1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
#![no_std]
#![warn(clippy::pedantic, missing_docs)]

//! A space-optimized version of `alloc::vec::Vec` that's only the size of a single pointer!
//! Ideal for low-level APIs where ABI calling conventions will typically require most structs be
//! spilled onto the stack and copied instead of being passed solely in registers.
//!
//! For example, in the [x64 msvc ABI](https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160):
//! > There's a strict one-to-one correspondence between a function call's arguments and the
//! > registers used for those arguments. Any argument that doesn't fit in 8 bytes, or isn't
//! > 1, 2, 4, or 8 bytes, must be passed by reference. A single argument is never spread across
//! > multiple registers.
//!
//! In addition, its single word size makes it ideal for use as a struct member where multiple
//! inclusions of `Vec` as a field can balloon the size.
//!
//!
//! `MiniVec` is a `#[repr(transparent)]` struct so its layout is that of `core::ptr::NonNull<u8>`.
//!
//! ---
//!
//! In general, `MiniVec` aims to be API compatible with what's currently stable in the stdlib so some
//! Nightly features are not supported. `MiniVec` also supports myriad extensions, one such being
//! support for over-alignment via the associated function [`with_alignment`](MiniVec::with_alignment).
//!
//! `MiniVec` has stable implementations of the following nightly-only associated functions on `Vec`:
//! * [`into_raw_parts`](MiniVec::into_raw_parts)
//! * [`shrink_to`](MiniVec::shrink_to)
//! * [`spare_capacity_mut`](MiniVec::spare_capacity_mut)
//! * [`drain_filter`](MiniVec::drain_filter)
//! * [`split_at_spare_mut`](MiniVec::split_at_spare_mut)
//! * [`extend_from_within`](MiniVec::extend_from_within)
//!
//! `MiniVec` has the following associated functions not found in `Vec`:
//! * [`with_alignment`](MiniVec::with_alignment)
//! * [`from_raw_part`](MiniVec::from_raw_part)
//! * [`drain_vec`](MiniVec::drain_vec)
//! * [`assume_minivec_init`](MiniVec::assume_minivec_init)
//!
//! `MiniVec` has the following extensions to the existing `Vec` API:
//! * [`push`](MiniVec::push) returns a mutable reference to the newly created element
//!
//! Eventual TODO's:
//! * add `try_reserve` methods once stable
//! * add myriad specializations to associated functions such as `FromIterator` once stable
//! * add Allocator support once stable
//!

extern crate alloc;

mod r#impl;

mod as_mut;
mod as_ref;
mod borrow;
mod clone;
mod debug;
mod default;
mod deref;
mod drop;
mod eq;
mod extend;
mod from;
mod from_iterator;
mod hash;
mod index;
mod into_iterator;
mod ord;
mod partial_eq;
#[cfg(feature = "serde")]
mod serde;

use crate::r#impl::drain::make_drain_iterator;
use crate::r#impl::drain_filter::make_drain_filter_iterator;
use crate::r#impl::helpers::{make_layout, max_align, next_aligned, next_capacity};
use crate::r#impl::splice::make_splice_iterator;

pub use crate::r#impl::{Drain, DrainFilter, IntoIter, Splice};

/// `MiniVec` is a space-optimized implementation of `alloc::vec::Vec` that is only the size of a single pointer and
/// also extends portions of its API, including support for over-aligned allocations. `MiniVec` also aims to bring as
/// many Nightly features from `Vec` to stable toolchains as is possible. In many cases, it is a drop-in replacement
/// for the "real" `Vec`.
///
#[repr(transparent)]
pub struct MiniVec<T> {
  buf: core::ptr::NonNull<u8>,
  phantom: core::marker::PhantomData<T>,
}

/// `LayoutErr` is the error type returned by the alignment-based associated functions for `MiniVec`
///
#[derive(core::fmt::Debug)]
pub enum LayoutErr {
  /// `AlignmentTooSmall` is returned when the user-supplied alignment fails to meet the base minimum alignment
  /// requirements for the backing allocation of the `MiniVec`.
  ///
  /// The minimum alignment requirement is `core::mem::align_of::<*const ()>()`.
  ///
  AlignmentTooSmall,
  /// `AlignmentNotDivisibleByTwo` is returned when the user-supplied alignment fails to meet the requirement of being
  /// a power of two.
  ///
  AlignmentNotDivisibleByTwo,
}

#[derive(Clone, Copy)]
struct Header {
  len: usize,
  cap: usize,
  alignment: usize,
}

#[test]
#[allow(clippy::clone_on_copy)]
fn header_clone() {
  let header = Header {
    len: 0,
    cap: 0,
    alignment: 0,
  };

  let header2 = header.clone();

  assert_eq!(header2.len, header.len);
  assert_eq!(header2.cap, header.cap);
  assert_eq!(header2.alignment, header.alignment);
}

static DEFAULT_U8: u8 = 137;

impl<T> MiniVec<T> {
  #[allow(clippy::cast_ptr_alignment)]
  fn is_default(&self) -> bool {
    core::ptr::eq(self.buf.as_ptr(), &DEFAULT_U8)
  }

  fn header(&self) -> &Header {
    #[allow(clippy::cast_ptr_alignment)]
    unsafe {
      &*(self.buf.as_ptr() as *const Header)
    }
  }

  fn header_mut(&mut self) -> &mut Header {
    #[allow(clippy::cast_ptr_alignment)]
    unsafe {
      &mut *self.buf.as_ptr().cast::<Header>()
    }
  }

  fn data(&self) -> *mut T {
    debug_assert!(!self.is_default());

    let count = next_aligned(core::mem::size_of::<Header>(), self.alignment());
    unsafe { self.buf.as_ptr().add(count).cast::<T>() }
  }

  fn alignment(&self) -> usize {
    if self.capacity() == 0 {
      max_align::<T>()
    } else {
      self.header().alignment
    }
  }

  fn grow(&mut self, capacity: usize, alignment: usize) {
    debug_assert!(capacity >= self.len());

    let old_capacity = self.capacity();
    let new_capacity = capacity;

    if new_capacity == old_capacity {
      return;
    }

    let new_layout = make_layout::<T>(new_capacity, alignment);

    let len = self.len();

    let new_buf = if self.is_default() {
      unsafe { alloc::alloc::alloc(new_layout) }
    } else {
      let old_layout = make_layout::<T>(old_capacity, alignment);

      unsafe { alloc::alloc::realloc(self.buf.as_ptr(), old_layout, new_layout.size()) }
    };

    if new_buf.is_null() {
      alloc::alloc::handle_alloc_error(new_layout);
    }

    let header = Header {
      len,
      cap: new_capacity,
      alignment,
    };

