1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
//@ The `find_path` module holds the basic primitives for
//@ finding paths in a given `Grid`.
//@
//@ Finding a path involves accumulating state (e.g. the series of
//@ points that make up the path).

use directions::{Direction, DIRECTIONS};
use format::{self, Table};
use grid::{Elem, Grid, Pt, DirVector};
use path::{Closed, Path};

use std::borrow::Cow;
use std::cell::Cell;

struct FindPaths<'a> {
    announce: Cell<fn (String)>,
    format: Cow<'a, Table>,
    grid: &'a Grid,
    steps: Vec<Pt>,
}

#[derive(Debug)]
struct FindClosedPaths<'a> {
    find: FindPaths<'a>
}

#[derive(Debug)]
struct FindUnclosedPaths<'a> {
    prefix_rev: Vec<Pt>,
    find: FindPaths<'a>
}

use std;

impl<'a> std::fmt::Debug for FindPaths<'a> {
    fn fmt(&self, w: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(w, "FindPaths {{ grid, steps: {:?} }}", self.steps)
    }
}

//@ There are a couple different basic strategies for ensure that we
//@ only seek *new* trails when extending a path. We can either:
//@
//@  * Mutate the grid as we go, e.g. putting blank spaces in every
//@    non-crossing point that we make part of our current path, so that
//@    future attempts to traverse that point will cause the path to
//@    terminate
//@
//@  * Leave the grid unmutated, and instead query the accumulated
//@    set of points on each traversal, to see if the point in question
//@    is already part of our current path.
//@
//@ Note: A crossing point is a place where a path is allow to intersect
//@ another path. A typical ascii-art example is the `+` character, as in:
//@
//@ ```
//@  |
//@ -+-
//@  |
//@ ```
//@
//@ but we might want to select a different one, such as `#`, and reserve
//@ `+` solely for corners in paths. See discussion at [a2s issue 15][].
//@
//@ [a2s issue 15]: https://bitbucket.org/dhobsd/asciitosvg/issues/15/boxes-with-corners-cause-a-memory-leak
//@
//@ I guess the first option could be (arguably) a special case of the
//@ second, if we were to mutate a *local copy* of the grid.
//@
//@ In any case, the main drawback to that variant is that when we
//@ back-track, we will need to restore the grid to its previous
//@ state. The backtracking of the second approach is just a matter of
//@ popping the vector of points that we are building up.

#[derive(Debug)]
struct FindContext {
    prev: Option<Pt>,
    curr: Pt,
}

#[derive(Debug)]
struct FindLoopContext<'a> {
    prev: Pt,
    curr: Pt,
    corner_dirs: &'a [((char, Direction), (Direction, char))]
}

impl FindContext {
    fn curr(&self) -> Pt { self.curr }
}

impl<'a> FindPaths<'a> {

//@ Exercise note: When taking only `&Grid`,
//@ the return-type needs to be `FindPaths`, not `Self`.
//@
//@ Some day, It may be worthwhile to make an exercise out of why.
//@ (A strong hint is present in the signature of `fn with_grid_format`)

    #[cfg(test)]
    fn new(grid: &Grid) -> FindPaths {
        FindPaths {
            announce: Cell::new(silent),
            format: Default::default(),
            grid: grid,
            steps: vec![],
        }
    }

    fn with_grid_format(grid: &'a Grid, format: &'a Table) -> Self {
        FindPaths {
            announce: Cell::new(silent),
            format: Cow::Borrowed(format),
            grid: grid,
            steps: vec![],
        }
    }

    fn start(&self) -> Pt { self.steps[0] }

    fn to_path(&self, closed: Closed) -> Path {
        Path {
            // it would be nice to figure out an API that converted
            // self *into* a Path to avoid this clone. But I expect
            // the path lengths to all be so short that this won't
            // matter.
            steps: self.steps.iter().map(|&pt| (pt, self.grid[pt].to_char())).collect(),
            closed: closed,
            id: None,
            attrs: None,
        }
    }
}

fn silent(_: String) { }
// fn announce(x: String) { println!("{}", x); }
fn announce_fup(x: String) { println!("find_unclosed_path {}", x); }
fn announce_fupfe(x: String) { println!("find_unclosed_path fwd_ext {}", x); }
fn announce_fupre(x: String) { println!("find_unclosed_path rev_ext {}", x); }
fn announce_fuptre(x: String) { println!("find_unclosed_path try_rev_ext {}", x); }
fn announce_fcp(x: String) { println!("find_closed_path {}", x); }
fn announce_fcpf(x: String) { println!("find_closed_path_from {}", x); }

