pub struct LuminanceMax(pub f64);Expand description
Maximum luminance. Represented in candelas per square meter (cd/m^2^).
Tuple Fields§
§0: f64Methods from Deref<Target = f64>§
pub const RADIX: u32 = 2u32
pub const MANTISSA_DIGITS: u32 = 53u32
pub const DIGITS: u32 = 15u32
pub const EPSILON: f64 = 2.2204460492503131E-16f64
pub const MIN: f64 = -1.7976931348623157E+308f64
pub const MIN_POSITIVE: f64 = 2.2250738585072014E-308f64
pub const MAX: f64 = 1.7976931348623157E+308f64
pub const MIN_EXP: i32 = -1_021i32
pub const MAX_EXP: i32 = 1_024i32
pub const MIN_10_EXP: i32 = -307i32
pub const MAX_10_EXP: i32 = 308i32
pub const NAN: f64 = NaN_f64
pub const INFINITY: f64 = +Inf_f64
pub const NEG_INFINITY: f64 = -Inf_f64
1.62.0 · Sourcepub fn total_cmp(&self, other: &f64) -> Ordering
pub fn total_cmp(&self, other: &f64) -> Ordering
Returns the ordering between self and other.
Unlike the standard partial comparison between floating point numbers,
this comparison always produces an ordering in accordance to
the totalOrder predicate as defined in the IEEE 754 (2008 revision)
floating point standard. The values are ordered in the following sequence:
- negative quiet NaN
- negative signaling NaN
- negative infinity
- negative numbers
- negative subnormal numbers
- negative zero
- positive zero
- positive subnormal numbers
- positive numbers
- positive infinity
- positive signaling NaN
- positive quiet NaN.
The ordering established by this function does not always agree with the
PartialOrd and PartialEq implementations of f64. For example,
they consider negative and positive zero equal, while total_cmp
doesn’t.
The interpretation of the signaling NaN bit follows the definition in the IEEE 754 standard, which may not match the interpretation by some of the older, non-conformant (e.g. MIPS) hardware implementations.
§Example
struct GoodBoy {
name: String,
weight: f64,
}
let mut bois = vec![
GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
];
bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
// `f64::NAN` could be positive or negative, which will affect the sort order.
if f64::NAN.is_sign_negative() {
assert!(bois.into_iter().map(|b| b.weight)
.zip([f64::NAN, -5.0, 0.1, 10.0, 99.0, f64::INFINITY].iter())
.all(|(a, b)| a.to_bits() == b.to_bits()))
} else {
assert!(bois.into_iter().map(|b| b.weight)
.zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
.all(|(a, b)| a.to_bits() == b.to_bits()))
}Trait Implementations§
Source§impl Clone for LuminanceMax
impl Clone for LuminanceMax
Source§fn clone(&self) -> LuminanceMax
fn clone(&self) -> LuminanceMax
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl Debug for LuminanceMax
impl Debug for LuminanceMax
Source§impl Default for LuminanceMax
impl Default for LuminanceMax
Source§impl Deref for LuminanceMax
impl Deref for LuminanceMax
Source§impl Element for LuminanceMax
impl Element for LuminanceMax
Source§fn decode_body(buf: &mut &[u8]) -> Result<Self>
fn decode_body(buf: &mut &[u8]) -> Result<Self>
Source§fn encode_body<B: BufMut>(&self, buf: &mut B) -> Result<()>
fn encode_body<B: BufMut>(&self, buf: &mut B) -> Result<()>
Source§const HAS_DEFAULT_VALUE: bool = false
const HAS_DEFAULT_VALUE: bool = false
Source§impl PartialEq for LuminanceMax
impl PartialEq for LuminanceMax
Source§impl PartialOrd for LuminanceMax
impl PartialOrd for LuminanceMax
impl Copy for LuminanceMax
impl StructuralPartialEq for LuminanceMax
Auto Trait Implementations§
impl Freeze for LuminanceMax
impl RefUnwindSafe for LuminanceMax
impl Send for LuminanceMax
impl Sync for LuminanceMax
impl Unpin for LuminanceMax
impl UnwindSafe for LuminanceMax
Blanket Implementations§
Source§impl<T> AsyncReadElement for Twhere
T: Element,
impl<T> AsyncReadElement for Twhere
T: Element,
Source§impl<T> AsyncReadFrom for Twhere
T: Element,
impl<T> AsyncReadFrom for Twhere
T: Element,
Source§impl<T> AsyncWriteElement for Twhere
T: Element,
impl<T> AsyncWriteElement for Twhere
T: Element,
Source§fn async_write_element<W: AsyncWrite + Unpin>(
&self,
header: &Header,
w: &mut W,
) -> impl Future<Output = Result<()>>
fn async_write_element<W: AsyncWrite + Unpin>( &self, header: &Header, w: &mut W, ) -> impl Future<Output = Result<()>>
tokio only.Source§impl<T> AsyncWriteTo for Twhere
T: Encode,
impl<T> AsyncWriteTo for Twhere
T: Encode,
Source§async fn async_write_to<W>(&self, w: &mut W) -> Result<(), Error>where
W: AsyncWrite + Unpin,
async fn async_write_to<W>(&self, w: &mut W) -> Result<(), Error>where
W: AsyncWrite + Unpin,
tokio only.