    #[allow(clippy::cast_ptr_alignment)]
    unsafe {
      core::ptr::write(new_buf.cast::<Header>(), header);
    }

    self.buf = unsafe { core::ptr::NonNull::<u8>::new_unchecked(new_buf) };
  }

  /// `append` moves every element from `other` to the back of `self`. `other.is_empty()` is `true` once this operation
  /// completes and its capacity is unaffected.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2, 3];
  /// let mut vec2 = minivec::mini_vec![4, 5, 6];
  /// vec.append(&mut vec2);
  /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
  /// assert_eq!(vec2, []);
  /// ```
  ///
  pub fn append(&mut self, other: &mut MiniVec<T>) {
    if other.is_empty() {
      return;
    }

    let other_len = other.len();
    self.reserve(other_len);

    unsafe {
      core::ptr::copy_nonoverlapping(other.as_ptr(), self.as_mut_ptr().add(self.len()), other_len);
    };

    unsafe {
      other.set_len(0);
      self.set_len(self.len() + other_len);
    };
  }

  /// `as_mut_ptr` returns a `*mut T` to the underlying array.
  ///
  /// * May return a null pointer.
  /// * May be invalidated by calls to [`reserve()`](MiniVec::reserve)
  /// * Can outlive its backing `MiniVec`
  ///
  /// # Example
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2, 3, 4];
  /// let mut p = vec.as_mut_ptr();
  ///
  /// for idx in 0..vec.len() {
  ///     unsafe {
  ///         *p.add(idx) = *p.add(idx) + 3;
  ///     }
  /// }
  ///
  /// assert_eq!(vec, [4, 5, 6, 7]);
  /// ```
  ///
  pub fn as_mut_ptr(&mut self) -> *mut T {
    if self.is_default() {
      return core::ptr::null_mut();
    }

    self.data()
  }

  /// `as_mut_slice` obtains a mutable reference to a slice that's attached to the backing array.
  ///
  /// # Example
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2, 3];
  /// {
  ///     let as_slice: &mut [_] = vec.as_mut_slice();
  ///     as_slice[0] = 1337;
  /// }
  /// assert_eq!(vec[0], 1337);
  /// ```
  ///
  pub fn as_mut_slice(&mut self) -> &mut [T] {
    self
  }

  /// `as_ptr` obtains a `*const T` to the underlying allocation.
  ///
  /// * May return a null pointer.
  /// * May be invalidated by calls to `reserve()`
  /// * Can outlive its backing `MiniVec`
  /// * May allow access to unitialized memory/non-existent objects
  /// * May create out-of-bounds memory access
  ///
  /// # Example
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2, 3, 4];
  /// let mut p = vec.as_mut_ptr();
  ///
  /// let mut sum = 0;
  /// for idx in 0..vec.len() {
  ///     unsafe {
  ///         sum += *p.add(idx);
  ///     }
  /// }
  ///
  /// assert_eq!(sum, 1 + 2 + 3 + 4);
  /// ```
  ///
  #[must_use]
  pub fn as_ptr(&self) -> *const T {
    if self.is_default() {
      return core::ptr::null();
    }

    self.data()
  }

  /// `as_slice` obtains a reference to the backing array as an immutable slice of `T`.
  ///
  /// # Example
  /// ```
  /// let vec = minivec::mini_vec![1, 2, 3, 4];
  /// let mut sum = 0;
  ///
  /// let as_slice : &[_] = vec.as_slice();
  ///
  /// for idx in 0..vec.len() {
  ///     sum += as_slice[idx];
  /// }
  ///
  /// assert_eq!(sum, 1 + 2 + 3 + 4);
  /// ```
  ///
  #[must_use]
  pub fn as_slice(&self) -> &[T] {
    self
  }

  /// `capacity` obtains the number of elements that can be inserted into the `MiniVec` before a
  /// reallocation will be required.
  ///
  /// Note: `MiniVec` aims to use the same reservation policy as `alloc::vec::Vec`.
  ///
  /// # Example
  ///
  /// ```
  /// let vec = minivec::MiniVec::<i32>::with_capacity(128);
  ///
  /// assert_eq!(vec.len(), 0);
  /// assert_eq!(vec.capacity(), 128);
  /// ```
  ///
  #[must_use]
  pub fn capacity(&self) -> usize {
    if self.is_default() {
      0
    } else {
      self.header().cap
    }
  }

  /// `clear` clears the current contents of the `MiniVec`. Afterwards, [`len()`](MiniVec::len)
  /// will return 0. [`capacity()`](MiniVec::capacity) is not affected.
  ///
  /// Logically equivalent to calling [`minivec::MiniVec::truncate(0)`](MiniVec::truncate).
  ///
  /// Note: destruction order of the contained elements is not guaranteed.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![-1; 256];
  ///
  /// let cap = vec.capacity();
  ///
  /// assert_eq!(vec.len(), 256);
  ///
  /// vec.clear();
  ///
  /// assert_eq!(vec.len(), 0);
  /// assert_eq!(vec.capacity(), cap);
  /// ```
  ///
  pub fn clear(&mut self) {
    self.truncate(0);
  }

  /// `dedeup` "de-duplicates" all adjacent identical values in the vector.
  ///
  /// Logically equivalent to calling [`minivec::MiniVec::dedup_by(|x, y| x == y)`](MiniVec::dedup_by).
  ///
  /// # Example
  ///
  /// ```
  /// let mut v = minivec::mini_vec![1, 2, 1, 1, 3, 3, 3, 4, 5, 4];
  /// v.dedup();
  ///
  /// assert_eq!(v, [1, 2, 1, 3, 4, 5, 4]);
  /// ```
  ///
  pub fn dedup(&mut self)
  where
    T: PartialEq,
  {
    self.dedup_by(|x, y| x == y);
  }

  /// `dedup_by` "de-duplicates" all adjacent elements for which the supplied binary predicate
  /// returns true.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
  ///
  /// vec.dedup_by(|x, y| *x + *y < 8);
  ///
  /// // 1 + 2 < 8
  /// // 1 + 3 < 8
  /// // 1 + 4 < 8...
  /// // 1 + 7 == 8
  /// assert_eq!(vec, [1, 7, 8, 9, 10]);
  /// ```
  ///
  pub fn dedup_by<F>(&mut self, mut pred: F)
  where
    F: FnMut(&mut T, &mut T) -> bool,
  {
    // In essence copy what the C++ stdlib does:
    // https://github.com/llvm/llvm-project/blob/032810f58986cd568980227c9531de91d8bcb1cd/libcxx/include/algorithm#L2174-L2191
    //
    let len = self.len();
    if len < 2 {
      return;
    }

    let data = self.as_mut_ptr();

    let mut read = unsafe { data.add(1) };
    let mut write = read;

    let last = unsafe { data.add(len) };

    while read < last {
      let matches = unsafe { pred(&mut *read, &mut *write.sub(1)) };
      if !matches {
        if read != write {
          unsafe {
            core::mem::swap(&mut *read, &mut *write);
          }
        }
        write = unsafe { write.add(1) };
      }

      read = unsafe { read.add(1) };
    }

    self.truncate((write as usize - data as usize) / core::mem::size_of::<T>());
  }

  /// `dedup_by_key` "de-duplicates" all adjacent elements where `key(elem1) == key(elem2)`.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec!["a", "b", "c", "aa", "bbb", "cc", "dd"];
  ///
  /// vec.dedup_by_key(|x| x.len());
  ///
  /// assert_eq!(vec, ["a", "aa", "bbb", "cc"]);
  /// ```
  ///
  pub fn dedup_by_key<F, K>(&mut self, mut key: F)
  where
    F: FnMut(&mut T) -> K,
    K: PartialEq<K>,
  {
    self.dedup_by(|a, b| key(a) == key(b));
  }

