1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
// This file is a part of the mori - Material Orientation Library in Rust
// Copyright 2018 Robert Carson 
// 
//    Licensed under the Apache License, Version 2.0 (the "License");
//    you may not use this file except in compliance with the License.
//    You may obtain a copy of the License at
// 
//        http://www.apache.org/licenses/LICENSE-2.0
// 
//    Unless required by applicable law or agreed to in writing, software
//    distributed under the License is distributed on an "AS IS" BASIS,
//    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//    See the License for the specific language governing permissions and
//    limitations under the License.

use super::*;
use std::cmp;

///A structure that holds an array of unit quaternions
#[derive(Clone, Debug)]
pub struct Quat{
    ori: Array2<f64>,
}

impl Quat{
    ///Creates an array of zeros for the initial unit quaternion when data is not fed into it
    pub fn new(size: usize) -> Quat{
        assert!(size > 0, "Size inputted: {}, was not greater than 0", size);

        let mut ori = Array2::<f64>::zeros((4, size).f());

        azip!(mut quat (ori.axis_iter_mut(Axis(1))) in {quat[0] = 1.0_f64});

        Quat{
            ori,
        }
    }//End of new

    ///Creates a unit quaternion type with the supplied data as long as the supplied data is in the following format
    ///shape (4, nelems), memory order = fortran/column major.
    ///If it doesn't fit those standards it will fail.
    pub fn new_init(ori: Array2<f64>) -> Quat{

        let nrow = ori.rows();

        assert!(nrow == 4, "Number of rows of array was: {}, which is not equal to 4", nrow);
        //We need to deal with a borrowing of ori here, so we need to have strides dropped at one point.
        {
            let strides = ori.strides();

            assert!(strides[0] == 1, "The memory stride is not column major (f order)");
        }

        Quat{
            ori,
        }
    }//End of new_init

    ///Return a ndarray view of the orientation data
    pub fn ori_view(&self) -> ArrayView2<f64>{
        self.ori.view()
    }

    ///Return a ndarray mutable view of the orientation data
    pub fn ori_view_mut(&mut self) -> ArrayViewMut2<f64>{
        self.ori.view_mut()
    }

    ///Returns a new Quat that is equal to the conjugate/inverse of the unit quaternion which is simply the negative
    ///of the vector portions of the unit quaternion.
    pub fn conjugate(&self) -> Quat{
        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array2::<f64>::zeros((4, nelems).f());
        
        azip!(mut quat_c (ori.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {
            quat_c[0] = quat[0];
            quat_c[1] = -1.0_f64 * quat[1];
            quat_c[2] = -1.0_f64 * quat[2];
            quat_c[3] = -1.0_f64 * quat[3];
        });

        Quat::new_init(ori)
    }//End of conjugate

    ///Performs in place the conjugate/inverse of the unit quaternion which is simply the negative
    ///of the vector portions of the unit quaternion. The inverse is said to be the same here because
    ///for unit quaternions that is the case. If we didn't have unit quaternions that would not be the case.
    pub fn conjugate_inplace(&mut self){
        azip!(mut quat_c (self.ori.axis_iter_mut(Axis(1))) in {
            quat_c[1] *= -1.0_f64;
            quat_c[2] *= -1.0_f64;
            quat_c[3] *= -1.0_f64;
        });
    }//End of conjugate_inplace

    ///Performs a quaternion product operation between two unit quaternions ->
    ///q_new = (q_01*q_02 - q_1.q_2, q_01*q_2 +q_02*q_1 + q_1 x q_2) where q_1 and q_2 are the vector components of the
    ///quaternion. The result returned is a new quaternion. Also, if the conjugate/inverse is used for the first quaternion
    ///one can obtain the relative orientation/rotation between quaternion 1 and quaternion 2.
    ///This function requires the number of elements in self to be either 1.
    ///The quat2 field might also contain either 1 or nelems number of elements.
    ///If this condition is not met the function will error out.
    ///quat2 - the quaternion to be rotated must have dimensions 4xnelems or 4x1.
    ///Output - the quaternion product and has dimensions 4xnelems.
    pub fn product(&self, quat2: &Quat) -> Quat{
        
        let ori_quat2 = quat2.ori_view();
        let nelems = ori_quat2.len_of(Axis(1));
        let rnelems = self.ori.len_of(Axis(1));

        assert!( (nelems == rnelems) | (rnelems == 1) | (nelems == 1), 
        "The number of elements in quat2 field must be equal to the number of elements in the
        Quaternion structure, or their must only be one element in Quaternion. The final case is
        that there must only be one element in the quat2 field. There are
        currently {} elements in quat2 and {} elements in Quaternion",
        nelems, rnelems);

        let mnelems = cmp::max(rnelems, nelems);
        let mut quat_prod = Array2::<f64>::zeros((4, mnelems).f());

