
mmreg

A Rust library and CLI tool for safe, concurrent access to 32-bit memory-mapped IO registers.

Features

Safe mapping/unmapping of physical memory (e.g., via /dev/mem)

Register abstraction with o�set and bit�eld helpers

Grouped register interfaces (e.g., AXI)

Safe concurrent read/write operations (multi-process)

Usable as both a library and a command-line tool

Usage

mmreg CLI Usage

Commands

read <address>: Read a 32-bit value from the given physical address.

write <address> <value>: Write a 32-bit value to the given physical address.

Examples

mmreg read 0x40000000 
mmreg write 0x40000000 0xDEADBEEF 

Options

Addresses and values can be speci�ed in hex (with or without 0x).

Output is formatted as 0xXXXXXXXX for reads.

Library Usage

See lib.rs for API documentation and examples.

use mmreg::{Interface, Register, SubRegister}; 
use mmreg::{read_register_at, write_register_at}; 
// Read a 32-bit value from a physical address
let value = read_register_at(0x4000_0000)?; 
// Write a 32-bit value to a physical address 
write_register_at(0x4000_0000, 0xDEADBEEF)?; 
// ...

file:///home/spq-fpga/Data/rust/mmio/src/lib.rs


Project Structure

src/mapping.rs: Physical memory mapping

src/register.rs: Single register abstraction

src/interface.rs: Group of registers (interface)

src/rw.rs: Safe concurrent read/write

src/lib.rs: Library API

src/main.rs: Command-line interface

Cross-Compilation Targets

The list of supported cross-compilation targets is maintained in a single �le: targets.txt.

Do not edit the Make�le or con�g �les to add/remove targets; always update targets.txt.

The Make�le and build automation read from targets.txt to ensure consistency.

Example contents of targets.txt:

x86_64-unknown-linux-gnu 
i686-unknown-linux-gnu 
armv7-unknown-linux-gnueabihf 
aarch64-unknown-linux-gnu 
mips-unknown-linux-gnu 
powerpc-unknown-linux-gnu 
riscv64gc-unknown-linux-gnu 

To add or remove a target, simply edit targets.txt and rerun your build commands.

License

MIT

mmreg Roadmap

Planned Features

Support for 8, 16, 64, and larger register widths

Batch/group register operations

Improved error handling and diagnostics

More �exible bit�eld/subregister API

Integration tests and example scripts

Documentation improvements

Future Directions

Optional async API for high-performance use


