// Computes the cholesky decomposition of the given symmetric-definite-positive square
    /// matrix.
    ///
    /// Only the lower-triangular part of the input matrix is considered.
    #[inline]
    pub fn new(mut m: MatrixN<N, D>) -> Option<Self> {
        // FIXME: check symmetry as well?
        assert!(
            m.is_square(),
            "Unable to compute the cholesky decomposition of a non-square matrix."
        );

        let uplo = b'L';
        let dim = m.nrows() as i32;
        let mut info = 0;

        N::xpotrf(uplo, dim, m.as_mut_slice(), dim, &mut info);
        lapack_check!(info);

        Some(Self { l: m })
    }

    /// Retrieves the lower-triangular factor of the cholesky decomposition.
    pub fn unpack(mut self) -> MatrixN<N, D> {
        self.l.fill_upper_triangle(Zero::zero(), 1);
        self.l
    }

    /// Retrieves the lower-triangular factor of che cholesky decomposition, without zeroing-out
    /// its strict upper-triangular part.
    ///
    /// This is an allocation-less version of `self.l()`. The values of the strict upper-triangular
    /// part are garbage and should be ignored by further computations.
    pub fn unpack_dirty(self) -> MatrixN<N, D> {
        self.l
    }

    /// Retrieves the lower-triangular factor of the cholesky decomposition.
    pub fn l(&self) -> MatrixN<N, D> {
        let mut res = self.l.clone();
        res.fill_upper_triangle(Zero::zero(), 1);
        res
    }

    /// Retrieves the lower-triangular factor of the cholesky decomposition, without zeroing-out
    /// its strict upper-triangular part.
    ///
    /// This is an allocation-less version of `self.l()`. The values of the strict upper-triangular
    /// part are garbage and should be ignored by further computations.
    pub fn l_dirty(&self) -> &MatrixN<N, D> {
        &self.l
    }

    /// Solves the symmetric-definite-positive linear system `self * x = b`, where `x` is the
    /// unknown to be determined.
    pub fn solve<R2: Dim, C2: Dim, S2>(
        &self,
        b: &Matrix<N, R2, C2, S2>,
    ) -> Option<MatrixMN<N, R2, C2>>
    where
        S2: Storage<N, R2, C2>,
        DefaultAllocator: Allocator<N, R2, C2>,
    {
        let mut res = b.clone_owned();
        if self.solve_mut(&mut res) {
            Some(res)
        } else {
            None
        }
    }

    /// Solves in-place the symmetric-definite-positive linear system `self * x = b`, where `x` is
    /// the unknown to be determined.
    pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
    where DefaultAllocator: Allocator<N, R2, C2> {
        let dim = self.l.nrows();

        assert!(
            b.nrows() == dim,
            "The number of rows of `b` must be equal to the dimension of the matrix `a`."
        );

        let nrhs = b.ncols() as i32;
        let lda = dim as i32;
        let ldb = dim as i32;
        let mut info = 0;

        N::xpotrs(
            b'L',
            dim as i32,
            nrhs,
            self.l.as_slice(),
            lda,
            b.as_mut_slice(),
            ldb,
            &mut info,
        );
        lapack_test!(info)
    }

    /// Computes the inverse of the decomposed matrix.
    pub fn inverse(mut self) -> Option<MatrixN<N, D>> {
        let dim = self.l.nrows();
        let mut info = 0;

        N::xpotri(
            b'L',
            dim as i32,
            self.l.as_mut_slice(),
            dim as i32,
            &mut info,
        );
        lapack_check!(info);

        // Copy lower triangle to upper triangle.
        for i in 0..dim {
            for j in i + 1..dim {
                unsafe { *self.l.get_unchecked_mut((i, j)) = *self.l.get_unchecked((j, i)) };
            }
        }

        Some(self.l)
    }
}

/*
 *
 * Lapack functions dispatch.
 *
 */
/// Trait implemented by floats (`f32`, `f64`) and complex floats (`Complex<f32>`, `Complex<f64>`)
/// supported by the cholesky decomposition.
pub trait CholeskyScalar: Scalar {
    #[allow(missing_docs)]
    fn xpotrf(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32);
    #[allow(missing_docs)]
    fn xpotrs(
        uplo: u8,
        n: i32,
        nrhs: i32,
        a: &[Self],
        lda: i32,
        b: &mut [Self],
        ldb: i32,
        info: &mut i32,
    );
    #[allow(missing_docs)]
    fn xpotri(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32);
}

macro_rules! cholesky_scalar_impl(
    ($N: ty, $xpotrf: path, $xpotrs: path, $xpotri: path) => (
        impl CholeskyScalar for $N {
            #[inline]
            fn xpotrf(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) {
                unsafe { $xpotrf(uplo, n, a, lda, info) }
            }

            #[inline]
            fn xpotrs(uplo: u8, n: i32, nrhs: i32, a: &[Self], lda: i32,
                      b: &mut [Self], ldb: i32, info: &mut i32) {
                unsafe { $xpotrs(uplo, n, nrhs, a, lda, b, ldb, info) }
            }

            #[inline]
            fn xpotri(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) {
                unsafe { $xpotri(uplo, n, a, lda, info) }
            }
        }
    )
);

cholesky_scalar_impl!(f32, lapack::spotrf, lapack::spotrs, lapack::spotri);
cholesky_scalar_impl!(f64, lapack::dpotrf, lapack::dpotrs, lapack::dpotri);
cholesky_scalar_impl!(Complex<f32>, lapack::cpotrf, lapack::cpotrs, lapack::cpotri);
cholesky_scalar_impl!(Complex<f64>, lapack::zpotrf, lapack::zpotrs, lapack::zpotri);