                //We need to see if we have more than one Quaternion that we're multiplying by
        if rnelems == nelems {
            //The rotations here can be given by reference 1  equation 24 in the README.
            azip!(mut quat_prod (quat_prod.axis_iter_mut(Axis(1))), ref quat2 (ori_quat2.axis_iter(Axis(1))), 
            ref quat1 (self.ori.axis_iter(Axis(1))) in {
                quat_product(&quat1, &quat2, quat_prod);     
            });
        } else if rnelems == 1{
            //We just have one Quaternion so perform pretty much the above to get all of our values
            let quat1 = self.ori.subview(Axis(1), 0);

            azip!(mut quat_prod (quat_prod.axis_iter_mut(Axis(1))), ref quat2 (ori_quat2.axis_iter(Axis(1))) in {  
                quat_product(&quat1, &quat2, quat_prod);      
            });
        }else{
            //We just have one vector so perform pretty much the above to get all of our values
            let quat2 = ori_quat2.subview(Axis(1), 0);

            azip!(mut quat_prod (quat_prod.axis_iter_mut(Axis(1))), ref quat1 (self.ori.axis_iter(Axis(1))) in {  
                quat_product(&quat1, &quat2, quat_prod);  
            });
        }//End of if-else

        Quat::new_init(quat_prod)
    }//End of product

    ///Performs a quaternion product operation between two unit quaternions ->
    ///q_new = (q_01*q_02 - q_1.q_2, q_01*q_2 +q_02*q_1 + q_1 x q_2) where q_1 and q_2 are the vector components of the
    ///quaternion. The result is stored in a supplied quaternion field. 
    ///Also, if the conjugate/inverse is used for the first quaternion
    ///one can obtain the relative orientation/rotation between quaternion 1 and quaternion 2.
    ///This function requires the number of elements in self to be either 1.
    ///The quat2 field might also contain either 1 or nelems number of elements.
    ///The quat_prod field must contain nelems number of elements.
    ///If this condition is not met the function will error out.
    ///quat2 - the quaternion to be rotated must have dimensions 4xnelems or 4x1.
    ///quat_prod - the quaternion product that was supplied that we are going to store data in must have dims 4xnelems
    pub fn product_mut(&self, quat2: &Quat, quat_prod: &mut Quat){
        
        let ori_quat2 = quat2.ori_view();
        let mut ori_quat_prod = quat_prod.ori_view_mut();

        let nelems = ori_quat2.len_of(Axis(1));
        let rvnelems = ori_quat_prod.len_of(Axis(1));
        let rnelems = self.ori.len_of(Axis(1));

        let mnelems = cmp::max(rnelems, nelems);

        assert!((mnelems == rvnelems),
        "The number of elements in the quat2 or Quaternion field must be equal to the number of elements
        in the supplied quat_prod field. There are currently {} elements in the quat2 or Quaternion
        field and {} elements in the quat_prod field", 
        mnelems, rvnelems);

        assert!( (nelems == rnelems) | (rnelems == 1) | (nelems == 1), 
        "The number of elements in quat2 field must be equal to the number of elements in the
        Quaternion structure, or their must only be one element in Quaternion. The final case is
        that there must only be one element in the quat2 field. There are
        currently {} elements in quat2 and {} elements in Quaternion",
        nelems, rnelems);

        //We need to see if we have more than one Quaternion that we're multiplying by
        if rnelems == nelems {
            //The rotations here can be given by reference 1  equation 23 in the README.
            azip!(mut quat_prod (ori_quat_prod.axis_iter_mut(Axis(1))), ref quat2 (ori_quat2.axis_iter(Axis(1))), 
            ref quat1 (self.ori.axis_iter(Axis(1))) in {
                quat_product(&quat1, &quat2, quat_prod);     
            });
        } else if rnelems == 1{
            //We just have one Quaternion so perform pretty much the above to get all of our values
            let quat1 = self.ori.subview(Axis(1), 0);

            azip!(mut quat_prod (ori_quat_prod.axis_iter_mut(Axis(1))), ref quat2 (ori_quat2.axis_iter(Axis(1))) in {  
                quat_product(&quat1, &quat2, quat_prod);      
            });
        }else{
            //We just have one vector so perform pretty much the above to get all of our values
            let quat2 = ori_quat2.subview(Axis(1), 0);

            azip!(mut quat_prod (ori_quat_prod.axis_iter_mut(Axis(1))), ref quat1 (self.ori.axis_iter(Axis(1))) in {  
                quat_product(&quat1, &quat2, quat_prod);  
            });
        }//End of if-else
    }//End of product_mut