impl<'a> FindUnclosedPaths<'a> {
    fn find_unclosed_path(mut self, curr: Pt) -> Result<Path, (Signal, Self)> {
        if let Err(s @ Signal::CancelPath(_)) = self.find.check_neighbors(curr, announce_fup) {
            return Err((s, self));
        }
        // start the search proper
        self.find.steps.push(curr);
        for (j, &dir) in DIRECTIONS.iter().enumerate() {
            debug!("find_unclosed_path {} dir: {:?}", j, dir);
            let next = DirVector(curr, dir).steps(1);
            debug!("find_unclosed_path {} dir: {:?} next: {:?}",
                   j, dir, next);

//@ If we've gone off the grid, then obviously this direction is no good.
            if !self.find.grid.holds(next.0) {
                continue;
            }

//@ We must ensure there is some Starting entry in the
//@ format table for `curr` and `next`; otherwise, we will
//@ not be able to start the rendering of the path.

            if !self.find.matches_start(curr, Some(next.0)) {
                continue;
            }

            match self.fwd_ext(next, FindContext { prev: Some(curr), curr: next.0 })
            {
                Ok(p) => return Ok(p),
                Err(s @ (Signal::CancelPath(_), _)) => {
                    return Err(s);
                }
                Err((Signal::SearchFailure, s)) => {
                    self = s;
                }
            }
        }
        debug!("find_unclosed_path self: {:?} exhausted directions; giving up.", self);
        return Err((Signal::SearchFailure, self));
    }

//@ Attempts to extends the end of the path forward via `dv`.
    fn fwd_ext(mut self, dv: DirVector, fc: FindContext) -> Result<Path, (Signal, Self)> {
        debug!("fwd_ext self: {:?} dv: {:?} {:?}", self, dv, fc);
        assert!(self.find.grid.holds(dv.0));
        assert!(!self.find.steps.contains(&dv.0));
        assert_eq!(dv.0, fc.curr());
        if let Err(s @ Signal::CancelPath(_)) = self.find.check_neighbors(fc.curr(), announce_fupfe) {
            return Err((s, self));
        }
        let elem: Elem = self.find.grid[dv.0];
        debug!("fwd_ext elem: {:?}", elem);
        let _c: char = match elem {
            Elem::Pad | Elem::Clear => return Err((Signal::SearchFailure, self)), // blank: Give up.
            Elem::C(c) | Elem::Used(c) => c,
        };

        // attempt to continue along our current trajectory.
        let dir = dv.dir();
        let mut dirs_to_try: Vec<_> = DIRECTIONS.iter().map(|&d|d).filter(|&d| d != dir && d != dir.reverse()).collect();
        dirs_to_try.push(dir);
        // TODO: maybe experiment with a non-clock iteration order,
        // such as CW, 2*CCW, 3*CW, 4*CCW, ...

        // add `curr` to path.
        self.find.steps.push(dv.0);

        while let Some(dir) = dirs_to_try.pop() {
            debug!("fwd_ext trying dir: {:?}", dir);
            let next = dv.towards(dir).step();

            if !self.find.grid.holds(next.0) { continue; } // off grid
            if self.find.steps.contains(&next.0) { continue; } // overlap
            if !self.find.matches(fc.prev, fc.curr, next.0) { // no format rule
                debug!("no format rule found for ({:?},{:?},{:?})",
                         fc.prev, fc.curr, next.0);
                continue;
            }


            match self.fwd_ext(next, FindContext { prev: Some(dv.0), curr: next.0 }) {
                p @ Ok(_) => return p,
                Err(s @ (Signal::CancelPath(_), _)) => {
                    debug!("recursive search cancelled path for ({:?},{:?},{:?})",
                           fc.prev, fc.curr, next.0);
                    return Err(s)
                }
                Err((Signal::SearchFailure, s)) => {
                    debug!("recursive search failed for ({:?},{:?},{:?})",
                           fc.prev, fc.curr, next.0);
                    self = s;
                    continue;
                }
            }
        }

