1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
// This file is a part of the mori - Material Orientation Library in Rust
// Copyright 2018 Robert Carson
// 
//    Licensed under the Apache License, Version 2.0 (the "License");
//    you may not use this file except in compliance with the License.
//    You may obtain a copy of the License at
// 
//        http://www.apache.org/licenses/LICENSE-2.0
// 
//    Unless required by applicable law or agreed to in writing, software
//    distributed under the License is distributed on an "AS IS" BASIS,
//    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//    See the License for the specific language governing permissions and
//    limitations under the License.

use super::*;
use std::cmp;

///A structure that holds an array of axis-angle representation of a rotation
#[derive(Clone, Debug)]
pub struct AngAxis{
    ori: Array2<f64>,
}


impl AngAxis{

    ///Creates an array of zeros for the initial axis-angle parameterization when data is not fed into it
    pub fn new(size: usize) -> AngAxis{
        assert!(size > 0, "Size inputted: {}, was not greater than 0", size);

        let mut ori = Array2::<f64>::zeros((4, size).f());

        azip!(mut angaxis (ori.axis_iter_mut(Axis(1))) in {angaxis[2] = 1.0_f64});

        AngAxis{
            ori,
        }
    }//End of new

    ///Creates an axis-angle parameterization  type with the supplied data as long as the supplied data is in the following format
    ///shape (3, nelems), memory order = fortran/column major.
    ///If it doesn't fit those standards it will fail.
    pub fn new_init(ori: Array2<f64>) -> AngAxis{

        let nrow = ori.rows();

        assert!(nrow == 4, "Number of rows of array was: {}, which is not equal to 4", nrow);
        //We need to deal with a borrowing of ori here, so we need to have strides dropped at one point.
        {
            let strides = ori.strides();

            assert!(strides[0] == 1, "The memory stride is not column major (f order)");
        }

        AngAxis{
            ori,
        }
    }//End of new_init

    ///Return a ndarray view of the orientation data
    pub fn ori_view(&self) -> ArrayView2<f64>{
        self.ori.view()
    }

    //Return a ndarray mutable view of the orientation data
    pub fn ori_view_mut(&mut self) -> ArrayViewMut2<f64>{
        self.ori.view_mut()
    }

    ///Returns a new RodVec that is equal to the equivalent of transposing a rotation matrix.
    ///It turns out this is simply the negative of the normal vector due to the vector being formed
    ///from an axial vector of the rotation matrix --> Rmat\^T = -Rx where Rx is the axial vector.
    pub fn transpose(&self) -> RodVec{
        let nelems = self.ori.len_of(Axis(1));
        let mut ori = Array2::<f64>::zeros((4, nelems).f());
        
        azip!(mut ang_axis_t (ori.axis_iter_mut(Axis(1))), ref ang_axis (self.ori.axis_iter(Axis(1))) in {
            ang_axis_t[0] = -1.0_f64 * ang_axis[0];
            ang_axis_t[1] = -1.0_f64 * ang_axis[1];
            ang_axis_t[2] = -1.0_f64 * ang_axis[2];
            ang_axis_t[3] = ang_axis[3];
        });

        RodVec::new_init(ori)
    }

    ///Performs the equivalent of transposing a rotation matrix on the internal orientations.
    ///It turns out this is simply the negative of the normal vector due to the vector being formed
    ///from an axial vector of the rotation matrix --> Rmat\^T = -Rx where Rx is the axial vector.
    pub fn transpose_inplace(&mut self){
        azip!(mut ang_axis_t (self.ori.axis_iter_mut(Axis(1))) in {
            ang_axis_t[0] *= -1.0_f64;
            ang_axis_t[1] *= -1.0_f64;
            ang_axis_t[2] *= -1.0_f64;
        });
    }


}//End of AngAxis impl

///The orientation conversions of a series of axis-angle representation to a number of varying different orientation
///representations commonly used in material orientation processing. 
impl OriConv for AngAxis{

    ///Converts the axis-angle representation over to Bunge angles which has the following properties
    ///shape (3, nelems), memory order = fortran/column major.
    fn to_bunge(&self) -> Bunge{

        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array2::<f64>::zeros((3, nelems).f());