}//End of Impl of Quat

//A helper function for Impl of Quat

///All of the quaternion product operations can be described by using the below series of functions.
///q_new = (q_01*q_02 - q_1.q_2, q_01*q_2 +q_02*q_1 + q_1 x q_2) where q_1 and q_2 are the vector components of the
///quaternion. 
fn quat_product(quat1: &ArrayView1<f64>, quat2: &ArrayView1<f64>, mut quat_prod: ArrayViewMut1<f64>){
    let q01q02 = quat1[0] * quat2[0];
    //(q_0^2 - ||q||^2)
    let q01q02_qd = q01q02 - (quat1[1] * quat2[1] + quat1[2] * quat2[2] + quat1[3] * quat2[3]);
    let mut cross_prod = Array1::<f64>::zeros((3).f());

    cross_prod[0] = -quat1[3] * quat2[2] + quat1[2] * quat2[3];
    cross_prod[1] = quat1[3] * quat2[1] - quat1[1] * quat2[3];
    cross_prod[2] = -quat1[2] * quat2[1] + quat1[1] * quat2[2];

    quat_prod[0] = q01q02_qd;
    quat_prod[1] = quat1[0] * quat2[1] + quat2[0] * quat1[1] + cross_prod[0];
    quat_prod[2] = quat1[0] * quat2[2] + quat2[0] * quat1[2] + cross_prod[0];
    quat_prod[3] = quat1[0] * quat2[3] + quat2[0] * quat1[3] + cross_prod[0];
}//End of quat_product

///The orientation conversions of a series of unit quaternions to a number of varying different orientation
///representations commonly used in material orientation processing. 
impl OriConv for Quat{
    ///Converts the unit quaternion representation over to Bunge angles which has the following properties
    ///shape (3, nelems), memory order = fortran/column major.
    fn to_bunge(&self) -> Bunge{

        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array2::<f64>::zeros((3, nelems).f());

        let tol = f64::sqrt(std::f64::EPSILON);

        azip!(mut bunge (ori.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {
            let q03 = quat[0] * quat[0] + quat[3] * quat[3];
            let q12 = quat[1] * quat[1] + quat[2] * quat[2];
            let xi = f64::sqrt(q03 * q12);
            //We get to now go through all of the different cases that this might break down into
            if xi.abs() < tol && q12.abs() < tol {
                bunge[0] = f64::atan2(-2.0_f64 * quat[0] * quat[3], quat[0] * quat[0] - quat[3] * quat[3]);
                //All of the other values are zero
            }else if xi.abs() < tol && q03.abs() < tol{
                bunge[0] = f64::atan2(2.0_f64 * quat[1] * quat[2], quat[1] * quat[1] - quat[2] * quat[2]);
                bunge[1] = std::f64::consts::PI;
                //The other value is zero
            }else{
                let inv_xi = 1.0_f64 / xi;
                //The atan2 terms are pretty long so we're breaking it down into a couple of temp terms
                let t1 = inv_xi * (quat[1] * quat[3] - quat[0] * quat[2]);
                let t2 = inv_xi * (-quat[0] * quat[1] - quat[2] * quat[3]);
                //We can now assign the first two bunge angles
                bunge[0] = t1.atan2(t2);
                bunge[1] = f64::atan2(2.0_f64 * xi, q03 - q12);
                //Once again these terms going into the atan2 term are pretty long
                let t1 = inv_xi * (quat[0] * quat[2] + quat[1] * quat[3]);
                let t2 = inv_xi * (quat[2] * quat[3] - quat[0] * quat[1]);
                //We can finally find the final bunge angle
                bunge[2] = t1.atan2(t2);
            }
        });

        Bunge::new_init(ori)
    }//End of to_bunge

    ///Converts the unit quaternion representation over to rotation matrix which has the following properties
    ///shape (3, 3, nelems), memory order = fortran/column major.
    fn to_rmat(&self) -> RMat{

