1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
#![feature(const_fn)]

use std::ops::{Add, AddAssign, Mul, Sub, SubAssign};

/// The requirements for a type to be a Matrix Cell. Numeric types fulfill these
/// requirements, and many of them can be derived as needed 
pub trait MatrixCell<T>: Add<Output=T> + Mul<Output=T> + AddAssign + SubAssign + Copy + From<i8> {}
impl<T: Add<Output=T> + Mul<Output=T> + AddAssign + SubAssign + Copy + From<i8>> MatrixCell<T> for T {} 


/// Uses const generics to represent a mathematical matrix 
#[derive(Copy, Clone)]
pub struct Matrix<T: MatrixCell<T>, const R: usize, const C: usize> {
    pub inner: [[T; C]; R]
}

impl<T: MatrixCell<T>, const R: usize, const C: usize> Matrix<T, R, C> {

    /// Creates a new Matrix of the given size
    ///
    /// # Arguments
    ///
    /// * 'inner' - The initial value of the matrix, defines the dimensions of the matrix
    /// 
    /// # Examples
    /// 
    /// ```
    /// use mtrx::Matrix;
    ///
    /// let matrix = Matrix::new([[1, 2], [3, 4]]); 
    ///
    /// ```
    pub fn new(inner: [[T; C]; R]) -> Self {
        Matrix {
            inner
        }
    }

    /// Returns a 2D array representation of the matrix
    pub fn inner(&self) -> [[T; C]; R] {
        self.inner
    }


    /// Returns true if the matrix is a square matrix
    /// 
    /// # Examples
    /// ```
    /// use mtrx::Matrix;
    /// 
    /// let a = Matrix::new([[1, 2], [3, 4]]);
    /// let b = Matrix::new([[1, 2, 3], [3, 4, 5]]);
    /// assert!(a.is_square());
    /// assert!(!b.is_square());
    /// 
    /// ```
    pub const fn is_square(&self) -> bool {
        R == C
    }
    
    /// Multiples the matrix by a scalar value, and returns a new matrix with the scaled values
    /// 
    /// # Arguments
    /// 
    /// * 'scalar' - Value to multiply the matrix by
    ///
    /// Returns a matrix with dimensions R×C (unchanged)
    ///
    /// # Examples
    /// ```
    /// use mtrx::Matrix;
    /// 
    /// let matrix = Matrix::new(
    ///     [[1, 1], [2, 2]]
    /// );
    /// 
    /// let result = matrix.multiply_scalar(2);
    /// assert_eq!(result.inner(), [[2, 2], [4, 4]]); 
    /// ```
    pub fn multiply_scalar(&self, scalar: T) -> Matrix<T, R, C> {
        
        // Use the default value
        let mut inner = [[0i8.into(); C]; R];

        for r in 0..R {
            for c in 0..C {
                inner[r][c] = scalar * self.inner[r][c];
            };
        };

        Matrix { inner }

    }

    /// Performs the dot product with the row of this matrix and the column of the given matrix,
    /// used in matrix multiplication
    fn dot_product<const K: usize>(&self, row: usize, matrix: Matrix<T, C, K>, col: usize) -> T {

        // Initialize sum with the first value so that we never have to initialize it with zero, which can be difficult with generic numeric types
        let mut sum: T = self.inner[row][0] * matrix.inner[0][col];

        // Add the remainder of the n-tuple
        for i in 1..C { 
            sum += self.inner[row][i] * matrix.inner[i][col]
        }

        // Return the sum
        sum        
    }



    /// Performs matrix multiplication with the given matrix, returns the resultant matrix
    /// 
    /// # Arguments
    ///
    /// * 'matrix' Matrix of dimensions C×K 
    ///
    /// Returns a matrix with dimensions R×K
    /// 
    /// # Examples
    /// ```
    /// use mtrx::Matrix;
    /// 
    /// let matrix_a = Matrix::new(
    ///     [[1, 2, 3], 
    ///     [4, 5, 6]]
    /// );
    ///
    /// let matrix_b = Matrix::new(
    ///     [[7,  8],
    ///      [9,  10], 
    ///      [11, 12]]
    /// );
    ///
    /// let result = matrix_a.multiply_matrix(matrix_b);
    /// assert_eq!(result.inner, [[58, 64], [139, 154]]); 
    ///  
    /// ```
    /// 
    pub fn multiply_matrix<const K: usize>(&self, matrix: Matrix<T, C, K>) -> Matrix<T, R, K> {

        // Initialize a default array (the default values are just placeholders)
        let mut inner = [[0i8.into(); K]; R];

        // Perform the multiplication
        for r in 0..R {
            for c in 0..K {
                inner[r][c] = self.dot_product(r, matrix, c);
            }
        }