        // If we get here, then none of the available directions worked, so attempt finish.
        assert_eq!(self.find.steps.last(), Some(&dv.0));
        if self.find.matches_end(fc.prev, fc.curr) {
            debug!("fwd_ext self: {:?} exhausted turns; finished.", self);

            self.rev_ext()
        } else {
            debug!("fwd_ext self: {:?} cannot end here; aborting.", self);
            // undo addition of `curr` to path
            assert_eq!(self.find.steps.last(), Some(&dv.0));
            self.find.steps.pop();
            Err((Signal::SearchFailure, self))
        }
    }
}

//@ These are a collection of methods related to reverse extension
//@ of a path, i.e. finding a potential prefix after we have found
//@ a suffix that is itself a legal path.

impl<'a> FindUnclosedPaths<'a> {

//@ When we call this function, we have committed to the path that
//@ we have found so far (i.e. the last item in the current reverse
//@ prefix (if any) is a legal starting step for this path), and we
//@ are trying to see if any futher prefix exists.

    fn rev_ext(mut self) -> Result<Path, (Signal, Self)> {
        let (curr, next) = self.first_two();
        if let Err(s @ Signal::CancelPath(_)) = self.find.check_neighbors(curr, announce_fupre) {
            return Err((s, self));
        }
        for (_j, &dir) in DIRECTIONS.iter().enumerate() {
            let prev = DirVector(curr, dir).steps(1);

//@ Attempt to find a prefix following `dir`, returning it on success.

            match self.try_rev_ext(next, curr, prev) {
                Ok(p) => return Ok(p),
                Err(s @ (Signal::CancelPath(_), _)) => return Err(s),
                Err((Signal::SearchFailure, s)) => self = s,
            }
        }

//@ If we try all directions and none are usable, then just hand back
//@ the path we have.

        Ok(self.to_path())
    }

    fn to_path(self) -> Path {
        let grid = self.find.grid;
        let mut steps = Vec::new();
        for pt in self.prefix_rev.into_iter().rev() {
            steps.push((pt, grid[pt].to_char()))
        }
        let mut p = self.find.to_path(Closed::Open);
        for step in p.steps {
            steps.push(step)
        }
        p.steps = steps;
        p
    }

    // Returns the first and second steps of the path.
    fn first_two(&self) -> (Pt, Pt) {
        match self.prefix_rev.len() {
            0 => (self.find.steps[0], self.find.steps[1]),
            n @ 1 => (self.prefix_rev[n-1], self.find.steps[0]),
            n => (self.prefix_rev[n-1], self.prefix_rev[n-2]),
        }
    }

    fn search_failure<T>(self) -> Result<T, (Signal, Self)> {
        Err((Signal::SearchFailure, self))
    }

    fn try_rev_ext(mut self, next: Pt, curr: Pt, prev: DirVector) -> Result<Path, (Signal, Self)> {
        if let Err(s @ Signal::CancelPath(_)) = self.find.check_neighbors(curr, announce_fuptre) {
            return Err((s, self));
        }

//@ If we've gone off the grid, then obviously this direction is no good.

        if !self.find.grid.holds(prev.0) {
            return self.search_failure();
        }

//@ Likewise, if there is no content at this point, then we similarly
//@ need not explore it.

        if self.find.grid[prev.0].is_blank() {
            return self.search_failure();
        }

//@ When we call this function, we have a prefix+suffix that may not
//@ be a legal path. So we need to:
//@
//@ 1. Determine if prepending `prev` is legal at all. (If not, Err.)
//@    This involves:
//@
//@    * checking if `prev` is not already on the prefix+suffix, and

        // if self.contains(prev.0) {
        if self.prefix_rev.contains(&prev.0) {
            return self.search_failure();
        }
        if self.find.steps.contains(&prev.0) {
            return self.search_failure();
        }

//@    * checking if `(prev, curr, next)` is an entry in our format table.

        if !self.find.matches(Some(prev.0), curr, next) {
            return self.search_failure();
        }

//@ (At this point, we know that adding `prev` yields a legal suffix,
//@ so tentatively add it to the `prefix_rev`.)

        self.prefix_rev.push(prev.0);

//@ 2. Determine if `prev` yields a valid start to the new prefix+suffix.
//@    (If so, then commit addition of `prev` by transitioning to `rev_ext`.)

        if self.is_start(prev.0, curr) {
            return self.rev_ext();
        }

//@ 3. Otherwise, prefix+suffix yields a suffix but not a whole path,
//@    loop through the directions and recursively call `try_rev_ext`
//@    on each and see if one works.