        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array3::<f64>::zeros((3, 3, nelems).f());

        azip!(mut rmat (ori.axis_iter_mut(Axis(2))), ref quat (self.ori.axis_iter(Axis(1))) in {
            let qbar =  quat[0] * quat[0] - (quat[1] * quat[1] + quat[2] * quat[2] + quat[3] * quat[3]);

            rmat[[0, 0]] = qbar + 2.0_f64 * quat[1] * quat[1];
            rmat[[1, 0]] = 2.0_f64 * (quat[1] * quat[2] + quat[0] * quat[3]);
            rmat[[2, 0]] = 2.0_f64 * (quat[1] * quat[3] - quat[0] * quat[2]);

            rmat[[0, 1]] = 2.0_f64 * (quat[1] * quat[2] - quat[0] * quat[3]);
            rmat[[1, 1]] = qbar + 2.0_f64 * quat[2] * quat[2];
            rmat[[2, 1]] = 2.0_f64 * (quat[2] * quat[3] + quat[0] * quat[1]);

            rmat[[0, 2]] = 2.0_f64 * (quat[1] * quat[3] + quat[0] * quat[2]);
            rmat[[1, 2]] = 2.0_f64 * (quat[2] * quat[3] - quat[0] * quat[1]);
            rmat[[2, 2]] = qbar + 2.0_f64 * quat[3] * quat[3];
        });

        RMat::new_init(ori)
    }//End of to_rmat

    ///Converts the unit quaternion representation over to angle-axis representation which has the following properties
    ///shape (3, nelems), memory order = fortran/column major.
    fn to_ang_axis(&self) -> AngAxis{

        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array2::<f64>::zeros((4, nelems).f());

        let tol = std::f64::EPSILON;

        azip!(mut angaxis (ori.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {
            let phi = 2.0_f64 * quat[0].acos();
            if quat[0].abs() < tol{
                angaxis[0] = quat[1];
                angaxis[1] = quat[2];
                angaxis[2] = quat[3];
                angaxis[3] = std::f64::consts::PI;
            }else if phi.abs() < tol{
                angaxis[2] = 1.0_f64;
            }else{
                let s   = quat[0].signum() / f64::sqrt(quat[1] * quat[1] + quat[2] * quat[2] + quat[3] * quat[3]);

                angaxis[0] = s * quat[1];
                angaxis[1] = s * quat[2];
                angaxis[2] = s * quat[3];
                angaxis[3] = phi;
            }
        });

        AngAxis::new_init(ori)
    }//End of to_ang_axis

    ///Converts the unit quaternion over to a compact angle-axis representation which has the following properties
    ///shape (3, nelems), memory order = fortran/column major.
    fn to_ang_axis_comp(&self) -> AngAxisComp{

        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array2::<f64>::zeros((3, nelems).f());

        let tol = std::f64::EPSILON;

        azip!(mut angaxis (ori.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {
            let phi = 2.0_f64 * quat[0].acos();
            if quat[0].abs() < tol{
                angaxis[0] = quat[1] * std::f64::consts::PI;
                angaxis[1] = quat[2] * std::f64::consts::PI;
                angaxis[2] = quat[3] * std::f64::consts::PI;
            }else{
                let s   = quat[0].signum() / f64::sqrt(quat[1] * quat[1] + quat[2] * quat[2] + quat[3] * quat[3]);

                angaxis[0] = s * quat[1] * phi;
                angaxis[1] = s * quat[2] * phi;
                angaxis[2] = s * quat[3] * phi; 
            }
        });

        AngAxisComp::new_init(ori)
    }//End of to_ang_axis_comp

    ///Converts the unit quaternion over to a Rodrigues vector representation which has the following properties
    ///shape (4, nelems), memory order = fortran/column major.
    fn to_rod_vec(&self) -> RodVec{

        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array2::<f64>::zeros((4, nelems).f());

        let tol = std::f64::EPSILON;

        azip!(mut rod_vec (ori.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {
            let phi = quat[0].acos();
            if quat[0].abs() < tol{
                rod_vec[0] = quat[1];
                rod_vec[1] = quat[2];
                rod_vec[2] = quat[3];
                rod_vec[3] = std::f64::INFINITY;
            }else if phi.abs() < tol{
                rod_vec[2] = 1.0_f64;
            }else{
                let s   = quat[0].signum() / f64::sqrt(quat[1] * quat[1] + quat[2] * quat[2] + quat[3] * quat[3]);

                rod_vec[0] = s * quat[1];
                rod_vec[1] = s * quat[2];
                rod_vec[2] = s * quat[3];
                rod_vec[3] = phi.tan();
            }
        });

        RodVec::new_init(ori)
    }//End of to_rod_vec

    ///Converts the unit quaternion over to a compact Rodrigues vector representation which has the following properties
    ///shape (3, nelems), memory order = fortran/column major.
    fn to_rod_vec_comp(&self) -> RodVecComp{
        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array2::<f64>::zeros((3, nelems).f());
        let tol = std::f64::EPSILON;

        azip!(mut rod_vec_comp (ori.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {
            let tan_phi = f64::tan(quat[0].acos());
            //This case will not allow for anything to be retrievable later on...
            if quat[0].abs() < tol{
                rod_vec_comp[0] = std::f64::INFINITY;
                rod_vec_comp[1] = std::f64::INFINITY;
                rod_vec_comp[2] = std::f64::INFINITY;
            }else{
                let s   = quat[0].signum() / f64::sqrt(quat[1] * quat[1] + quat[2] * quat[2] + quat[3] * quat[3]);

                rod_vec_comp[0] = s * quat[1] * tan_phi;
                rod_vec_comp[1] = s * quat[2] * tan_phi;
                rod_vec_comp[2] = s * quat[3] * tan_phi; 
            }
        });