        Matrix { inner }
        
    }


    /// Returns the transposed matrix.
    /// 
    /// Matrix transposition is the process of "rotating" the matrix 90 degrees, essentially
    /// swapping rows and columns. For example,
    /// 
    /// 
    /// | 1 2 |
    /// | 3 4 |
    /// | 5 6 |
    /// 
    /// becomes
    /// 
    /// | 1 3 5 |
    /// | 2 4 6 |
    /// 
    /// Returns the transposed Matrix<C, R>
    /// 
    /// # Examples
    /// 
    /// ```
    /// use mtrx::Matrix;
    /// 
    /// let matrix = Matrix::new(
    ///     [[1, 2, 3], 
    ///     [4, 5, 6]]
    /// );
    /// 
    /// let transposed = matrix.transpose();
    /// 
    /// assert_eq!(transposed.inner, [[1, 4], [2, 5], [3, 6]])
    /// 
    /// ```
    ///  
    pub fn transpose(&self) -> Matrix<T, C, R> {

        let mut inner = [[0i8.into(); R]; C];

        for r in 0..R {
            for c in 0..C {
                inner[c][r] = self.inner[r][c];
            }
        }


        Matrix { inner }

    }


    /// Adds two matrices of the same size and returns the sum matrix (also the same size).
    /// Additionally you can also use the + operator to add matrices together;
    /// 
    /// # Arguments
    /// 
    /// * 'other' - Same same sized matrix to add
    /// 
    /// # Examples
    /// 
    /// ```
    /// use mtrx::Matrix;
    /// 
    /// let matrix_a = Matrix::new([[1, 2], [3, 4]]);
    /// let matrix_b = Matrix::new([[3, 2], [1, 0]]);
    /// 
    /// let sum = matrix_a.add_matrix(matrix_b);
    /// assert_eq!(sum.inner, [[4, 4], [4, 4]]);
    /// 
    /// let sum = matrix_a + matrix_b;
    /// assert_eq!(sum.inner, [[4, 4], [4, 4]]);
    /// 
    /// ```
    pub fn add_matrix(&self, other: Matrix<T, R, C>) -> Matrix<T, R, C> {
        let mut inner = self.inner.clone();

        for r in 0..R {
            for c in 0..C {
                inner[r][c] += other.inner[r][c];
            }
        }

        Matrix { inner }
    }

    /// Adds a single value to all cells in the matrix and returns the sum matrix. Additionally, you
    /// can use the plus operator to add a value to the matrix
    /// 
    /// # Arguments
    /// 
    /// * 'other' - The value T to add to all the cell
    /// 
    /// # Examples
    /// 
    /// ```
    /// use mtrx::Matrix;
    /// let matrix_a = Matrix::new([[1, 2], [3, 4]]);
    /// 
    /// let sum = matrix_a.add_value(10);
    /// assert_eq!(sum.inner, [[11, 12], [13, 14]]);
    /// 
    /// let sum = matrix_a + 10;
    /// assert_eq!(sum.inner, [[11, 12], [13, 14]]);
    /// 
    /// ```
    pub fn add_value(&self, other: T) -> Matrix<T, R, C> {
        let mut inner = self.inner.clone();

        for r in 0..R {
            for c in 0..C {
                inner[r][c] += other
            }
        }

        Matrix { inner }
    }

    /// Subtracts two matrices of the same size and returns the difference matrix (also the same size).
    /// Additionally you can also use the - operator to subtract matrices.
    /// 
    /// # Arguments
    /// 
    /// * 'other' - Same same sized matrix to subtract
    /// 
    /// # Examples
    /// 
    /// ```
    /// use mtrx::Matrix;
    /// 
    /// let matrix_a = Matrix::new([[1, 2], [3, 4]]);
    /// let matrix_b = Matrix::new([[0, 1], [2, 3]]);
    /// 
    /// let difference = matrix_a.sub_matrix(matrix_b);
    /// assert_eq!(difference.inner, [[1, 1], [1, 1]]);
    /// 
    /// let difference = matrix_a - matrix_b;
    /// assert_eq!(difference.inner, [[1, 1], [1, 1]]);
    /// 
    /// ```
    pub fn sub_matrix(&self, other: Matrix<T, R, C>) -> Matrix<T, R, C> {
        let mut inner = self.inner.clone();

        for r in 0..R {
            for c in 0..C {
                inner[r][c] -= other.inner[r][c];
            }
        }