  /// `drain` returns a [`minivec::Drain`](Drain) iterator which lazily removes elements from the supplied
  /// `range`.
  ///
  /// If the returned iterator is not iterated until exhaustion then the `Drop` implementation
  /// for `Drain` will remove the remaining elements.
  ///
  /// # Panics
  ///
  /// Panics if the supplied range would be outside the vector
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
  ///
  /// let other_vec : minivec::MiniVec<_> = vec.drain(1..7).map(|x| x + 2).collect();
  ///
  /// assert_eq!(vec, [1, 8, 9, 10]);
  /// assert_eq!(other_vec, [4, 5, 6, 7, 8, 9]);
  /// ```
  ///
  pub fn drain<R>(&mut self, range: R) -> Drain<T>
  where
    R: core::ops::RangeBounds<usize>,
  {
    let len = self.len();

    let start_idx = match range.start_bound() {
      core::ops::Bound::Included(&n) => n,
      core::ops::Bound::Excluded(&n) => {
        n.checked_add(1).expect("Start idx exceeded numeric limits")
      }
      core::ops::Bound::Unbounded => 0,
    };

    let end_idx = match range.end_bound() {
      core::ops::Bound::Included(&n) => n.checked_add(1).expect("End idx exceeded numeric limits"),
      core::ops::Bound::Excluded(&n) => n,
      core::ops::Bound::Unbounded => len,
    };

    if start_idx > end_idx {
      panic!(
        "start drain index (is {}) should be <= end drain index (is {})",
        start_idx, end_idx
      );
    }

    if end_idx > len {
      panic!(
        "end drain index (is {}) should be <= len (is {})",
        end_idx, len
      );
    }

    let data = self.as_mut_ptr();

    if !data.is_null() {
      unsafe {
        self.set_len(start_idx);
      }
    }

    make_drain_iterator(self, data, len - end_idx, start_idx, end_idx)
  }

  /// `drain_filter` creates a new [`DrainFilter`](DrainFilter) iterator that when iterated will
  /// remove all elements for which the supplied `pred` returns `true`.
  ///
  /// Removal of elements is done by transferring ownership of the element to the iterator.
  ///
  /// Note: if the supplied predicate panics then `DrainFilter` will stop all usage of it and then
  /// backshift all untested elements and adjust the `MiniVec`'s length accordingly.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![
  ///     1, 2, 4, 6, 7, 9, 11, 13, 15, 17, 18, 20, 22, 24, 26, 27, 29, 31, 33, 34, 35, 36, 37,
  ///     39,
  /// ];
  ///
  /// let removed = vec.drain_filter(|x| *x % 2 == 0).collect::<minivec::MiniVec<_>>();
  /// assert_eq!(removed.len(), 10);
  /// assert_eq!(removed, vec![2, 4, 6, 18, 20, 22, 24, 26, 34, 36]);
  ///
  /// assert_eq!(vec.len(), 14);
  /// assert_eq!(
  ///     vec,
  ///     vec![1, 7, 9, 11, 13, 15, 17, 27, 29, 31, 33, 35, 37, 39]
  /// );
  /// ```
  ///
  pub fn drain_filter<F>(&mut self, pred: F) -> DrainFilter<'_, T, F>
  where
    F: core::ops::FnMut(&mut T) -> bool,
  {
    make_drain_filter_iterator(self, pred)
  }

  #[inline]
  #[must_use]
  /// `drain_vec` returns a new instance of a `MiniVec`, created by moving the content out of `self`.
  ///
  /// Compared to `drain` method, this is just simple swap of pointers. As result, any pointer to `self` becomes
  /// invalid.
  ///
  /// # Example
  ///
  /// ```
  /// use minivec::mini_vec;
  ///
  /// let mut vec = mini_vec![1, 2, 3, 4, 5, 6, 7, 9];
  /// let new_vec = vec.drain_vec();
  ///
  /// assert_eq!(vec.len(), 0);
  /// assert_eq!(new_vec, [1, 2, 3, 4, 5, 6, 7, 9]);
  ///
  /// let new_vec = vec.drain_vec();
  /// assert_eq!(vec.len(), 0);
  /// assert_eq!(new_vec, []);
  /// ```
  pub fn drain_vec(&mut self) -> Self {
    let mut result = Self::new();
    core::mem::swap(&mut result, self);
    result
  }

  /// `from_raw_part` reconstructs a `MiniVec` from a previous call to [`MiniVec::as_mut_ptr`](MiniVec::as_mut_ptr)
  /// or the pointer from [`into_raw_parts`](MiniVec::into_raw_parts).
  ///
  /// # Safety
  ///
  /// `from_raw_part` is incredibly unsafe and can only be used with the value of
  /// `MiniVec::as_mut_ptr`. This is because the allocation for the backing array stores metadata
  /// at its head and is not guaranteed to be stable so users are discouraged from attempting to
  /// support this directly.
  ///
  /// # Panics
  ///
  /// Panics in debug mode if the supplied pointer is null.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2, 3, 4];
  ///
  /// let ptr = vec.as_mut_ptr();
  ///
  /// std::mem::forget(vec);
  ///
  /// let new_vec = unsafe { minivec::MiniVec::from_raw_part(ptr) };
  ///
  /// assert_eq!(new_vec, [1, 2, 3, 4]);
  /// ```
  ///
  #[allow(clippy::cast_ptr_alignment)]
  pub unsafe fn from_raw_part(ptr: *mut T) -> MiniVec<T> {
    debug_assert!(!ptr.is_null());

    let header_size = core::mem::size_of::<Header>();
    let aligned = next_aligned(header_size, core::mem::align_of::<T>());

    let p = ptr.cast::<u8>();
    let buf = p.sub(aligned);

    MiniVec {
      buf: core::ptr::NonNull::<u8>::new_unchecked(buf),
      phantom: core::marker::PhantomData,
    }
  }