        RodVecComp::new_init(ori)
    }//End of to_rod_vec_comp

    ///This returns a clone of the original unit quaternion structure
    fn to_quat(&self) -> Quat{
        self.clone()
    }//End of to_quat

    ///Converts the quaternion representation over to a homochoric representation which has the following properties
    ///shape (4, nelems), memory order = fortran/column major.
    fn to_homochoric(&self) -> Homochoric{
        let ang_axis = self.to_ang_axis();
        ang_axis.to_homochoric()
    }//End of to_homochoric

    ///Converts the unit quaternion representation over to Bunge angles which has the following properties
    ///shape (3, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_bunge_inplace(&self, bunge: &mut Bunge){
        let mut ori = bunge.ori_view_mut();

        let new_nelem = ori.len_of(Axis(1));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        let tol = f64::sqrt(std::f64::EPSILON);

        azip!(mut bunge (ori.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {
            let q03 = quat[0] * quat[0] + quat[3] * quat[3];
            let q12 = quat[1] * quat[1] + quat[2] * quat[2];
            let xi = f64::sqrt(q03 * q12);
            //We get to now go through all of the different cases that this might break down into
            if xi.abs() < tol && q12.abs() < tol {
                bunge[0] = f64::atan2(-2.0_f64 * quat[0] * quat[3], quat[0] * quat[0] - quat[3] * quat[3]);
                //All of the other values are zero
            }else if xi.abs() < tol && q03.abs() < tol{
                bunge[0] = f64::atan2(2.0_f64 * quat[1] * quat[2], quat[1] * quat[1] - quat[2] * quat[2]);
                bunge[1] = std::f64::consts::PI;
                //The other value is zero
            }else{
                let inv_xi = 1.0_f64 / xi;
                //The atan2 terms are pretty long so we're breaking it down into a couple of temp terms
                let t1 = inv_xi * (quat[1] * quat[3] - quat[0] * quat[2]);
                let t2 = inv_xi * (-quat[0] * quat[1] - quat[2] * quat[3]);
                //We can now assign the first two bunge angles
                bunge[0] = t1.atan2(t2);
                bunge[1] = f64::atan2(2.0_f64 * xi, q03 - q12);
                //Once again these terms going into the atan2 term are pretty long
                let t1 = inv_xi * (quat[0] * quat[2] + quat[1] * quat[3]);
                let t2 = inv_xi * (quat[2] * quat[3] - quat[0] * quat[1]);
                //We can finally find the final bunge angle
                bunge[2] = t1.atan2(t2);
            }
        });

    }

    ///Converts the unit quaternion representation over to rotation matrix which has the following properties
    ///shape (3, 3, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_rmat_inplace(&self, rmat: &mut RMat){
        let mut ori = rmat.ori_view_mut();

        let new_nelem = ori.len_of(Axis(2));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        azip!(mut rmat (ori.axis_iter_mut(Axis(2))), ref quat (self.ori.axis_iter(Axis(1))) in {
            let qbar =  quat[0] * quat[0] - (quat[1] * quat[1] + quat[2] * quat[2] + quat[3] * quat[3]);

            rmat[[0, 0]] = qbar + 2.0_f64 * quat[1] * quat[1];
            rmat[[1, 0]] = 2.0_f64 * (quat[1] * quat[2] + quat[0] * quat[3]);
            rmat[[2, 0]] = 2.0_f64 * (quat[1] * quat[3] - quat[0] * quat[2]);

            rmat[[0, 1]] = 2.0_f64 * (quat[1] * quat[2] - quat[0] * quat[3]);
            rmat[[1, 1]] = qbar + 2.0_f64 * quat[2] * quat[2];
            rmat[[2, 1]] = 2.0_f64 * (quat[2] * quat[3] + quat[0] * quat[1]);

            rmat[[0, 2]] = 2.0_f64 * (quat[1] * quat[3] + quat[0] * quat[2]);
            rmat[[1, 2]] = 2.0_f64 * (quat[2] * quat[3] - quat[0] * quat[1]);
            rmat[[2, 2]] = qbar + 2.0_f64 * quat[3] * quat[3];
        });
    }