        //We need to check the R_33 component to see if it's near 1.0 
        let tol = f64::sqrt(std::f64::EPSILON);

        azip!(mut bunge (ori.axis_iter_mut(Axis(1))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            let c = angaxis[3].cos();
            let s = angaxis[3].sin();

            let mut rmat = Array2::<f64>::zeros((3, 3).f());

            rmat[[0, 0]] = c + (1.0_f64 - c) * (angaxis[0] * angaxis[0]);
            rmat[[1, 0]] = (1.0_f64 - c) * (angaxis[0] * angaxis[1]) + s * angaxis[2];
            rmat[[2, 0]] = (1.0_f64 - c) * (angaxis[0] * angaxis[2]) - s * angaxis[1];

            rmat[[0, 1]] = (1.0_f64 - c) * (angaxis[0] * angaxis[1]) - s * angaxis[2];
            rmat[[1, 1]] = c + (1.0_f64 - c) * (angaxis[1] * angaxis[1]);
            rmat[[2, 1]] = (1.0_f64 - c) * (angaxis[1] * angaxis[2]) + s * angaxis[0];

            rmat[[0, 2]] = (1.0_f64 - c) * (angaxis[0] * angaxis[2]) + s * angaxis[1];
            rmat[[1, 2]] = (1.0_f64 - c) * (angaxis[1] * angaxis[2]) - s * angaxis[0];
            rmat[[2, 2]] = c + (1.0_f64 - c) * (angaxis[2] * angaxis[2]);

            if f64::abs(rmat[[2, 2]]) > (1.0_f64 - tol){
                bunge[0] = f64::atan2(rmat[[0, 1]], rmat[[0, 0]]);
                bunge[1] = std::f64::consts::FRAC_PI_2 * (1.0_f64 - rmat[[2, 2]]);
                bunge[2] = 0.0_f64;
            }else{
                let eta  = 1.0_f64 / f64::sqrt(1.0_f64 - rmat[[2, 2]] * rmat[[2, 2]]);
                bunge[0] = f64::atan2(rmat[[2, 0]] * eta, -rmat[[2, 1]] * eta);
                bunge[1] = rmat[[2, 2]].acos();
                bunge[2] = f64::atan2(rmat[[0, 2]] * eta, rmat[[1, 2]] * eta);
            }
        });

        Bunge::new_init(ori)

    }//End of to_bunge

    ///Converts the axis-angle representation over to a rotation matrix which has the following properties
    ///shape (3, 3, nelems), memory order = fortran/column major.
    fn to_rmat(&self) -> RMat{

        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array3::<f64>::zeros((3, 3, nelems).f());

        azip!(mut rmat (ori.axis_iter_mut(Axis(2))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            let c = angaxis[3].cos();
            let s = angaxis[3].sin();

            rmat[[0, 0]] = c + (1.0_f64 - c) * (angaxis[0] * angaxis[0]);
            rmat[[1, 0]] = (1.0_f64 - c) * (angaxis[0] * angaxis[1]) + s * angaxis[2];
            rmat[[2, 0]] = (1.0_f64 - c) * (angaxis[0] * angaxis[2]) - s * angaxis[1];

            rmat[[0, 1]] = (1.0_f64 - c) * (angaxis[0] * angaxis[1]) - s * angaxis[2];
            rmat[[1, 1]] = c + (1.0_f64 - c) * (angaxis[1] * angaxis[1]);
            rmat[[2, 1]] = (1.0_f64 - c) * (angaxis[1] * angaxis[2]) + s * angaxis[0];

            rmat[[0, 2]] = (1.0_f64 - c) * (angaxis[0] * angaxis[2]) + s * angaxis[1];
            rmat[[1, 2]] = (1.0_f64 - c) * (angaxis[1] * angaxis[2]) - s * angaxis[0];
            rmat[[2, 2]] = c + (1.0_f64 - c) * (angaxis[2] * angaxis[2]);
        });

        RMat::new_init(ori)
    }//End of to_rmat

    ///Returns a clone of the axis-angle structure
    fn to_ang_axis(&self) -> AngAxis{
        self.clone()
    }

    ///Converts the axis-angle representation over to a compact angle-axis representation which has the following properties
    ///shape (3, nelems), memory order = fortran/column major.
    fn to_ang_axis_comp(&self) -> AngAxisComp{
        //We first convert to a axis-angle representation. Then we scale our normal vector by our the rotation
        //angle which is the fourth component of our axis-angle vector.
        // let ang_axis = self.to_ang_axis();