  /// `from_raw_parts` is an API-compatible version of `alloc::vec::Vec::from_raw_parts`. Because
  /// of `MiniVec`'s optimized layout, it's not strictly required for a user to pass the length
  /// and capacity explicitly.
  ///
  /// Like [`MiniVec::from_raw_part`](MiniVec::from_raw_part), this function is only safe to use
  /// with the result of a call to [`MiniVec::as_mut_ptr()`](MiniVec::as_mut_ptr).
  ///
  /// # Panics
  ///
  /// Panics in debug mode if the supplied pointer is null.
  ///
  /// # Safety
  ///
  /// A very unsafe function that should only really be used when passing the vector to a C API.
  ///
  /// Does not support over-aligned allocations. The alignment of the pointer must be that of its natural alignment.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2, 3, 4];
  /// let len = vec.len();
  /// let cap = vec.capacity();
  ///
  /// let ptr = vec.as_mut_ptr();
  ///
  /// std::mem::forget(vec);
  ///
  /// let new_vec = unsafe { minivec::MiniVec::from_raw_parts(ptr, len, cap) };
  ///
  /// assert_eq!(new_vec, [1, 2, 3, 4]);
  /// ```
  ///
  #[allow(clippy::cast_ptr_alignment)]
  pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> MiniVec<T> {
    debug_assert!(!ptr.is_null());

    let header_size = core::mem::size_of::<Header>();
    let aligned = next_aligned(header_size, core::mem::align_of::<T>());

    let p = ptr.cast::<u8>();
    let buf = p.sub(aligned);

    debug_assert!((*buf.cast::<Header>()).len == length);
    debug_assert!((*buf.cast::<Header>()).cap == capacity);

    MiniVec {
      buf: core::ptr::NonNull::<u8>::new_unchecked(buf),
      phantom: core::marker::PhantomData,
    }
  }

  /// `insert` places an element at the specified index, subsequently shifting all elements to the
  /// right of the insertion index by 1
  ///
  /// # Panics
  ///
  /// Will panic when `index > vec.len()`.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![0, 1, 2, 3];
  /// vec.insert(1, 1337);
  /// assert_eq!(vec, [0, 1337, 1, 2, 3]);
  ///
  /// vec.insert(vec.len(), 7331);
  /// assert_eq!(vec, [0, 1337, 1, 2, 3, 7331]);
  /// ```
  ///
  pub fn insert(&mut self, index: usize, element: T) {
    let len = self.len();

    if index > len {
      panic!(
        "insertion index (is {}) should be <= len (is {})",
        index, len
      );
    }

    if len == self.capacity() {
      self.reserve(1);
    }

    let p = unsafe { self.as_mut_ptr().add(index) };
    unsafe {
      core::ptr::copy(p, p.add(1), len - index);
      core::ptr::write(p, element);
      self.set_len(len + 1);
    }
  }

  /// `into_raw_parts` will leak the underlying allocation and return a tuple containing a pointer
  /// to the start of the backing array and its length and capacity.
  ///
  /// The results of this function are directly compatible with [`from_raw_parts`](MiniVec::from_raw_parts).
  ///
  /// # Example
  ///
  /// ```
  /// let vec = minivec::mini_vec![1, 2, 3, 4, 5];
  /// let (old_len, old_cap) = (vec.len(), vec.capacity());
  ///
  /// let (ptr, len, cap) = vec.into_raw_parts();
  /// assert_eq!(len, old_len);
  /// assert_eq!(cap, old_cap);
  ///
  /// let vec = unsafe { minivec::MiniVec::from_raw_parts(ptr, len, cap) };
  /// assert_eq!(vec, [1, 2, 3, 4, 5]);
  /// ```
  ///
  #[must_use]
  pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
    let mut v = core::mem::ManuallyDrop::new(self);
    (v.as_mut_ptr(), v.len(), v.capacity())
  }

  /// `is_empty()` returns whether or not the `MiniVec` has a length greater than 0.
  ///
  /// Logically equivalent to manually writing: `v.len() == 0`.
  ///
  /// # Example
  ///
  /// ```
  /// let vec = minivec::MiniVec::<i32>::with_capacity(256);
  /// assert!(vec.is_empty());
  /// assert!(vec.capacity() > 0);
  /// ```
  ///
  #[must_use]
  pub fn is_empty(&self) -> bool {
    self.len() == 0
  }

  /// `leak` "leaks" the supplied `MiniVec`, i.e. turn it into a [`ManuallyDrop`](core::mem::ManuallyDrop)
  /// instance and return a reference to the backing array via `&'a [T]` where `'a` is a
  /// user-supplied lifetime.
  ///
  /// Most useful for turning an allocation with dynamic duration into one with static duration.
  ///
  /// # Example
  ///
  /// ```
  /// # #[cfg(not(miri))]
  /// # fn main() {
  /// let vec = minivec::mini_vec![1, 2, 3];
  /// let static_ref: &'static mut [i32] = minivec::MiniVec::leak(vec);
  /// static_ref[0] += 1;
  /// assert_eq!(static_ref, &[2, 2, 3]);
  /// # }
  ///
  /// # #[cfg(miri)]
  /// # fn main() {}
  /// ```
  ///
  #[must_use]
  pub fn leak<'a>(vec: MiniVec<T>) -> &'a mut [T]
  where
    T: 'a,
  {
    let len = vec.len();
    let mut vec = core::mem::ManuallyDrop::new(vec);
    let vec: &mut MiniVec<T> = &mut *vec;
    unsafe { core::slice::from_raw_parts_mut(vec.as_mut_ptr(), len) }
  }

  /// `len` returns the current lenght of the vector, i.e. the number of actual elements in it
  ///
  /// `capacity() >= len()` is true for all cases
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![-1; 256];
  /// assert_eq!(vec.len(), 256);
  /// ```
  ///
  #[must_use]
  pub fn len(&self) -> usize {
    if self.is_default() {
      0
    } else {
      self.header().len
    }
  }

  /// `MiniVec::new` constructs an empty `MiniVec`.
  ///
  /// Note: does not allocate any memory.
  ///
  /// # Panics
  ///
  /// Panics when a zero-sized type is attempted to be used.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::MiniVec::<i32>::new();
  ///
  /// assert_eq!(vec.as_mut_ptr(), std::ptr::null_mut());
  /// assert_eq!(vec.len(), 0);
  /// assert_eq!(vec.capacity(), 0);
  /// ```
  ///
  #[must_use]
  #[allow(clippy::ptr_as_ptr)]
  pub fn new() -> MiniVec<T> {
    assert!(
      core::mem::size_of::<T>() > 0,
      "ZSTs currently not supported"
    );

    let buf =
      unsafe { core::ptr::NonNull::<u8>::new_unchecked(&DEFAULT_U8 as *const u8 as *mut u8) };

    MiniVec {
      buf,
      phantom: core::marker::PhantomData,
    }
  }

  /// `pop` removes the last element from the vector, should it exist, and returns an [`Option`](core::option::Option)
  /// which owns the removed element.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![Box::new(1)];
  /// let ptr = vec.pop().unwrap();
  /// assert_eq!(*ptr, 1);
  ///
  /// assert_eq!(vec.pop(), None);
  /// ```
  ///
  pub fn pop(&mut self) -> Option<T> {
    let len = self.len();

    if len == 0 {
      return None;
    }

    let v = unsafe { core::ptr::read(self.as_ptr().add(len - 1)) };
    unsafe {
      self.set_len(len - 1);
    }
    Some(v)
  }