    ///Converts the unit quaternion over to a angle-axis representation which has the following properties
    ///shape (4, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_ang_axis_inplace(&self, ang_axis: &mut AngAxis){
        let mut ori = ang_axis.ori_view_mut();

        let new_nelem = ori.len_of(Axis(1));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        let tol = std::f64::EPSILON;

        azip!(mut angaxis (ori.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {
            let phi = 2.0_f64 * quat[0].acos();
            if quat[0].abs() < tol{
                angaxis[0] = quat[1];
                angaxis[1] = quat[2];
                angaxis[2] = quat[3];
                angaxis[3] = std::f64::consts::PI;
            }else if phi.abs() < tol{
                angaxis[2] = 1.0_f64;
            }else{
                let s   = quat[0].signum() / f64::sqrt(quat[1] * quat[1] + quat[2] * quat[2] + quat[3] * quat[3]);

                angaxis[0] = s * quat[1];
                angaxis[1] = s * quat[2];
                angaxis[2] = s * quat[3];
                angaxis[3] = phi;
            }
        });
    }

    ///Converts the unit quaternion over to a compact angle-axis representation which has the following properties
    ///shape (3, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_ang_axis_comp_inplace(&self, ang_axis_comp: &mut AngAxisComp){
        let mut ori = ang_axis_comp.ori_view_mut();

        let new_nelem = ori.len_of(Axis(1));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        let tol = std::f64::EPSILON;

        azip!(mut angaxis (ori.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {
            let phi = 2.0_f64 * quat[0].acos();
            if quat[0].abs() < tol{
                angaxis[0] = quat[1] * std::f64::consts::PI;
                angaxis[1] = quat[2] * std::f64::consts::PI;
                angaxis[2] = quat[3] * std::f64::consts::PI;
            }else{
                let s   = quat[0].signum() / f64::sqrt(quat[1] * quat[1] + quat[2] * quat[2] + quat[3] * quat[3]);

                angaxis[0] = s * quat[1] * phi;
                angaxis[1] = s * quat[2] * phi;
                angaxis[2] = s * quat[3] * phi; 
            }
        });
    }

    ///Converts the unit quaternion over to a Rodrigues vector representation which has the following properties
    ///shape (4, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_rod_vec_inplace(&self, rod_vec: &mut RodVec){
        let mut ori = rod_vec.ori_view_mut();

        let new_nelem = ori.len_of(Axis(1));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        let tol = std::f64::EPSILON;

        azip!(mut rod_vec (ori.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {
            let phi = quat[0].acos();
            if quat[0].abs() < tol{
                rod_vec[0] = quat[1];
                rod_vec[1] = quat[2];
                rod_vec[2] = quat[3];
                rod_vec[3] = std::f64::INFINITY;
            }else if phi.abs() < tol{
                rod_vec[2] = 1.0_f64;
            }else{
                let s   = quat[0].signum() / f64::sqrt(quat[1] * quat[1] + quat[2] * quat[2] + quat[3] * quat[3]);

                rod_vec[0] = s * quat[1];
                rod_vec[1] = s * quat[2];
                rod_vec[2] = s * quat[3];
                rod_vec[3] = phi.tan();
            }
        });
    }

    ///Converts the unit quaternion over to a compact Rodrigues vector representation which has the following properties
    ///shape (3, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_rod_vec_comp_inplace(&self, rod_vec_comp: &mut RodVecComp){
        let mut ori = rod_vec_comp.ori_view_mut();

        let new_nelem = ori.len_of(Axis(1));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        let tol = std::f64::EPSILON;

        azip!(mut rod_vec_comp (ori.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {
            let tan_phi = f64::tan(quat[0].acos());
            //This case will not allow for anything to be retrievable later on...
            if quat[0].abs() < tol{
                rod_vec_comp[0] = std::f64::INFINITY;
                rod_vec_comp[1] = std::f64::INFINITY;
                rod_vec_comp[2] = std::f64::INFINITY;
            }else{
                let s   = quat[0].signum() / f64::sqrt(quat[1] * quat[1] + quat[2] * quat[2] + quat[3] * quat[3]);

                rod_vec_comp[0] = s * quat[1] * tan_phi;
                rod_vec_comp[1] = s * quat[2] * tan_phi;
                rod_vec_comp[2] = s * quat[3] * tan_phi; 
            }
        });
    }

    ///This returns a clone of the original unit quaternion structure
    ///This operation is done inplace and does not create a new structure
    fn to_quat_inplace(&self, quat: &mut Quat){
        let mut ori = quat.ori_view_mut();

        let new_nelem = ori.len_of(Axis(1));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        ori.assign(&self.ori);
    }