        Matrix { inner }
    }

    /// Subtracts a single value to all cells in the matrix and returns the difference matrix. Additionally, you
    /// can use the - operator to add a value to the matrix
    /// 
    /// # Arguments
    /// 
    /// * 'other' - The value T to subtract from each cell
    /// 
    /// # Examples
    /// 
    /// ```
    /// use mtrx::Matrix;
    /// let matrix_a = Matrix::new([[1, 2], [3, 4]]);
    /// 
    /// let sum = matrix_a.sub_value(1);
    /// assert_eq!(sum.inner, [[0, 1], [2, 3]]);
    /// 
    /// let sum = matrix_a - 1;
    /// assert_eq!(sum.inner, [[0, 1], [2, 3]]);
    /// 
    /// ```
    pub fn sub_value(&self, other: T) -> Matrix<T, R, C> {
        let mut inner = self.inner.clone();

        for r in 0..R {
            for c in 0..C {
                inner[r][c] -= other
            }
        }

        Matrix { inner }
    }


    /// Multiplies a matrix by a mathematical vector (const-sized array) and returns the matrix
    /// vector product.  
    ///
    /// # Arguments
    /// 
    /// * 'other' - Mathematical vector to multiply the matrix by
    /// 
    /// # Examples
    /// 
    /// ```
    /// use mtrx::Matrix;
    /// 
    /// let matrix = Matrix::new([
    ///     [1, -1, 2],
    ///     [0, -3, 1]
    /// ]);
    /// 
    /// let vector = [2, 1, 0];
    /// 
    /// let product = matrix.vector_product(vector);
    /// assert_eq!(product, [1, -3]);
    /// 
    /// let product = matrix * vector;
    /// assert_eq!(product, [1, -3])
    /// 
    /// 
    /// ```
    /// 
    pub fn vector_product(&self, other: [T; C]) -> [T; R] {

        let mut values = [0i8.into(); R];

        for r in 0..R {
            for c in 0..C {
                values[r] += self.inner[r][c] * other[c]
            }
        }

        values

    } 

    /// Returns a non-mutable reference to the cell at the specified row and column
    /// 
    /// Note: typical mathematical notation for matrices is for 1-indexing. However, in order to be
    /// consistent, this function is zero-indexed.
    /// 
    /// # Arguments
    /// 
    /// * 'row' - Must be within 0..R
    /// * 'col' - Must be within 0..C
    /// 
    /// # Examples
    /// 
    /// ```
    /// use mtrx::Matrix;
    /// 
    /// let matrix = Matrix::new([
    ///     [1, 2], 
    ///     [3, 4]
    /// ]);
    /// 
    /// assert_eq!(matrix.get(0, 0), Some(&1));
    /// assert_eq!(matrix.get(0, 1), Some(&2));
    /// assert_eq!(matrix.get(1, 0), Some(&3));
    /// assert_eq!(matrix.get(1, 1), Some(&4));
    /// 
    /// assert_eq!(matrix.get(2, 2), None);
    /// 
    /// ```
    /// 
    pub const fn get(&self, row: usize, col: usize) -> Option<&T> {

        if row < R && col < C {
            Some(&self.inner[row][col])
        } else {
            None
        }

    }

    /// Returns a mutable reference to the cell at the specified row and column. 
    /// 
    /// Note: typical mathematical notation for matrices is for 1-indexing. However, in order to be
    /// consistent, this function is zero-indexed.
    /// 
    /// # Arguments
    /// 
    /// * 'row' - Must be within 0..R
    /// * 'col' - Must be within 0..C
    /// 
    /// # Examples
    /// 
    /// ```
    /// use mtrx::Matrix;
    /// 
    /// let mut matrix = Matrix::new([
    ///     [1, 2], 
    ///     [3, 4]
    /// ]);
    /// 
    /// 
    /// assert_eq!(matrix.get_mut(0, 0), Some(&mut 1));
    /// assert_eq!(matrix.get_mut(0, 1), Some(&mut 2));
    /// assert_eq!(matrix.get_mut(1, 0), Some(&mut 3));
    /// assert_eq!(matrix.get_mut(1, 1), Some(&mut 4));
    /// 
    /// assert_eq!(matrix.get_mut(2, 2), None);
    /// 
    /// ```
    /// 
    pub fn get_mut(&mut self, row: usize, col: usize) -> Option<&mut T> {

        if row < R && col < C {
            Some(&mut self.inner[row][col])
        } else {
            None
        }

    }

    /// Sets the value of the cell at the given dimensions
    /// 
    /// Note: typical mathematical notation for matrices is for 1-indexing. However, in order to be
    /// consistent, this function is zero-indexed.
    /// 
    /// # Arguments
    /// 
    /// * 'row' - Must be within 0..R
    /// * 'col' - Must be within 0..C
    /// * 'value' - The value to set at row, col
    /// 
    /// # Examples
    /// 
    /// ```
    /// use mtrx::Matrix;
    /// 
    /// let mut matrix = Matrix::new([
    ///     [1, 2], 
    ///     [3, 4]
    /// ]);
    /// 
    /// matrix.set(0, 0, 0);
    /// assert_eq!(matrix.get(0, 0), Some(&0));
    /// 
    /// ```
    /// 
    pub fn set(&mut self, row: usize, col: usize, value: T) -> bool {

        if let Some(cell) = self.get_mut(row, col) {
            *cell = value;
            true
        } else {
            false
        }