        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array2::<f64>::zeros((3, nelems).f());

        azip!(mut angaxis_comp (ori.axis_iter_mut(Axis(1))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            angaxis_comp[0] = angaxis[0] * angaxis[3];
            angaxis_comp[1] = angaxis[1] * angaxis[3];
            angaxis_comp[2] = angaxis[2] * angaxis[3];
        });

        AngAxisComp::new_init(ori)
    }//End of to_ang_axis_comp

    ///Converts the axis-angle representation over to a Rodrigues vector representation which has the following properties
    ///shape (4, nelems), memory order = fortran/column major.
    fn to_rod_vec(&self) -> RodVec{
        //We first convert to a axis-angle representation. Then we just need to change the last component
        //of our axis-angle representation to be tan(phi/2) instead of phi
        // let ang_axis = self.to_ang_axis();

        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array2::<f64>::zeros((4, nelems).f());

        let inv2 = 1.0_f64/2.0_f64;

        azip!(mut rodvec (ori.axis_iter_mut(Axis(1))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            rodvec[0] = angaxis[0];
            rodvec[1] = angaxis[1];
            rodvec[2] = angaxis[2];
            rodvec[3] = f64::tan(inv2 * angaxis[3]);
        });

        RodVec::new_init(ori)
    }//End of to_rod_vec

    ///Converts the axis-angle representation over to a compact Rodrigues vector representation which has the following properties
    ///shape (3, nelems), memory order = fortran/column major.
    fn to_rod_vec_comp(&self) -> RodVecComp{

        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array2::<f64>::zeros((3, nelems).f());

        let inv2 = 1.0_f64/2.0_f64;
        azip!(mut rodvec (ori.axis_iter_mut(Axis(1))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            let tan2 = f64::tan(inv2 * angaxis[3]);
            rodvec[0] = angaxis[0] * tan2;
            rodvec[1] = angaxis[1] * tan2;
            rodvec[2] = angaxis[2] * tan2;
        });

        RodVecComp::new_init(ori)
    }//End of to_rod_vec_comp

    ///Converts the axis-angle representation over to a unit quaternion representation which has the following properties
    ///shape (4, nelems), memory order = fortran/column major.
    fn to_quat(&self) -> Quat{

        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array2::<f64>::zeros((4, nelems).f());

        let inv2 = 1.0_f64 / 2.0_f64;

        azip!(mut quat (ori.axis_iter_mut(Axis(1))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            let s = f64::sin(inv2 * angaxis[3]); 

            quat[0] = f64::cos(inv2 * angaxis[3]);
            quat[1] = s * angaxis[0];
            quat[2] = s * angaxis[1];
            quat[3] = s * angaxis[2];
        });

        Quat::new_init(ori)
    }//End of to_quat

    ///Converts the axis-angle representation over to a homochoric representation which has the following properties
    ///shape (4, nelems), memory order = fortran/column major.
    fn to_homochoric(&self) ->Homochoric{

        let nelems = self.ori.len_of(Axis(1));

        let mut ori = Array2::<f64>::zeros((4, nelems).f());

        let inv3  = 1.0_f64 / 3.0_f64;
        let inv34 = 3.0_f64 / 4.0_f64;

        azip!(mut homoch (ori.axis_iter_mut(Axis(1))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            let pow_term    = inv34 * (angaxis[3] - angaxis[3].sin()); 

            homoch[0] = angaxis[0];
            homoch[1] = angaxis[1];
            homoch[2] = angaxis[2];
            homoch[3] = pow_term.powf(inv3);
        });

        Homochoric{
            ori,
        }
    }//End of to_homochoric

    ///Converts the axis-angle representation over to Bunge angles which has the following properties
    ///shape (3, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_bunge_inplace(&self, bunge: &mut Bunge){
        let mut ori = bunge.ori_view_mut();

        let new_nelem = ori.len_of(Axis(2));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        //We need to check the R_33 component to see if it's near 1.0 
        let tol = f64::sqrt(std::f64::EPSILON);

        azip!(mut bunge (ori.axis_iter_mut(Axis(1))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            let c = angaxis[3].cos();
            let s = angaxis[3].sin();

            let mut rmat = Array2::<f64>::zeros((3, 3).f());