  /// `push` appends an element `value` to the end of the vector. `push` automatically reallocates
  /// if the vector does not have sufficient capacity.
  ///
  /// Unlike the standard library `Vec`, `MiniVec::push` returns a mutable reference to the newly created element that's
  /// been placed at the back of the vector.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::MiniVec::<i32>::with_capacity(64);
  ///
  /// for idx in 0..128 {
  ///     vec.push(idx);
  /// }
  ///
  /// assert_eq!(vec.len(), 128);
  /// ```
  ///
  pub fn push(&mut self, value: T) -> &mut T {
    let (len, capacity, alignment) = (self.len(), self.capacity(), self.alignment());
    if len == capacity {
      self.grow(next_capacity::<T>(capacity), alignment);
    }

    let len = self.len();
    let data = self.data();

    let dst = unsafe { data.add(len) };

    unsafe {
      core::ptr::write(dst, value);
    };

    let mut header = self.header_mut();
    header.len += 1;

    unsafe { &mut *dst }
  }

  /// `remove` moves the element at the specified `index` and then returns it to the user. This
  /// operation shifts all elements to the right `index` to the left by one so it has a linear
  /// time complexity of `vec.len() - index`.
  ///
  /// # Panics
  ///
  /// Panics if `index >= len()`.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![0, 1, 2, 3];
  /// vec.remove(0);
  ///
  /// assert_eq!(vec, [1, 2, 3]);
  /// ```
  ///
  pub fn remove(&mut self, index: usize) -> T {
    let len = self.len();
    if index >= len {
      panic!("removal index (is {}) should be < len (is {})", index, len);
    }

    unsafe {
      let p = self.as_mut_ptr().add(index);

      let x = core::ptr::read(p);

      let src = p.add(1);
      let dst = p;
      let count = len - index - 1;
      core::ptr::copy(src, dst, count);

      self.set_len(len - 1);

      x
    }
  }

  /// `remove_item` removes the first element identical to the supplied `item` using a
  /// left-to-right traversal of the elements.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![0, 1, 1, 1, 2, 3, 4];
  /// vec.remove_item(&1);
  ///
  /// assert_eq!(vec, [0, 1, 1, 2, 3, 4]);
  /// ```
  ///
  pub fn remove_item<V>(&mut self, item: &V) -> Option<T>
  where
    T: PartialEq<V>,
  {
    let len = self.len();
    for i in 0..len {
      if self[i] == *item {
        return Some(self.remove(i));
      }
    }
    None
  }

  /// `reserve` ensures there is sufficient capacity for `additional` extra elements to be either
  /// inserted or appended to the end of the vector. Will reallocate if needed otherwise this
  /// function is a no-op.
  ///
  /// Guarantees that the new capacity is greater than or equal to `len() + additional`.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::MiniVec::<i32>::new();
  ///
  /// assert_eq!(vec.capacity(), 0);
  ///
  /// vec.reserve(128);
  ///
  /// assert!(vec.capacity() >= 128);
  /// ```
  ///
  pub fn reserve(&mut self, additional: usize) {
    let capacity = self.capacity();
    let total_required = self.len() + additional;

    if total_required <= capacity {
      return;
    }

    let mut new_capacity = next_capacity::<T>(capacity);
    while new_capacity < total_required {
      new_capacity = next_capacity::<T>(new_capacity);
    }

    self.grow(new_capacity, self.alignment());
  }

  /// `reserve_exact` ensures that the capacity of the vector is exactly equal to
  /// `len() + additional` unless the capacity is already sufficient in which case no operation is
  /// performed.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::MiniVec::<i32>::new();
  /// vec.reserve_exact(57);
  ///
  /// assert_eq!(vec.capacity(), 57);
  /// ```
  ///
  pub fn reserve_exact(&mut self, additional: usize) {
    let capacity = self.capacity();
    let len = self.len();

    let total_required = len + additional;
    if capacity >= total_required {
      return;
    }

    self.grow(total_required, self.alignment());
  }

  /// `resize` will clone the supplied `value` as many times as required until `len()` becomes
  /// `new_len`. If the current [`len()`](MiniVec::len) is greater than `new_len` then the vector
  /// is truncated in a way that's identical to calling `vec.truncate(new_len)`. If the `len()`
  /// and `new_len` match then no operation is performed.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![-1; 256];
  ///
  /// vec.resize(512, -1);
  /// assert_eq!(vec.len(), 512);
  ///
  /// vec.resize(64, -1);
  /// assert_eq!(vec.len(), 64);
  /// ```
  ///
  pub fn resize(&mut self, new_len: usize, value: T)
  where
    T: Clone,
  {
    let len = self.len();
    match new_len.cmp(&len) {
      core::cmp::Ordering::Equal => {}
      core::cmp::Ordering::Greater => {
        let num_elems = new_len - len;
        self.reserve(num_elems);
        for _i in 0..num_elems {
          self.push(value.clone());
        }
      }
      core::cmp::Ordering::Less => {
        self.truncate(new_len);
      }
    }
  }

  /// `resize_with` will invoke the supplied callable `f` as many times as is required until
  /// `len() == new_len` is true. If the `new_len` exceeds the current [`len()`](MiniVec::len)
  /// then the vector will be resized via a call to `truncate(new_len)`. If the `new_len` and
  /// `len()` are equal then no operation is performed.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::MiniVec::<i32>::new();
  ///
  /// vec.resize_with(128, || 1337);
  /// assert_eq!(vec.len(), 128);
  /// ```
  ///
  pub fn resize_with<F>(&mut self, new_len: usize, mut f: F)
  where
    F: FnMut() -> T,
  {
    use core::cmp::Ordering::{Equal, Greater, Less};

    let len = self.len();
    match new_len.cmp(&len) {
      Equal => {}
      Greater => {
        let num_elems = new_len - len;
        self.reserve(num_elems);
        for _i in 0..num_elems {
          self.push(f());
        }
      }
      Less => {
        self.truncate(new_len);
      }
    }
  }

  /// `retain` removes all elements from the vector for with `f(elem)` is `false` using a
  /// left-to-right traversal.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2, 3, 4, 5, 6];
  ///
  /// let is_even = |x: &i32| *x % 2 == 0;
  /// vec.retain(is_even);
  /// assert_eq!(vec, [2, 4, 6]);
  /// ```
  ///
  pub fn retain<F>(&mut self, mut f: F)
  where
    F: FnMut(&T) -> bool,
  {
    let len = self.len();

    let data = self.as_mut_ptr();

    let mut read = data;
    let mut write = read;

    let last = unsafe { data.add(len) };

    while read < last {
      let should_retain = unsafe { f(&mut *read) };
      if should_retain {
        if read != write {
          unsafe {
            core::mem::swap(&mut *read, &mut *write);
          }
        }
        write = unsafe { write.add(1) };
      }

      read = unsafe { read.add(1) };
    }

    self.truncate((write as usize - data as usize) / core::mem::size_of::<T>());
  }

  /// `set_len` reassigns the internal `len_` data member to the user-supplied `len`.
  ///
  /// # Safety
  ///
  /// This function is unsafe in the sense that it will NOT call `.drop()` on the elements
  /// excluded from the new len so this function should only be called when `T` is a `Copy` type.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2, 3, 4];
  /// unsafe { vec.set_len(2) };
  ///
  /// assert_eq!(vec.len(), 2);
  /// ```
  ///
  pub unsafe fn set_len(&mut self, len: usize) {
    self.header_mut().len = len;
  }

