Function mocktave::eval

source ·
pub fn eval(input: &str) -> OctaveResults
Expand description

Evaluate a few lines of Octave code and extract the results.

let res = mocktave::eval("a = 5+2");
assert_eq!(res.get_scalar_named("a").unwrap(), 7_f64);
let res = mocktave::eval("a = ones(2, 2)");
assert_eq!(res.get_matrix_named("a").unwrap(), vec![vec![1.0_f64; 2]; 2]);
let res = mocktave::eval("a = 'asdf'");
assert_eq!(res.get_string_named("a").unwrap(), "asdf");
Examples found in repository?
examples/invert_matrix.rs (line 6)
3
4
5
6
7
8
9
fn main() {
    let script = "m = inv(eye(5, 5))";

    let y = mocktave::eval(script);

    println!("{y:#?}");
}
More examples
Hide additional examples
examples/primes.rs (line 6)
5
6
7
8
9
    fn primes(less_than_n: usize) -> Vec<Vec<f64>> {
        mocktave::eval(&format!("primes({})", less_than_n))
            .get_matrix_named("ans")
            .unwrap()
    }
examples/top88.rs (line 80)
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
fn main() {
    // This code adapted from here: https://github.com/blademwang11/Topopt/blob/master/top88.m
    let script = "

    function xPhys = top88(nelx,nely,volfrac,penalMax,rmin)
        E0 = 1;
        Emin = 1e-9;
        nu = 0.3;
        penal = 0.96;
        A11 = [12  3 -6 -3;  3 12  3  0; -6  3 12 -3; -3  0 -3 12];
        A12 = [-6 -3  0  3; -3 -6 -3 -6;  0 -3 -6  3;  3 -6  3 -6];
        B11 = [-4  3 -2  9;  3 -4 -9  4; -2 -9 -4 -3;  9  4 -3 -4];
        B12 = [ 2 -3  4 -9; -3  2  9 -2;  4  9  2  3; -9 -2  3  2];
        KE = 1/(1-nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]);
        nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
        edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
        edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
        iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
        jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
        F = sparse(2,1,-1,2*(nely+1)*(nelx+1),1);
        U = zeros(2*(nely+1)*(nelx+1),1);
        fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);
        alldofs = [1:2*(nely+1)*(nelx+1)];
        freedofs = setdiff(alldofs,fixeddofs);
        iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2,1);
        jH = ones(size(iH));
        sH = zeros(size(iH));
        k = 0;
        for i1 = 1:nelx
          for j1 = 1:nely
            e1 = (i1-1)*nely+j1;
            for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
              for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
                e2 = (i2-1)*nely+j2;
                k = k+1;
                iH(k) = e1;
                jH(k) = e2;
                sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2));
              endfor
            endfor
          endfor
        endfor
        H = sparse(iH,jH,sH);
        Hs = sum(H,2);
        x = repmat(volfrac,nely,nelx);
        xPhys = x;
        loop = 0;
        change = 1;
        while (change > 0.01)
          loop = loop + 1;
          penal = min(penalMax, penal + 0.04);
          %% FE-ANALYSIS
          sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin)),64*nelx*nely,1);
          K = sparse(iK,jK,sK); K = (K+K')/2;
          tic; U(freedofs) = K(freedofs,freedofs)\\F(freedofs); toc;
          ce = reshape(sum((U(edofMat)*KE).*U(edofMat),2),nely,nelx);
          c = sum(sum((Emin+xPhys.^penal*(E0-Emin)).*ce));
          dc = -penal*(E0-Emin)*xPhys.^(penal-1).*ce;
          dv = ones(nely,nelx);
          dc(:) = H*(dc(:)./Hs);
          dv(:) = H*(dv(:)./Hs);
          l1 = 0; l2 = 1e9; move = 0.2;
          while ((l2-l1)/(l1+l2) > 1e-3)
            lmid = 0.5*(l2+l1);
            xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-dc./dv/lmid)))));
            xPhys(:) = (H*xnew(:))./Hs;
            if sum(xPhys(:)) > volfrac*nelx*nely, l1 = lmid; else l2 = lmid; endif
          endwhile
          change = max(abs(xnew(:)-x(:)));
          x = xnew;
        endwhile
    endfunction
    
    z = top88(30,10,0.5,3,3);
    