            rmat[[0, 0]] = c + (1.0_f64 - c) * (angaxis[0] * angaxis[0]);
            rmat[[1, 0]] = (1.0_f64 - c) * (angaxis[0] * angaxis[1]) + s * angaxis[2];
            rmat[[2, 0]] = (1.0_f64 - c) * (angaxis[0] * angaxis[2]) - s * angaxis[1];

            rmat[[0, 1]] = (1.0_f64 - c) * (angaxis[0] * angaxis[1]) - s * angaxis[2];
            rmat[[1, 1]] = c + (1.0_f64 - c) * (angaxis[1] * angaxis[1]);
            rmat[[2, 1]] = (1.0_f64 - c) * (angaxis[1] * angaxis[2]) + s * angaxis[0];

            rmat[[0, 2]] = (1.0_f64 - c) * (angaxis[0] * angaxis[2]) + s * angaxis[1];
            rmat[[1, 2]] = (1.0_f64 - c) * (angaxis[1] * angaxis[2]) - s * angaxis[0];
            rmat[[2, 2]] = c + (1.0_f64 - c) * (angaxis[2] * angaxis[2]);

            if f64::abs(rmat[[2, 2]]) > (1.0_f64 - tol){
                bunge[0] = f64::atan2(rmat[[0, 1]], rmat[[0, 0]]);
                bunge[1] = std::f64::consts::FRAC_PI_2 * (1.0_f64 - rmat[[2, 2]]);
                bunge[2] = 0.0_f64;
            }else{
                let eta  = 1.0_f64 / f64::sqrt(1.0_f64 - rmat[[2, 2]] * rmat[[2, 2]]);
                bunge[0] = f64::atan2(rmat[[2, 0]] * eta, -rmat[[2, 1]] * eta);
                bunge[1] = rmat[[2, 2]].acos();
                bunge[2] = f64::atan2(rmat[[0, 2]] * eta, rmat[[1, 2]] * eta);
            }
        }); 
    }

    ///Converts the axis-angle representation over to a rotation matrix which has the following properties
    ///shape (3, 3, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_rmat_inplace(&self, rmat: &mut RMat){
        let mut ori = rmat.ori_view_mut();

        let new_nelem = ori.len_of(Axis(2));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        azip!(mut rmat (ori.axis_iter_mut(Axis(2))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            let c = angaxis[3].cos();
            let s = angaxis[3].sin();

            rmat[[0, 0]] = c + (1.0_f64 - c) * (angaxis[0] * angaxis[0]);
            rmat[[1, 0]] = (1.0_f64 - c) * (angaxis[0] * angaxis[1]) + s * angaxis[2];
            rmat[[2, 0]] = (1.0_f64 - c) * (angaxis[0] * angaxis[2]) - s * angaxis[1];

            rmat[[0, 1]] = (1.0_f64 - c) * (angaxis[0] * angaxis[1]) - s * angaxis[2];
            rmat[[1, 1]] = c + (1.0_f64 - c) * (angaxis[1] * angaxis[1]);
            rmat[[2, 1]] = (1.0_f64 - c) * (angaxis[1] * angaxis[2]) + s * angaxis[0];

            rmat[[0, 2]] = (1.0_f64 - c) * (angaxis[0] * angaxis[2]) + s * angaxis[1];
            rmat[[1, 2]] = (1.0_f64 - c) * (angaxis[1] * angaxis[2]) - s * angaxis[0];
            rmat[[2, 2]] = c + (1.0_f64 - c) * (angaxis[2] * angaxis[2]);
        }); 
    }

    ///Copies the orientation structure in self over to the other AngAxis structure 
    ///This operation is done inplace and does not create a new structure
    fn to_ang_axis_inplace(&self, ang_axis: &mut AngAxis){
        let mut ori = ang_axis.ori_view_mut();

        let new_nelem = ori.len_of(Axis(1));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        ori.assign(&self.ori);

    }

    ///Converts the axis-angle representation over to a compact angle-axis representation which has the following properties
    ///shape (3, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_ang_axis_comp_inplace(&self, ang_axis_comp: &mut AngAxisComp){
        let mut ori = ang_axis_comp.ori_view_mut();

        let new_nelem = ori.len_of(Axis(1));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        azip!(mut angaxis_comp (ori.axis_iter_mut(Axis(1))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            angaxis_comp[0] = angaxis[0] * angaxis[3];
            angaxis_comp[1] = angaxis[1] * angaxis[3];
            angaxis_comp[2] = angaxis[2] * angaxis[3];
        });