        let (curr, next) = (prev.0, curr);
        for (_j, &dir) in DIRECTIONS.iter().enumerate() {
            let prev = DirVector(curr, dir).steps(1);
            match self.try_rev_ext(next, curr, prev) {
                ret @ Ok(_) => return ret,
                Err(s @ (Signal::CancelPath(_), _)) => return Err(s),
                Err((Signal::SearchFailure, s)) => self = s,
            }
        }

//@ 4. And if none of the directions work, then undo the addition
//@ of `prev` and Err.

        assert_eq!(self.prefix_rev.last(), Some(&prev.0));
        self.prefix_rev.pop();

        return Err((Signal::SearchFailure, self));
    }

    fn is_start(&self, curr: Pt, next: Pt) -> bool {
        self.find.matches_start(curr, Some(next))
    }
}

impl<'a> FindClosedPaths<'a> {
    fn is_corner(&self, curr: Pt) -> Option<Vec<((char, Direction), (Direction, char))>> {
        let grid = &self.find.grid;
        let c = match grid[curr] {
            Elem::C(c) | Elem::Used(c) => c,
            Elem::Pad | Elem::Clear => return None,
        };
        let mut in_out = Vec::new();
        for entry in &self.find.format.entries {
            if !entry.loop_start { continue; }
            if !entry.matches_curr(&self.find.announce.get(), c) { continue; }

            // This is a *potential* corner.
            //
            // check that there exist distinct neighbors that work
            // with the incoming and outgoing parts of the entry.
            let (in_match, in_dir) = entry.corner_incoming();
            let (out_dir, out_match) = entry.corner_outgoing();
            for in_dir in in_dir {
                for &out_dir in &out_dir {
                    if in_dir == out_dir { continue; }
                    let i = curr.neighbor(in_dir.reverse());
                    let o = curr.neighbor(out_dir);
                    if !grid.holds(i) || !grid.holds(o) { continue; }
                    if let (Some(i), Some(o)) = (grid[i].opt_char(), grid[o].opt_char()) {
                        if in_match.matches(i) && out_match.matches(o) {
                            in_out.push(((i, in_dir), (out_dir, o)));
                        }
                    }
                }
            }
        }

        return if in_out.is_empty() {
            debug!("no in_out found, is_corner returns None");
            None
        } else {
            Some(in_out)
        };
    }

    fn find_closed_path(mut self, curr: Pt) -> Result<Path, Self> {
        if let Err(Signal::CancelPath(_)) = self.find.check_neighbors(curr, announce_fcp) {
            return Err(self);
        }
        let elem = self.find.grid[curr];
        // // Don't waste time on a search that starts on a non-corner.
        // // (all closed paths must have at least three corner elements,
        // //  since we need three points to define a positive 2D area;
        // //  so we can be assured that at least one corner exists
        // //  somewhere.)
        let corner_dirs: Vec<((char, Direction),
                              (Direction, char))> = match self.is_corner(curr) {
            None => return Err(self),
            Some(v) => v,
        };

        // start the search proper
        self.find.steps.push(curr);
        let mut out_dirs: Vec<Direction> = corner_dirs.iter().map(|t|(t.1).0).collect();
        out_dirs.sort();
        out_dirs.dedup();
        debug!("find_closed_path self: {:?} curr: {:?} pt: {:?} corner_dirs: {:?} out_dirs: {:?}",
               self, curr, elem, corner_dirs, out_dirs);
        for (j, &dir) in out_dirs.iter().enumerate() {
            let next = DirVector(curr, dir).steps(1);
            debug!("find_closed_path {} dir: {:?} next: {:?}",
                  j, dir, next);
            if !self.find.grid.holds(next.0) { // off grid
                continue;
            } else if next.0 == self.find.start() { // closes path
                panic!("this cannot happen so soon.");
            }
            match self.find_closed_path_from(next, FindLoopContext { prev: curr,
                                                                     curr: next.0,
                                                                     corner_dirs: &corner_dirs })
            {
                ret @ Ok(_) => return ret,
                Err(s) => self = s,
            }
        }
        debug!("find_closed_path self: {:?} exhausted directions; giving up.", self);
        return Err(self);
    }

    fn find_closed_path_from(mut self, dv: DirVector, fc: FindLoopContext) -> Result<Path, Self> {
        use directions::Turn;
        assert!(self.find.grid.holds(dv.0));
        assert!(!self.find.steps.contains(&dv.0));
        assert_eq!(dv.0, fc.curr);
        if let Err(Signal::CancelPath(_)) = self.find.check_neighbors(fc.curr, announce_fcpf) {
            return Err(self);
        }
        let elem: Elem = self.find.grid[dv.0];
        let c = match elem {
            Elem::Pad | Elem::Clear => return Err(self), // blank: Give up.
            Elem::C(c) | Elem::Used(c) => c
        };
        debug!("find_closed_path_from self: {:?} dv: {:?} fc: {:?} c: {:?}", self, dv, fc, c);

        self.find.steps.push(dv.0);