  /// `shrink_to` will attempt to adjust the backing allocation such that it has space for at
  /// least `min_capacity` elements.
  ///
  /// If the `min_capacity` is smaller than the current length of the vector then the capacity
  /// will be shrunk down to [`len()`](MiniVec::len).
  ///
  /// If the [`capacity()`](MiniVec::capacity) is identical to `min_capacity` then this function
  /// does nothing.
  ///
  /// # Panics
  ///
  /// If the `min_capacity` is larger than the current capacity this function will panic.
  ///
  /// Otherwise, the allocation is reallocated with the new `min_capacity` kept in mind.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::MiniVec::<i32>::with_capacity(128);
  /// assert!(vec.capacity() >= 128);
  ///
  /// vec.shrink_to(64);
  /// assert_eq!(vec.capacity(), 64);
  /// ```
  ///
  pub fn shrink_to(&mut self, min_capacity: usize) {
    let (len, capacity) = (self.len(), self.capacity());

    if min_capacity < len {
      self.shrink_to_fit();
      return;
    }

    if capacity == min_capacity {
      return;
    }

    if capacity < min_capacity {
      panic!("Tried to shrink to a larger capacity");
    }

    self.grow(min_capacity, self.alignment());
  }

  /// `shrink_to_fit` will re-adjust the backing allocation such that its capacity is now equal
  /// to its length
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::MiniVec::with_capacity(512);
  ///
  /// vec.push(1);
  /// vec.push(2);
  /// vec.push(3);
  ///
  /// vec.shrink_to_fit();
  ///
  /// assert_eq!(vec.capacity(), 3);
  /// ```
  ///
  pub fn shrink_to_fit(&mut self) {
    let len = self.len();
    if len == self.capacity() {
      return;
    }

    let capacity = len;
    self.grow(capacity, self.alignment());
  }

  /// `spare_capacity_mut` returns a mutable slice to [`MaybeUninit<T>`](core::mem::MaybeUninit).
  /// This is a more structured way of interacting with `MiniVec` as an unitialized allocation vs
  /// simply creating a vector with capacity and then mutating its contents directly via
  /// [`as_mut_ptr`](MiniVec::as_mut_ptr).
  ///
  /// Once manipulation of the unitialized elements has been completed, a call to [`set_len`](MiniVec::set_len)
  /// is required otherwise the contained elements cannot be accessed by `MiniVec`'s normal
  /// methods nor will the elements be dropped.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::MiniVec::<i32>::with_capacity(24);
  /// let mut buf = vec.spare_capacity_mut();
  ///
  /// for idx in 0..4 {
  ///     unsafe { buf[idx].as_mut_ptr().write(idx as i32) };
  /// }
  ///
  /// unsafe { vec.set_len(4) };
  ///
  /// assert_eq!(vec, [0, 1, 2, 3]);
  /// ```
  ///
  pub fn spare_capacity_mut(&mut self) -> &mut [core::mem::MaybeUninit<T>] {
    let capacity = self.capacity();
    if capacity == 0 {
      return &mut [];
    }

    let len = self.len();
    let data = unsafe { self.data().add(len).cast::<core::mem::MaybeUninit<T>>() };
    let spare_len = capacity - len;

    unsafe { core::slice::from_raw_parts_mut(data, spare_len) }
  }

  /// `splice` returns a [`Splice`](Splice) iterator. `Splice` is similar in spirit to [`Drain`](Drain)
  /// but instead of simply shifting the remaining elements from the vector after it's been
  /// drained, the range is replaced with the `Iterator` specified by `replace_with`.
  ///
  /// Much like `Drain`, if the `Splice` iterator is not iterated until exhaustion then the
  /// remaining elements will be removed when the iterator is dropped.
  ///
  /// `Splice` only fills the removed region when it is dropped.
  ///
  /// # Panics
  ///
  /// Panics if the supplied `range` is outside of the vector's bounds.
  ///
  /// # Example
  ///
  /// ```
  /// let mut x = minivec::mini_vec![1, 2, 3, 4, 5, 6];
  /// let new = [7, 8];
  ///
  /// let y: minivec::MiniVec<_> = x.splice(1..4, new.iter().cloned()).collect();
  ///
  /// assert_eq!(x, &[1, 7, 8, 5, 6]);
  /// assert_eq!(y, &[2, 3, 4]);
  /// ```
  ///
  pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<<I as IntoIterator>::IntoIter>
  where
    I: IntoIterator<Item = T>,
    R: core::ops::RangeBounds<usize>,
  {
    let len = self.len();

    let start_idx = match range.start_bound() {
      core::ops::Bound::Included(&n) => n,
      core::ops::Bound::Excluded(&n) => {
        n.checked_add(1).expect("Start idx exceeded numeric limits")
      }
      core::ops::Bound::Unbounded => 0,
    };

    let end_idx = match range.end_bound() {
      core::ops::Bound::Included(&n) => n.checked_add(1).expect("End idx exceeded numeric limits"),
      core::ops::Bound::Excluded(&n) => n,
      core::ops::Bound::Unbounded => len,
    };

    if start_idx > end_idx {
      panic!(
        "start splice index (is {}) should be <= end splice index (is {})",
        start_idx, end_idx
      );
    }

    if end_idx > len {
      panic!(
        "end splice index (is {}) should be <= len (is {})",
        end_idx, len
      );
    }

    let data = self.as_mut_ptr();

    if !data.is_null() {
      unsafe {
        self.set_len(start_idx);
      }
    }

    make_splice_iterator(
      self,
      data,
      len - end_idx,
      start_idx,
      end_idx,
      replace_with.into_iter(),
    )
  }

  /// `split_at_spare_mut` returns a pair containing two mutable slices: one referring to the currently
  /// initialized elements and the other pointing to the spare capacity of the backing allocation as a
  /// `&mut [MaybeUninit<T>]`.
  ///
  /// This is a convenience API that handles borrowing issues when attempting to do something like:
  /// ```ignore
  /// let (init, uninit) = (vec.as_mut_slice(), vec.spare_capacity_mut());
  /// ```
  ///
  /// which results in borrowing errors from the compiler:
  /// > cannot borrow `vec` as mutable more than once at a time
  ///
  /// # Safety
  ///
  /// When working with uninitialized storage, it is required that the user call `set_len()` appropriately
  /// to readjust the length of the vector. This ensures that newly inserted elements are dropped when
  /// needed.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::MiniVec::<String>::with_capacity(4);
  /// vec.push(String::from("hello"));
  /// vec.push(String::from("world"));
  ///
  /// let (_, uninit) = vec.split_at_spare_mut();
  /// uninit[0] = core::mem::MaybeUninit::<String>::new(String::from("rawr"));
  /// uninit[1] = core::mem::MaybeUninit::<String>::new(String::from("RAWR"));
  ///
  /// unsafe { vec.set_len(4) };
  ///
  /// assert_eq!(vec[2], "rawr");
  /// assert_eq!(vec[3], "RAWR");
  /// ```
  ///
  pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [core::mem::MaybeUninit<T>]) {
    let capacity = self.capacity();
    if capacity == 0 {
      return (&mut [], &mut []);
    }

    let (p, len) = (self.as_mut_ptr(), self.len());

    let init = unsafe { core::slice::from_raw_parts_mut(p, len) };
    let uninit = unsafe {
      core::slice::from_raw_parts_mut(
        p.add(len).cast::<core::mem::MaybeUninit<T>>(),
        capacity - len,
      )
    };