    }

    ///Converts the axis-angle representation over to a Rodrigues vector representation which has the following properties
    ///shape (4, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_rod_vec_inplace(&self, rod_vec: &mut RodVec){
        let mut ori = rod_vec.ori_view_mut();

        let new_nelem = ori.len_of(Axis(1));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        let inv2 = 1.0_f64/2.0_f64;

        azip!(mut rodvec (ori.axis_iter_mut(Axis(1))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            rodvec[0] = angaxis[0];
            rodvec[1] = angaxis[1];
            rodvec[2] = angaxis[2];
            rodvec[3] = f64::tan(inv2 * angaxis[3]);
        });
    }
    
    ///Converts the axis-angle representation over to a compact Rodrigues vector representation which has the following properties
    ///shape (3, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_rod_vec_comp_inplace(&self, rod_vec_comp: &mut RodVecComp){
        let mut ori = rod_vec_comp.ori_view_mut();

        let new_nelem = ori.len_of(Axis(1));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        let inv2 = 1.0_f64/2.0_f64;

        azip!(mut rodvec (ori.axis_iter_mut(Axis(1))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            let tan2 = f64::tan(inv2 * angaxis[3]);
            rodvec[0] = angaxis[0] * tan2;
            rodvec[1] = angaxis[1] * tan2;
            rodvec[2] = angaxis[2] * tan2;
        });
    }

    ///Converts the axis-angle representation over to a unit quaternion representation which has the following properties
    ///shape (4, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_quat_inplace(&self, quat: &mut Quat){
        let mut ori = quat.ori_view_mut();

        let new_nelem = ori.len_of(Axis(1));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        let inv2 = 1.0_f64 / 2.0_f64;

        azip!(mut quat (ori.axis_iter_mut(Axis(1))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            let s = f64::sin(inv2 * angaxis[3]); 

            quat[0] = f64::cos(inv2 * angaxis[3]);
            quat[1] = s * angaxis[0];
            quat[2] = s * angaxis[1];
            quat[3] = s * angaxis[2];
        });
    }

    ///Converts the axis-angle representation over to a homochoric representation which has the following properties
    ///shape (4, nelems), memory order = fortran/column major.
    ///This operation is done inplace and does not create a new structure
    fn to_homochoric_inplace(&self, homochoric: &mut Homochoric){
        let mut ori = homochoric.ori.view_mut();

        let new_nelem = ori.len_of(Axis(1));
        let nelem = self.ori.len_of(Axis(1));

        assert!(new_nelem == nelem, 
        "The number of elements in the original ori field do no match up with the new field.
        The old field had {} elements, and the new field has {} elements",
        nelem, new_nelem);

        let inv3  = 1.0_f64 / 3.0_f64;
        let inv34 = 3.0_f64 / 4.0_f64;

        azip!(mut homoch (ori.axis_iter_mut(Axis(1))), ref angaxis (self.ori.axis_iter(Axis(1))) in {
            let pow_term    = inv34 * (angaxis[3] - angaxis[3].sin()); 

            homoch[0] = angaxis[0];
            homoch[1] = angaxis[1];
            homoch[2] = angaxis[2];
            homoch[3] = pow_term.powf(inv3);
        });
    }


}//End of Impl OriConv for AngAxis

///A series of commonly used operations to rotate vector data by a given rotation
impl RotVector for AngAxis{

    ///rot_vector takes in a 2D array view of a series of vectors. It then rotates these vectors using the
    ///given Axis-angle representation. The newly rotated vectors are then returned. This function requires the
    ///number of elements in the Axis-angle representation to be either 1 or nelems.
    ///The unrotated vector might also contain either 1 or nelems number of elements.
    ///If this condition is not met the function will error out.
    ///vec - the vector to be rotated must have dimensions 3xnelems or 3x1.
    ///Output - the rotated vector and has dimensions 3xnelems.
    fn rot_vector(&self, vec: ArrayView2<f64>) -> Array2<f64>{

        let nelems = vec.len_of(Axis(1));
        let rnelems = self.ori.len_of(Axis(1));

        let rows  = vec.len_of(Axis(0));
        assert!((rows == 3), "The number of rows must be 3. The number of rows provided is {}", rows); 

        assert!( (nelems == rnelems) | (rnelems == 1) | (nelems == 1), 
        "The number of elements in the vector field must be equal to the number of elements in the
        Axis-angle representation structure, or their must only be one element in Axis-angle representation. The final case is
        that there must only be one element in the vector field. There are
        currently {} elements in vector and {} elements in Axis-angle representation",
        nelems, rnelems);

        let mnelems = cmp::max(rnelems, nelems);
        let mut rvec = Array2::<f64>::zeros((3, mnelems).f());