        // attempt to make the closed polygon via the sharpest
        // clockwise turn possible.
        let mut dir = dv.dir().sharp_turn(Turn::CW);
        // If that fails, we will try the next sharpest by veering
        // counter-clockwise, up until (but not including) we end up
        // going in the entirely reverse direction from where we
        // started.
        while dir != dv.dir().reverse() {
            let next = dv.towards(dir).step();
            if !self.find.grid.holds(next.0) {  // off grid
                dir = dir.veer(Turn::CCW);
                continue;
            }
            debug!("considering loop extension next: {:?} in {:?} fc: {:?}", next, self, fc);
            if self.find.start() == next.0  { // closes path; potential success!
                if self.properly_closed_loop(&fc) {
                    debug!("properly closed loop in {:?} fc: {:?}", self, fc);
                    return Ok(self.find.to_path(Closed::Closed));
                } else {
                    dir = dir.veer(Turn::CCW);
                    debug!("improperly closed in {:?} fc: {:?} veering to {:?}", self, fc, dir);
                    continue;
                }
            } else if self.find.steps.contains(&next.0) { // non-start overlap
                dir = dir.veer(Turn::CCW);
                continue;
            }
            if !self.find.matches(Some(fc.prev), fc.curr, next.0) { // no format rule
                dir = dir.veer(Turn::CCW);
                continue;
            }

            match self.find_closed_path_from(next, FindLoopContext { prev: dv.0,
                                                                     curr: next.0,
                                                                     ..fc }) {
                p @ Ok(_) => return p,
                Err(s) => {
                    self = s;
                    dir = dir.veer(Turn::CCW);
                    continue;
                }
            }
        }

        // If we get here, then none of the available directions
        // worked, so give up.
        assert_eq!(self.find.steps.last(), Some(&dv.0));
        self.find.steps.pop();
        debug!("find_closed_path self: {:?} exhausted turns; giving up.", self);
        return Err(self);
    }
}

impl<'a> FindClosedPaths<'a> {
    #[cfg(test)]
    fn new(grid: &'a Grid) -> Self {
        FindClosedPaths { find: FindPaths::new(grid) }
    }
    fn properly_closed_loop(&self, fc: &FindLoopContext) -> bool {
        let fst = self.find.steps[0];
        let snd = self.find.steps[1];
        let last = *self.find.steps.last().unwrap();
        let s = self.find.grid[snd].opt_char().unwrap();
        let l = self.find.grid[last].opt_char().unwrap();
        let finis_arc = last.towards(fst);
        let start_arc = fst.towards(snd);
        fc.corner_dirs.contains(&((l, finis_arc), (start_arc, s)))
    }
}

pub fn find_closed_path(grid: &Grid, format: &Table, pt: Pt) -> Option<Path> {
    let pf = FindClosedPaths { find: FindPaths::with_grid_format(grid, format) };
    let ret = pf.find_closed_path(pt).ok();
    debug!("find_closed_path pt {:?} ret {:?}", pt, ret);
    ret
}

pub fn find_unclosed_path_from(grid: &Grid, format: &Table, dir: DirVector) -> Option<Path> {
    let pf = FindUnclosedPaths { prefix_rev: Vec::new(),
                                 find: FindPaths::with_grid_format(grid, format) };
    let ret = pf.fwd_ext(dir, FindContext {
        prev: None,
        curr: dir.0
    }).ok();
    debug!("find_unclosed_path_from dir {:?} ret {:?}", dir, ret);
    ret
}

pub fn find_unclosed_path(grid: &Grid, format: &Table, pt: Pt) -> Option<Path> {
    let pf = FindUnclosedPaths { prefix_rev: Vec::new(),
                                 find: FindPaths::with_grid_format(grid, format) };
    let ret = pf.find_unclosed_path(pt).ok();
    debug!("find_unclosed_path pt {:?} ret {:?}", pt, ret);
    ret
}