    (init, uninit)
  }

  /// `split_off` will segment the vector into two, returning the new segment to the user.
  ///
  /// After this function call, `self` will have kept elements `[0, at)` while the new segment
  /// contains elements `[at, len)`.
  ///
  /// # Panics
  ///
  /// Panics if `at` is greater than [`len()`](MiniVec::len).
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
  ///
  /// let tail = vec.split_off(7);
  ///
  /// assert_eq!(vec, [0, 1, 2, 3, 4, 5, 6]);
  /// assert_eq!(tail, [7, 8, 9, 10]);
  /// ```
  ///
  #[allow(clippy::ptr_as_ptr)]
  pub fn split_off(&mut self, at: usize) -> MiniVec<T> {
    let len = self.len();
    if at > len {
      panic!("`at` split index (is {}) should be <= len (is {})", at, len);
    }

    if len == 0 {
      let other = if self.capacity() > 0 {
        MiniVec::with_capacity(self.capacity())
      } else {
        MiniVec::new()
      };

      return other;
    }

    if at == 0 {
      let orig_cap = self.capacity();

      let other = MiniVec {
        buf: self.buf,
        phantom: core::marker::PhantomData,
      };

      self.buf =
        unsafe { core::ptr::NonNull::<u8>::new_unchecked(&DEFAULT_U8 as *const u8 as *mut u8) };
      self.reserve_exact(orig_cap);

      return other;
    }

    let mut other = MiniVec::with_capacity(self.capacity());

    unsafe {
      self.set_len(at);
      other.set_len(len - at);
    }

    let src = unsafe { self.as_ptr().add(at) };
    let dst = other.as_mut_ptr();
    let count = len - at;

    unsafe {
      core::ptr::copy_nonoverlapping(src, dst, count);
    }

    other
  }

  /// `swap_remove` removes the element located at `index` and replaces it with the last value
  /// in the vector, returning the removed element to the caller.
  ///
  /// # Panics
  ///
  /// Panics if `index >= len()`.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2, 3, 4];
  ///
  /// let num = vec.swap_remove(0);
  /// assert_eq!(num, 1);
  /// assert_eq!(vec, [4, 2, 3]);
  /// ```
  ///
  pub fn swap_remove(&mut self, index: usize) -> T {
    let len = self.len();
    if index >= len {
      panic!(
        "swap_remove index (is {}) should be < len (is {})",
        index, len
      );
    }

    let src = unsafe { core::ptr::read(self.as_ptr().add(len - 1)) };
    self.header_mut().len -= 1;

    let dst = unsafe { self.as_mut_ptr().add(index) };
    unsafe { core::ptr::replace(dst, src) }
  }

  /// `truncate` adjusts the length of the vector to be `len`. If `len` is greater than or equal
  /// to the current length no operation is performed. Otherwise, the vector's length is
  /// readjusted to `len` and any remaining elements to the right of `len` are dropped.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2, 3, 4, 5];
  /// vec.truncate(2);
  ///
  /// assert_eq!(vec, [1, 2]);
  /// ```
  ///
  pub fn truncate(&mut self, len: usize) {
    let self_len = self.len();

    if len >= self_len {
      return;
    }

    self.header_mut().len = len;

    if !core::mem::needs_drop::<T>() {
      return;
    }

    let s = unsafe { core::slice::from_raw_parts_mut(self.data().add(len), self_len - len) };

    unsafe {
      core::ptr::drop_in_place(s);
    }
  }

  /// `with_alignment` is similar to its counterpart [`with_capacity`](MiniVec::with_capacity)
  /// except it takes an additional argument: the alignment to use for the allocation.
  ///
  /// The supplied alignment must be a number divisible by 2 and larger than or equal to the
  /// result of `core::mem::align_of::<*const ()>()`.
  ///
  /// The internal allocation used to store the header information for `MiniVec` is aligned to the
  /// supplied value and then sufficient padding is inserted such that the result of [`as_ptr()`](MiniVec::as_ptr)
  /// will always be aligned as well.
  ///
  /// This is useful for creating over-aligned allocations for primitive types such as when using
  /// `SIMD` intrinsics. For example, some vectorized floating point loads and stores _must_ be
  /// aligned on a 32 byte boundary. `with_alignment` is intended to make this possible with a
  /// `Vec`-like container.
  ///
  /// # Errors
  ///
  /// Returns a `Result` that contains either `MiniVec<T>` or a `LayoutErr`.
  ///
  /// # Example
  /// ```
  /// # #[cfg(not(miri))]
  /// # fn main() {
  /// #[cfg(target_arch = "x86")]
  /// use std::arch::x86::*;
  /// #[cfg(target_arch = "x86_64")]
  /// use std::arch::x86_64::*;
  ///
  /// let alignment = 32;
  /// let num_elems = 2048;
  /// let mut v1 = minivec::MiniVec::<f32>::with_alignment(num_elems, alignment).unwrap();
  /// let mut v2 = minivec::MiniVec::<f32>::with_alignment(num_elems, alignment).unwrap();
  ///
  /// v1
  ///     .spare_capacity_mut()
  ///     .iter_mut()
  ///     .zip(v2.spare_capacity_mut().iter_mut())
  ///     .enumerate()
  ///     .for_each(|(idx, (x1, x2))| {
  ///         *x1 = core::mem::MaybeUninit::new(idx as f32);
  ///         *x2 = core::mem::MaybeUninit::new(idx as f32);
  ///     });
  ///
  /// unsafe {
  ///     v1.set_len(num_elems);
  ///     v2.set_len(num_elems);
  ///
  ///     // use vectorization to speed up the summation of two vectors
  ///     //
  ///     for idx in 0..(num_elems / 8) {
  ///         let offset = idx * 8;
  ///
  ///         let p = v1.as_mut_ptr().add(offset);
  ///         let q = v2.as_mut_ptr().add(offset);
  ///
  ///         let r1 = _mm256_load_ps(p);
  ///         let r2 = _mm256_load_ps(q);
  ///         let r3 = _mm256_add_ps(r1, r2);
  ///
  ///         _mm256_store_ps(p, r3);
  ///     }
  /// }
  ///
  /// v1
  ///     .iter()
  ///     .enumerate()
  ///     .for_each(|(idx, v)| {
  ///         assert_eq!(*v, idx as f32 * 2.0);
  ///     });
  /// # }
  ///
  /// # #[cfg(miri)]
  /// # fn main() {}
  /// ```
  ///
  pub fn with_alignment(capacity: usize, alignment: usize) -> Result<MiniVec<T>, LayoutErr> {
    if alignment < max_align::<T>() {
      return Err(LayoutErr::AlignmentTooSmall);
    }