        //We need to see if we have more than one Axis-angle representation that we're multiplying by
        if rnelems == nelems {
            //The rotations here can be given by the following set of equations as found on Wikipedia:
            //https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula#Statement
            azip!(mut rvec (rvec.axis_iter_mut(Axis(1))), ref vec (vec.axis_iter(Axis(1))), 
            ref ang_axis (self.ori.axis_iter(Axis(1))) in {
                ang_axis_rot_vec(&ang_axis, &vec, rvec);    
            });
        } else if rnelems == 1{
            //We just have one Axis-angle representation so perform pretty much the above to get all of our values
            let ang_axis = self.ori.subview(Axis(1), 0);

            azip!(mut rvec (rvec.axis_iter_mut(Axis(1))), ref vec (vec.axis_iter(Axis(1))) in {  
                ang_axis_rot_vec(&ang_axis, &vec, rvec);   
            });
        } else {
            //We just have one vector so perform pretty much the above to get all of our values
            let vec = vec.subview(Axis(1), 0);

            azip!(mut rvec (rvec.axis_iter_mut(Axis(1))), ref ang_axis (self.ori.axis_iter(Axis(1))) in {  
                ang_axis_rot_vec(&ang_axis, &vec, rvec);  
            });
        }//End if-else
        //Now we just need to return the rvec value
        rvec
    }//End of rot_vector

    ///rot_vector_mut takes in a 2D array view of a series of vectors and a mutable 2D ArrayView of the 
    ///rotated vector. It then rotates these vectors using the given Axis-angle representation. The newly rotated
    /// vectors are assigned to the supplied rotated vector, rvec. This function requires the
    ///number of elements in the Axis-angle representation to be either 1 or nelems.
    ///The unrotated vector might also contain either 1 or nelems number of elements.
    ///It also requires the number of elements in rvec and vec to be equal.
    ///If these conditions are not met the function will error out.
    ///vec - the vector to be rotated must have dimensions 3xnelems or 3x1.
    ///rvec - the rotated vector and has dimensions 3xnelems.
    fn rot_vector_mut(&self, vec: ArrayView2<f64>, mut rvec: ArrayViewMut2<f64>) {

        let nelems = vec.len_of(Axis(1));
        let rvnelems = rvec.len_of(Axis(1));
        let rnelems = self.ori.len_of(Axis(1));
        let mnelems = cmp::max(rnelems, nelems);

        let rows  = vec.len_of(Axis(0));
        assert!((rows == 3), "The number of rows must be 3. The number of rows provided is {}", rows); 

        assert!((mnelems == rvnelems),
        "The number of elements in the unrotated vector or axis-angle field must be equal to the number of elements
        in the supplied rotated vector field. There are currently {} elements in the unrotated vector or axis-angle
        field and {} elements in the rotated vector field", 
        mnelems, rvnelems);

        assert!( (nelems == rnelems) | (rnelems == 1) | (nelems == 1), 
        "The number of elements in the vector field must be equal to the number of elements in the
        Axis-angle representation structure, or their must only be one element in Axis-angle representation. The final case is
        that there must only be one element in the vector field. There are
        currently {} elements in vector and {} elements in Axis-angle representation",
        nelems, rnelems);