    ///Converts the quaternion representation over to a homochoric representation which has the following properties
    ///shape (4, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_homochoric_inplace(&self, homochoric: &mut Homochoric){
        let ang_axis = self.to_ang_axis();
        ang_axis.to_homochoric_inplace(homochoric);    
    }


}//End of impl of unit Quaternion

///A series of commonly used operations to rotate vector data by a given rotation
impl RotVector for Quat{

    ///rot_vector takes in a 2D array view of a series of vectors. It then rotates these vectors using the
    ///given Quaternion. The newly rotated vectors are then returned. This function requires the
    ///number of elements in the Quaternion to be either 1.
    ///The unrotated vector might also contain either 1 or nelems number of elements.
    ///If this condition is not met the function will error out.
    ///vec - the vector to be rotated must have dimensions 3xnelems or 3x1.
    ///Output - the rotated vector and has dimensions 3xnelems.
    fn rot_vector(&self, vec: ArrayView2<f64>) -> Array2<f64>{

        let nelems = vec.len_of(Axis(1));
        let rnelems = self.ori.len_of(Axis(1));

        let rows  = vec.len_of(Axis(0));
        assert!((rows == 3), "The number of rows must be 3. The number of rows provided is {}", rows); 

        assert!( (nelems == rnelems) | (rnelems == 1) | (nelems == 1), 
        "The number of elements in the vector field must be equal to the number of elements in the
        Quaternion structure, or their must only be one element in Quaternion. The final case is
        that there must only be one element in the vector field. There are
        currently {} elements in vector and {} elements in Quaternion",
        nelems, rnelems);

        let mnelems = cmp::max(rnelems, nelems);
        let mut rvec = Array2::<f64>::zeros((3, mnelems).f());

        //We need to see if we have more than one Quaternion that we're multiplying by
        if rnelems == nelems {
            //The rotations here can be given by reference 1  equation 24 in the README.
            azip!(mut rvec (rvec.axis_iter_mut(Axis(1))), ref vec (vec.axis_iter(Axis(1))), 
            ref quat (self.ori.axis_iter(Axis(1))) in {
                quat_rot_vec(&quat, &vec, rvec);     
            });
        } else if rnelems == 1{
            //We just have one Quaternion so perform pretty much the above to get all of our values
            let quat = self.ori.subview(Axis(1), 0);

            azip!(mut rvec (rvec.axis_iter_mut(Axis(1))), ref vec (vec.axis_iter(Axis(1))) in {  
                quat_rot_vec(&quat, &vec, rvec);      
            });
        }else{
            //We just have one vector so perform pretty much the above to get all of our values
            let vec = vec.subview(Axis(1), 0);

            azip!(mut rvec (rvec.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {  
                quat_rot_vec(&quat, &vec, rvec);  
            });
        }//End of if-else
        //Now we just need to return the rvec value
        rvec
    }//End of rot_vector

    ///rot_vector_mut takes in a 2D array view of a series of vectors and a mutable 2D ArrayView of the 
    ///rotated vector. It then rotates these vectors using the given Quaternion. The newly rotated
    /// vectors are assigned to the supplied rotated vector, rvec. This function requires the
    ///number of elements in the Quaternion to be either 1 or nelems.
    ///The unrotated vector might also contain either 1 or nelems number of elements.
    ///It also requires the number of elements in rvec and vec to be equal.
    ///If these conditions are not met the function will error out.
    ///vec - the vector to be rotated must have dimensions 3xnelems or 3x1.
    ///rvec - the rotated vector and has dimensions 3xnelems.
    fn rot_vector_mut(&self, vec: ArrayView2<f64>, mut rvec: ArrayViewMut2<f64>) {

        let nelems = vec.len_of(Axis(1));
        let rvnelems = rvec.len_of(Axis(1));
        let rnelems = self.ori.len_of(Axis(1));
        let mnelems = cmp::max(rnelems, nelems);

        let rows  = vec.len_of(Axis(0));
        assert!((rows == 3), "The number of rows must be 3. The number of rows provided is {}", rows); 

        assert!((mnelems == rvnelems),
        "The number of elements in the unrotated vector or quaternion field must be equal to the number of elements
        in the supplied rotated vector field. There are currently {} elements in the unrotated vector or quaternion
        field and {} elements in the rotated vector field", 
        mnelems, rvnelems);

        assert!( (nelems == rnelems) | (rnelems == 1) | (nelems == 1), 
        "The number of elements in the vector field must be equal to the number of elements in the
        Quaternion structure, or their must only be one element in Quaternion. The final case is
        that there must only be one element in the vector field. There are
        currently {} elements in vector and {} elements in Quaternion",
        nelems, rnelems);