    ";

    let y = mocktave::eval(script);

    println!("{y:#?}");
}
examples/top99.rs (line 115)
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
fn main() {
    // This code adapted from here: https://www.topopt.mek.dtu.dk/apps-and-software/a-99-line-topology-optimization-code-written-in-matlab
    let script = "
        function x = top(nelx,nely,volfrac,penal,rmin);
            % INITIALIZE
            x(1:nely,1:nelx) = volfrac;
            loop = 0;
            change = 1.;
            % START ITERATION
            while change > 0.01
              loop = loop + 1;
              xold = x;
            % FE-ANALYSIS
              [U]=FE(nelx,nely,x,penal);
            % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
              [KE] = lk;
              c = 0.;
              for ely = 1:nely
                for elx = 1:nelx
                  n1 = (nely+1)*(elx-1)+ely;
                  n2 = (nely+1)* elx   +ely;
                  Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);
                  c = c + x(ely,elx)^penal*Ue'*KE*Ue;
                  dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue;
                end
              end
            % FILTERING OF SENSITIVITIES
              [dc]   = check(nelx,nely,rmin,x,dc);
            % DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD
              [x]    = OC(nelx,nely,x,volfrac,dc);
            % PRINT RESULTS
              change = max(max(abs(x-xold)));
              disp([' It.: ' sprintf('%4i',loop) ' Obj.: ' sprintf('%10.4f',c) ...
                   ' Vol.: ' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) ...
                    ' ch.: ' sprintf('%6.3f',change )])
            % PLOT DENSITIES
              colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6);
            end
            %%%%%%%%%% OPTIMALITY CRITERIA UPDATE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
            function [xnew]=OC(nelx,nely,x,volfrac,dc)
                l1 = 0; l2 = 100000; move = 0.2;
                while (l2-l1 > 1e-4)
                    lmid = 0.5*(l2+l1);
                    xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid)))));
                    if sum(sum(xnew)) - volfrac*nelx*nely > 0;
                        l1 = lmid;
                    else
                        l2 = lmid;
                    end
                end
            end
            %%%%%%%%%% MESH-INDEPENDENCY FILTER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
            function [dcn]=check(nelx,nely,rmin,x,dc)
                dcn=zeros(nely,nelx);
                for i = 1:nelx
                  for j = 1:nely
                    ssum=0.0;
                    for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx)
                      for l = max(j-floor(rmin),1):min(j+floor(rmin),nely)
                        fac = rmin-sqrt((i-k)^2+(j-l)^2);
                        ssum = ssum+max(0,fac);
                        dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k);
                      end
                    end
                    dcn(j,i) = dcn(j,i)/(x(j,i)*ssum);
                  end
                end
            end
            %%%%%%%%%% FE-ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
            function [U]=FE(nelx,nely,x,penal)
                [KE] = lk;
                K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));
                F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1);
                for elx = 1:nelx
                  for ely = 1:nely
                    n1 = (nely+1)*(elx-1)+ely;
                    n2 = (nely+1)* elx   +ely;
                    edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2];
                    K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE;
                  end
                end
                % DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
                F(2,1) = -1;
                fixeddofs   = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);
                alldofs     = [1:2*(nely+1)*(nelx+1)];
                freedofs    = setdiff(alldofs,fixeddofs);
                % SOLVING
                U(freedofs,:) = K(freedofs,freedofs) \\ F(freedofs,:);
                U(fixeddofs,:)= 0;
            end
            %%%%%%%%%% ELEMENT STIFFNESS MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
            function [KE]=lk()
                E = 1.;
                nu = 0.3;
                k=[ 1/2-nu/6   1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...
                   -1/4+nu/12 -1/8-nu/8  nu/6       1/8-3*nu/8];
                KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)
                                  k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)
                                  k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)
                                  k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)
                                  k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)
                                  k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)
                                  k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)
                                  k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];
            end
        end


    z = top(30,10,0.5,3,3);
    
    ";

    let y = mocktave::eval(script);

    println!("{y:#?}");
}