    if alignment % 2 > 0 {
      return Err(LayoutErr::AlignmentNotDivisibleByTwo);
    }

    let mut v = MiniVec::new();
    v.grow(capacity, alignment);
    Ok(v)
  }

  /// `with_capacity` is a static factory function that returns a `MiniVec` that contains space
  /// for `capacity` elements.
  ///
  /// This function is logically equivalent to calling [`.reserve_exact()`](MiniVec::reserve_exact)
  /// on a vector with `0` capacity.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::MiniVec::<i32>::with_capacity(128);
  ///
  /// assert_eq!(vec.len(), 0);
  /// assert_eq!(vec.capacity(), 128);
  /// ```
  ///
  #[must_use]
  pub fn with_capacity(capacity: usize) -> MiniVec<T> {
    let mut v = MiniVec::new();
    v.reserve_exact(capacity);
    v
  }

  #[doc(hidden)]
  pub unsafe fn unsafe_write(&mut self, idx: usize, elem: T) {
    self.data().add(idx).write(elem);
  }
}

impl<T: Clone> MiniVec<T> {
  /// `extend_from_slice` will append each element from `elems` in a left-to-right order, cloning
  /// each value in `elems`.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2];
  ///
  /// let s : &[i32] = &[3, 4];
  ///
  /// vec.extend_from_slice(s);
  ///
  /// assert_eq!(vec, [1, 2, 3, 4]);
  /// ```
  ///
  pub fn extend_from_slice(&mut self, elems: &[T]) {
    self.reserve(elems.len());
    for x in elems {
      self.push((*x).clone());
    }
  }

  /// `extend_from_within` clones the elements contained in the provided `Range` and appends them
  /// to the end of the vector, allocating extra space as required.
  ///
  /// # Panics
  ///
  /// Panics if the provided range exceeds the bounds of `[0, len)`.
  ///
  /// # Example
  ///
  /// ```
  /// let mut vec = minivec::mini_vec![1, 2, 3, 4, 5];
  /// vec.extend_from_within(1..4);
  ///
  /// assert_eq!(vec, [1, 2, 3, 4, 5, 2, 3, 4]);
  /// ```
  ///
  pub fn extend_from_within<Range>(&mut self, range: Range)
  where
    Range: core::ops::RangeBounds<usize>,
  {
    struct PanicGuard<'a, T>
    where
      T: Clone,
    {
      count: usize,
      start_idx: usize,
      end_idx: usize,
      vec: &'a mut MiniVec<T>,
    }

    impl<'a, T> Drop for PanicGuard<'a, T>
    where
      T: Clone,
    {
      fn drop(&mut self) {
        unsafe {
          self.vec.set_len(self.vec.len() + self.count);
        }
      }
    }

    impl<'a, 'b, T> PanicGuard<'a, T>
    where
      T: Clone,
    {
      fn extend(&mut self) {
        let count = &mut self.count;
        let (init, uninit) = self.vec.split_at_spare_mut();
        init[self.start_idx..self.end_idx]
          .iter()
          .cloned()
          .zip(uninit.iter_mut())
          .for_each(|(val, p)| {
            *p = core::mem::MaybeUninit::new(val);
            *count += 1;
          });
      }
    }

    let len = self.len();

    let start_idx = match range.start_bound() {
      core::ops::Bound::Included(&n) => n,
      core::ops::Bound::Excluded(&n) => {
        n.checked_add(1).expect("Start idx exceeded numeric limits")
      }
      core::ops::Bound::Unbounded => 0,
    };

    let end_idx = match range.end_bound() {
      core::ops::Bound::Included(&n) => n.checked_add(1).expect("End idx exceeded numeric limits"),
      core::ops::Bound::Excluded(&n) => n,
      core::ops::Bound::Unbounded => len,
    };

    if start_idx > end_idx {
      panic!(
        "start extend_from_within index (is {}) should be <= end (is {})",
        start_idx, end_idx
      );
    }

    if end_idx > len {
      panic!(
        "end extend_from_within index (is {}) should be <= len (is {})",
        end_idx, len
      );
    }

    if len == 0 {
      return;
    }

    self.reserve(end_idx - start_idx);

    let mut guard = PanicGuard {
      count: 0,
      start_idx,
      end_idx,
      vec: self,
    };

    guard.extend();
  }
}

impl<T> MiniVec<core::mem::MaybeUninit<T>> {
  /// `assume_minivec_init` is a helper designed to make working with uninitialized memory more ergonomic.
  ///
  /// # Safety
  /// Whatever length the current `MiniVec` has, it is consumed and then returned to the caller as a `MiniVec<T>` thus
  /// making the function `unsafe` as it relies on the caller to uphold length invariants.
  ///
  /// # Example
  ///
  /// ```
  /// let mut buf = minivec::mini_vec![core::mem::MaybeUninit::<u8>::uninit(); 512];
  /// buf
  ///   .iter_mut()
  ///   .for_each(|v| *v = core::mem::MaybeUninit::new(137));
  ///
  /// unsafe { buf.set_len(512) };
  ///
  /// let bytes = unsafe { buf.assume_minivec_init() };
  /// assert_eq!(bytes[0], 137);
  /// assert_eq!(bytes[511], 137);
  /// ```
  ///
  #[must_use]
  pub unsafe fn assume_minivec_init(self) -> MiniVec<T> {
    let (ptr, len, cap) = self.into_raw_parts();
    MiniVec::<T>::from_raw_parts(ptr.cast::<T>(), len, cap)
  }
}

unsafe impl<T: core::marker::Send> core::marker::Send for MiniVec<T> {}
unsafe impl<T: core::marker::Sync> core::marker::Sync for MiniVec<T> {}

/// `mini_vec!` is a macro similar in spirit to the stdlib's `vec!`.
///
/// It supports the creation of `MiniVec` with:
/// * `mini_vec!()`
/// * `mini_vec![val1, val2, val3, ...]`
/// * `mini_vec![val; num_elems]`
///
#[macro_export]
macro_rules! mini_vec {
    () => (
        $crate::MiniVec::new()
    );
    ($elem:expr; $n:expr) => {
        {
            let len = $n;
            let mut tmp = $crate::MiniVec::with_capacity(len);

            for idx in 0..len {
                unsafe { tmp.unsafe_write(idx, $elem.clone()) };
            }


            if len > 0 {
                unsafe { tmp.set_len(len) };
            }

            tmp
        }
     };
    ($($x:expr),+ $(,)?) => {
        {
            let mut tmp = $crate::MiniVec::new();
            $(
                tmp.push($x);
            )*
            tmp
        }
    };
}