        //We need to see if we have more than one Quaternion that we're multiplying by
        if rnelems == nelems {
            //The rotations here can be given by reference 1  equation 24 in the README.
            azip!(mut rvec (rvec.axis_iter_mut(Axis(1))), ref vec (vec.axis_iter(Axis(1))), 
            ref quat (self.ori.axis_iter(Axis(1))) in {
                quat_rot_vec(&quat, &vec, rvec);         
            });
        } else if rnelems == 1{
            //We just have one Quaternion so perform pretty much the above to get all of our values
            let quat = self.ori.subview(Axis(1), 0);

            azip!(mut rvec (rvec.axis_iter_mut(Axis(1))), ref vec (vec.axis_iter(Axis(1))) in {  
                quat_rot_vec(&quat, &vec, rvec);  
            });
        } else{
            //We just have one vector so perform pretty much the above to get all of our values
            let vec = vec.subview(Axis(1), 0);

            azip!(mut rvec (rvec.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {  
                quat_rot_vec(&quat, &vec, rvec);  
            });
        }//End of if-else
    }//End of rot_vector_mut

    ///rot_vector_inplace takes in a mutable 2D array view of a series of vectors. It then rotates these vectors using the
    ///given Quaternion. The newly rotated vectors are assigned to original vector. This function requires the
    ///number of elements in the Quaternion to be either 1 or nelems where vec has nelems in it.
    ///If this condition is not met the function will error out.
    ///vec - the vector to be rotated must have dimensions 3xnelems.
    fn rot_vector_inplace(&self, mut vec: ArrayViewMut2<f64>){

        let nelems = vec.len_of(Axis(1));
        let rnelems = self.ori.len_of(Axis(1));

        let rows  = vec.len_of(Axis(0));
        assert!((rows == 3), "The number of rows must be 3. The number of rows provided is {}", rows); 

        assert!( (nelems == rnelems) | (rnelems == 1), 
        "The number of elements in the vector field must be equal to the number of elements in the
        Quaternion structure, or their must only be one element in Quaternion. There are
        currently {} elements in vector and {} elements in Quaternion",
        nelems, rnelems);

        //We need to see if we have more than one Quaternion that we're multiplying by
        if rnelems == nelems {
            //The rotations here can be given by reference 1  equation 24 in the README.
            azip!(mut vec (vec.axis_iter_mut(Axis(1))), ref quat (self.ori.axis_iter(Axis(1))) in {
                let mut rvec = Array1::<f64>::zeros((3).f());
                quat_rot_vec(&quat, &vec.view(), rvec.view_mut());
                vec.assign({&rvec});    
            });
        } else{
            //We just have one Quaternion so perform pretty much the above to get all of our values
            let quat = self.ori.subview(Axis(1), 0);

            azip!(mut vec (vec.axis_iter_mut(Axis(1))) in {
                let mut rvec = Array1::<f64>::zeros((3).f()); 
                quat_rot_vec(&quat, &vec.view(), rvec.view_mut());
                vec.assign({&rvec});  
            });
        }//End of if-else
    }//End of rot_vector_inplace
}//Endo of Impl RotVector

//A helper function for Impl RotVector for Quat

///All of the quaternion vector rotation operations can be described by using the below series of functions.
///This also reduces the amount of repetive code that existed earlier within rot_vector. 
fn quat_rot_vec(quat: &ArrayView1<f64>, vec: &ArrayView1<f64>, mut rvec: ArrayViewMut1<f64>){
    let q02 = 2.0_f64 * quat[0];
    //(q_0^2 - ||q||^2)
    let q02_m_nq = quat[0] * quat[0] - (quat[1] * quat[1] + quat[2] * quat[2] + quat[3] * quat[3]);
    let dot_prod2 = 2.0_f64 * (quat[1] * vec[0] + quat[2] * vec[1] + quat[3] * vec[2]);
    let mut cross_prod = Array1::<f64>::zeros((3).f());

    cross_prod[0] = -quat[3] * vec[1] + quat[2] * vec[2];
    cross_prod[1] = quat[3] * vec[0] - quat[1] * vec[2];
    cross_prod[2] = -quat[2] * vec[0] + quat[1] * vec[1];

    rvec[0] = vec[0] * q02_m_nq + cross_prod[0] * q02 + quat[1] * dot_prod2;
    rvec[1] = vec[1] * q02_m_nq + cross_prod[1] * q02 + quat[2] * dot_prod2;
    rvec[2] = vec[2] * q02_m_nq + cross_prod[2] * q02 + quat[3] * dot_prod2;  
}