        //We need to see if we have more than one Axis-angle representation that we're multiplying by
        if rnelems == nelems {
            //The rotations here can be given by the following set of equations as found on Wikipedia:
            //https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula#Statement
            azip!(mut rvec (rvec.axis_iter_mut(Axis(1))), ref vec (vec.axis_iter(Axis(1))), 
            ref ang_axis (self.ori.axis_iter(Axis(1))) in {
                ang_axis_rot_vec(&ang_axis, &vec, rvec);   
            });
        } else if rnelems == 1{
            //We just have one Axis-angle representation so perform pretty much the above to get all of our values
            let ang_axis = self.ori.subview(Axis(1), 0);

            azip!(mut rvec (rvec.axis_iter_mut(Axis(1))), ref vec (vec.axis_iter(Axis(1))) in {  
                ang_axis_rot_vec(&ang_axis, &vec, rvec);
            });
        } else{
            //We just have one vector so perform pretty much the above to get all of our values
            let vec = vec.subview(Axis(1), 0);

            azip!(mut rvec (rvec.axis_iter_mut(Axis(1))), ref ang_axis (self.ori.axis_iter(Axis(1))) in {  
                ang_axis_rot_vec(&ang_axis, &vec, rvec);  
            });
        }//End of if-else
    }//End of rot_vector_mut

    ///rot_vector_inplace takes in a mutable 2D array view of a series of vectors. It then rotates these vectors using the
    ///given Axis-angle representation. The newly rotated vectors are assigned to original vector. This function requires the
    ///number of elements in the Axis-angle representation to be either 1 or nelems where vec has nelems in it.
    ///If this condition is not met the function will error out.
    ///vec - the vector to be rotated must have dimensions 3xnelems.
    fn rot_vector_inplace(&self, mut vec: ArrayViewMut2<f64>){

        let nelems = vec.len_of(Axis(1));
        let rnelems = self.ori.len_of(Axis(1));

        let rows  = vec.len_of(Axis(0));
        assert!((rows == 3), "The number of rows must be 3. The number of rows provided is {}", rows); 

        assert!( (nelems == rnelems) | (rnelems == 1), 
        "The number of elements in the vector field must be equal to the number of elements in the
        Axis-angle representation structure, or their must only be one element in Axis-angle representation. There are
        currently {} elements in vector and {} elements in Axis-angle representation",
        nelems, rnelems);

        //We need to see if we have more than one Axis-angle representation that we're multiplying by
        if rnelems == nelems {
            //The rotations here can be given by the following set of equations as found on Wikipedia:
            //https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula#Statement
            azip!(mut vec (vec.axis_iter_mut(Axis(1))), ref ang_axis (self.ori.axis_iter(Axis(1))) in {
                let mut rvec = Array1::<f64>::zeros((3).f());
                ang_axis_rot_vec(&ang_axis, &vec.view(), rvec.view_mut());
                vec.assign({&rvec});    
            });
        } else{
            //We just have one Axis-angle representation so perform pretty much the above to get all of our values
            let ang_axis = self.ori.subview(Axis(1), 0);

            azip!(mut vec (vec.axis_iter_mut(Axis(1))) in {
                let mut rvec = Array1::<f64>::zeros((3).f());
                ang_axis_rot_vec(&ang_axis, &vec.view(), rvec.view_mut());
                vec.assign({&rvec});  
            });
        }//End of if-else
    }//End of rot_vector_inplace
}//Endo of Impl RotVector

///All of the axis-angle vector rotation operations can be described by using the below series of functions.
///This also reduces the amount of repetive code that existed earlier within rot_vector. 
fn ang_axis_rot_vec(ang_axis: &ArrayView1<f64>, vec: &ArrayView1<f64>, mut rvec: ArrayViewMut1<f64>) {
    let (sin_theta, cos_theta) = ang_axis[3].sin_cos();
    let min_cos = 1.0_f64 - cos_theta;
    let dp_mcos = min_cos * (ang_axis[0] * vec[0] + ang_axis[1] * vec[1] + ang_axis[2] * vec[2]);
    let mut cross_prod = Array1::<f64>::zeros((3).f());

    cross_prod[0] = -ang_axis[2] * vec[1] + ang_axis[1] * vec[2];
    cross_prod[1] = ang_axis[2] * vec[0] - ang_axis[0] * vec[2];
    cross_prod[2] = -ang_axis[1] * vec[0] + ang_axis[0] * vec[1];

    rvec[0] = vec[0] * cos_theta + cross_prod[0] * sin_theta + ang_axis[0] * dp_mcos;
    rvec[1] = vec[1] * cos_theta + cross_prod[1] * sin_theta + ang_axis[1] * dp_mcos;
    rvec[2] = vec[2] * cos_theta + cross_prod[2] * sin_theta + ang_axis[2] * dp_mcos;
}