    }

}


/// Some matrix operations are only valid for square matrices
impl<T: MatrixCell<T>, const R: usize> Matrix<T, R, R> {

    /// Returns the identity matrix for a RxR matrix. The identity matrix is the matrix with 1 in a
    /// diagonal line down the matrix, and a zero everywhere else. For example, the 3x3 identity
    /// matrix is:
    /// 
    /// 1 0 0
    /// 
    /// 0 1 0
    /// 
    /// 0 0 1
    /// 
    /// # Examples
    /// 
    /// ```
    /// use mtrx::Matrix;
    /// 
    /// let identity: Matrix<i8, 2, 2> = Matrix::identity();
    /// assert_eq!(identity.inner, [[1, 0], [0, 1]]);
    /// 
    /// ```
    /// 
    /// Identity matrices cannot be created with non-square const generic sizes:
    /// 
    /// ```compile_fail
    /// use mtrx::Matrix;
    /// 
    /// let identity: Matrix<i8, 3, 2> = Matrix::identity(); // Compiler Error!
    /// 
    /// ```
    pub fn identity() -> Matrix<T, R, R> {

        let mut inner = [[0i8.into(); R]; R];

        for r in 0..R {
            for c in 0..R {
                if r == c {
                    inner[r][c] = 1i8.into();
                }
            }
        };

        Matrix { inner }
    }

    /// Raises a square matrix to a power (essentially, multiplying itself exp times). Raising a
    /// matrix to the zeroth power returns [Matrix::identity]
    /// 
    /// # Arguments
    /// 
    /// * 'exp' - Exponent
    /// 
    /// # Examples
    /// 
    /// ```
    /// use mtrx::Matrix;
    /// 
    /// let matrix = Matrix::new([[1, -3], [2, 5]]);
    /// let result = matrix.pow(2);
    /// 
    /// assert_eq!(result.inner, [[-5, -18], [12, 19]]);
    /// 
    /// let result = matrix.pow(0);
    /// assert_eq!(result.inner, [[1, 0], [0, 1]]);
    /// 
    /// 
    /// ```
    pub fn pow(&self, exp: usize) -> Matrix<T, R, R> {

        // By convention matrix to the power of zero is the identity matrix
        if exp == 0 {
            Matrix::identity()

        // Otherwise, multiply the matrix by itself exp times 
        } else {
            let mut matrix = self.clone();

            for _ in 1..exp {
                matrix = matrix * matrix;
            };
            
            matrix
        }
    }

}

/// Trait Implementations
/// See method descriptions above for more details

impl<T: MatrixCell<T>, const R: usize, const C: usize> Add for Matrix<T, R, C> {
    type Output = Matrix<T, R, C>;
    
    fn add(self, other: Self) -> Self {
        self.add_matrix(other)
    }
}


impl<T: MatrixCell<T>, const R: usize, const C: usize> Add<T> for Matrix<T, R, C> {
    type Output = Matrix<T, R, C>;

    fn add(self, other: T) -> Self {
        self.add_value(other)
    }

}


impl<T: MatrixCell<T>, const R: usize, const C: usize> Sub for Matrix<T, R, C> {
    type Output = Matrix<T, R, C>;
    
    fn sub(self, other: Self) -> Self {
        self.sub_matrix(other)
    }
}

impl<T: MatrixCell<T>, const R: usize, const C: usize> Sub<T> for Matrix<T, R, C> {
    type Output = Matrix<T, R, C>;

    fn sub(self, other: T) -> Self {
        self.sub_value(other)
    }

}


impl<T: MatrixCell<T>, const R: usize, const C: usize, const K: usize> Mul<Matrix<T, C, K>> for Matrix<T, R, C> {
    type Output = Matrix<T, R, K>;

    fn mul(self, other: Matrix<T, C, K>) -> Matrix<T, R, K> {
        self.multiply_matrix(other)
    }
}


impl<T: MatrixCell<T>, const R: usize, const C: usize> Mul<T> for Matrix<T, R, C> {
    type Output = Matrix<T, R, C>;

    fn mul(self, other: T) -> Matrix<T, R, C> {
        self.multiply_scalar(other)
    }
}

impl<T: MatrixCell<T>, const R: usize, const C: usize> Mul<[T; C]> for Matrix<T, R, C> {
    type Output = [T; R];

    fn mul(self, other: [T; C]) -> [T; R] {
        self.vector_product(other)
    }
}