mmreg

A Rust library and CLI tool for safe, concurrent access to 32-bit memory-mapped 10 registers.

Features

« Safe mapping/unmapping of physical memory (e.g., via)
» Register abstraction with offset and bitfield helpers

o Grouped register interfaces (e.g., AXI)

» Safe concurrent read/write operations (multi-process)

» Usable as both a library and a command-line tool

Usage

mmreg CLI Usage

Commands

. : Read a 32-bit value from the given physical address.

. : Write a 32-bit value to the given physical address.
Examples

mmreg 0x40000000

mmreg write 0x40000000 OXDEADBEEF

Options

o Addresses and values can be specified in hex (with or without ©x).
e Outputis formatted as for reads.

Library Usage
See lib.rs for APl documentation and examples.
use mmreg::{Interface, Register, SubRegister};

use mmreg::{read_register_at, write_register_at};
// Read a 32-bit value from a physical address

let value = read_register_at()?;
// Write a 32-bit value to a physical address
write_register_at(,)?;

//

file:///home/spq-fpga/Data/rust/mmio/src/lib.rs

Project Structure

. : Physical memory mapping

. : Single register abstraction

. : Group of registers (interface)
. : Safe concurrent read/write

. : Library API

. : Command-line interface

Cross-Compilation Targets
The list of supported cross-compilation targets is maintained in a single file:

» Do not edit the Makefile or config files to add/remove targets; always update
« The Makefile and build automation read from to ensure consistency.
» Example contents of

x86_64-unknown-1linux-gnu

1686 -unknown-linux-gnu
armv7-unknown-linux-gnueabihf
aarch64-unknown-1linux-gnu
mips-unknown-1linux-gnu
powerpc-unknown-linux-gnu
riscveé4gc-unknown-linux-gnu

To add or remove a target, simply edit and rerun your build commands.

License

MIT

mmreg Roadmap
Planned Features

» Support for 8, 16, 64, and larger register widths
o Batch/group register operations

» Improved error handling and diagnostics

» More flexible bitfield/subregister API

« Integration tests and example scripts

e Documentation improvements

Future Directions

» Optional async API for high-performance use