pub enum Signal {
    CancelPath(Pt),
    SearchFailure,
}

impl<'a> FindPaths<'a> {
    fn check_inspection_start_at(&self, pt: Pt, a: fn (String)) {
        if !self.grid.holds(pt) { return; }
        if self.grid[pt].opt_char() == Some('%') {
            println!("TURNING ON ANNOUCER at {:?}", pt); 
            self.announce.set(a);
        }
    }

    fn check_inspection_finis_at(&self, pt: Pt) {
        if !self.grid.holds(pt) { return; }
        if self.grid[pt].opt_char() == Some('$') {
            println!("TURNING OFF ANNOUCER at {:?}", pt); 
            self.announce.set(silent);
        }
    }

    fn check_nonpath_xbones_at(&self, pt: Pt) -> Result<(), Signal> {
        if !self.grid.holds(pt) { return Ok(()); }
        if self.grid[pt].opt_char() == Some('☠') {
            println!("CANCELLING PATH at {:?}", pt); 
            return Err(Signal::CancelPath(pt));
        }
        return Ok(());
    }

    fn check_inspection_start(&self, curr: Pt, a: fn (String)) {
        self.check_inspection_start_at(curr, a);
        for (_j, &dir) in DIRECTIONS.iter().enumerate() {
            let nbor = DirVector(curr, dir).steps(1);
            self.check_inspection_start_at(nbor.0, a);
        }
    }

    fn check_inspection_finis(&self, curr: Pt) {
        self.check_inspection_finis_at(curr);
        for (_j, &dir) in DIRECTIONS.iter().enumerate() {
            let nbor = DirVector(curr, dir).steps(1);
            self.check_inspection_finis_at(nbor.0);
        }
    }

    fn check_inspection(&self, curr: Pt, a: fn (String)) {
        self.check_inspection_start(curr, a);
        self.check_inspection_finis(curr);
    }

    fn check_nonpath(&self, curr: Pt) -> Result<(), Signal> {
        try!(self.check_nonpath_xbones_at(curr));
        for (_j, &dir) in DIRECTIONS.iter().enumerate() {
            let nbor = DirVector(curr, dir).steps(1);
            try!(self.check_nonpath_xbones_at(nbor.0));
        }
        return Ok(());
    }

    fn check_neighbors(&self, curr: Pt, a: fn (String)) -> Result<(), Signal> {
        self.check_inspection(curr, a);
        self.check_nonpath(curr)
    }

    fn find_entry(&self,
                  prev: Option<Pt>,
                  curr: Pt,
                  next: Pt) -> Option<&format::Entry> {
        #![allow(unused_parens)]
        let c = (if let Some(c) = self.grid[curr].opt_char() { c }
                 else { return None; });
        let prev_arc = prev.and_then(|prev| {
            self.grid[prev].opt_char().map(|p| (p, prev.towards(curr)))
        });
        let next_arc = self.grid[next].opt_char().map(|n| (curr.towards(next), n));
        for entry in &self.format.entries {
            if entry.matches(&self.announce.get(), prev_arc, c, next_arc) {
                return Some(entry);
            }
        }
        return None;
    }

    fn matches(&self, prev: Option<Pt>, curr: Pt, next: Pt) -> bool {
        self.find_entry(prev, curr, next).is_some()
    }

    fn matches_start(&self, curr: Pt, next: Option<Pt>) -> bool {
        let c = if let Some(c) = self.grid[curr].opt_char() { c } else { return false; };
        let next_arc = next.and_then(|next| {
            self.grid[next].opt_char().map(|n| (curr.towards(next), n))
        });
        for entry in &self.format.entries {
            if entry.matches_start(&self.announce.get(), c, next_arc) {
                return true;
            }
        }
        return false;
    }

    fn matches_end(&self, prev: Option<Pt>, curr: Pt) -> bool {
        let c = if let Some(c) = self.grid[curr].opt_char() { c } else { return false; };
        let prev_arc = prev.and_then(|prev| {
            self.grid[prev].opt_char().map(|p| (p, prev.towards(curr)))
        });
        for entry in &self.format.entries {
            if entry.matches_end(&self.announce.get(), prev_arc, c) {
                return true;
            }
        }
        return false;
    }
}

#[cfg(test)]
mod tests;