1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
// Miniscript
// Written in 2019 by
//     Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! Miniscript and Output Descriptors
//!
//! # Introduction
//! ## Bitcoin Script
//!
//! In Bitcoin, spending policies are defined and enforced by means of a
//! stack-based programming language known as Bitcoin Script. While this
//! language appears to be designed with tractable analysis in mind (e.g.
//! there are no looping or jumping constructions), in practice this is
//! extremely difficult. As a result, typical wallet software supports only
//! a small set of script templates, cannot interoperate with other similar
//! software, and each wallet contains independently written ad-hoc manually
//! verified code to handle these templates. Users who require more complex
//! spending policies, or who want to combine signing infrastructure which
//! was not explicitly designed to work together, are simply out of luck.
//!
//! ## Miniscript
//!
//! Miniscript is an alternative to Bitcoin Script which eliminates these
//! problems. It can be efficiently and simply encoded as Script to ensure
//! that it works on the Bitcoin blockchain, but its design is very different.
//! Essentially, a Miniscript is a monotone function (tree of ANDs, ORs and
//! thresholds) of signature requirements, hash preimage requirements, and
//! timelocks.
//!
//! A [full description of Miniscript is available here](http://bitcoin.sipa.be/miniscript/miniscript.html).
//!
//! Miniscript also admits a more human-readable encoding.
//!
//! ## Output Descriptors
//!
//! While spending policies in Bitcoin are entirely defined by Script; there
//! are multiple ways of embedding these Scripts in transaction outputs; for
//! example, P2SH or Segwit v0. These different embeddings are expressed by
//! *Output Descriptors*, [which are described here](https://github.com/bitcoin/bitcoin/blob/master/doc/descriptors.md)
//!
//! # Examples
//!
//! ## Deriving an address from a descriptor
//!
//! ```rust
//! extern crate bitcoin;
//! extern crate miniscript;
//!
//! use std::str::FromStr;
//! use miniscript::{DescriptorTrait};
//!
//! fn main() {
//!     let desc = miniscript::Descriptor::<
//!         bitcoin::PublicKey,
//!     >::from_str("\
//!         sh(wsh(or_d(\
//!             c:pk_k(020e0338c96a8870479f2396c373cc7696ba124e8635d41b0ea581112b67817261),\
//!             c:pk_k(0250863ad64a87ae8a2fe83c1af1a8403cb53f53e486d8511dad8a04887e5b2352)\
//!         )))\
//!     ").unwrap();
//!
//!     // Derive the P2SH address
//!     assert_eq!(
//!         desc.address(bitcoin::Network::Bitcoin).unwrap().to_string(),
//!         "3CJxbQBfWAe1ZkKiGQNEYrioV73ZwvBWns"
//!     );
//!
//!     // Check whether the descriptor is safe
//!     // This checks whether all spend paths are accessible in bitcoin network.
//!     // It maybe possible that some of the spend require more than 100 elements in Wsh scripts
//!     // Or they contain a combination of timelock and heightlock.
//!     assert!(desc.sanity_check().is_ok());
//!
//!     // Estimate the satisfaction cost
//!     assert_eq!(desc.max_satisfaction_weight().unwrap(), 293);
//! }
//! ```
//!
//!
#![allow(bare_trait_objects)]
#![cfg_attr(all(test, feature = "unstable"), feature(test))]
// Coding conventions
#![deny(unsafe_code)]
#![deny(non_upper_case_globals)]
#![deny(non_camel_case_types)]
#![deny(non_snake_case)]
#![deny(unused_mut)]
#![deny(dead_code)]
#![deny(unused_imports)]
#![deny(missing_docs)]

pub extern crate bitcoin;
#[cfg(feature = "serde")]
pub extern crate serde;
#[cfg(all(test, feature = "unstable"))]
extern crate test;

#[macro_use]
mod macros;

pub mod descriptor;
pub mod expression;
pub mod interpreter;
pub mod miniscript;
pub mod policy;
pub mod psbt;

mod util;

use std::str::FromStr;
use std::{error, fmt, hash, str};

use bitcoin::blockdata::{opcodes, script};
use bitcoin::hashes::{hash160, sha256, Hash};

pub use descriptor::{Descriptor, DescriptorPublicKey, DescriptorTrait};
pub use interpreter::Interpreter;
pub use miniscript::context::{BareCtx, Legacy, ScriptContext, Segwitv0};
pub use miniscript::decode::Terminal;
pub use miniscript::satisfy::{BitcoinSig, Satisfier};
pub use miniscript::Miniscript;

///Public key trait which can be converted to Hash type
pub trait MiniscriptKey: Clone + Eq + Ord + fmt::Debug + fmt::Display + hash::Hash {
    /// Check if the publicKey is uncompressed. The default
    /// implementation returns false
    fn is_uncompressed(&self) -> bool {
        false
    }
    /// The associated Hash type with the publicKey
    type Hash: Clone + Eq + Ord + fmt::Display + fmt::Debug + hash::Hash;

    /// Converts an object to PublicHash
    fn to_pubkeyhash(&self) -> Self::Hash;

    /// Computes the size of a public key when serialized in a script,
    /// including the length bytes
    fn serialized_len(&self) -> usize {
        if self.is_uncompressed() {
            66
        } else {
            34
        }
    }
}

impl MiniscriptKey for bitcoin::PublicKey {
    /// `is_uncompressed` returns true only for
    /// bitcoin::Publickey type if the underlying key is uncompressed.
    fn is_uncompressed(&self) -> bool {
        !self.compressed
    }

    type Hash = hash160::Hash;

    fn to_pubkeyhash(&self) -> Self::Hash {
        let mut engine = hash160::Hash::engine();
        self.write_into(&mut engine).expect("engines don't error");
        hash160::Hash::from_engine(engine)
    }
}

impl MiniscriptKey for String {
    type Hash = String;

    fn to_pubkeyhash(&self) -> Self::Hash {
        format!("{}", &self)
    }
}

/// Trait describing public key types which can be converted to bitcoin pubkeys
pub trait ToPublicKey: MiniscriptKey {
    /// Converts an object to a public key
    fn to_public_key(&self) -> bitcoin::PublicKey;

    /// Converts a hashed version of the public key to a `hash160` hash.
    ///
    /// This method must be consistent with `to_public_key`, in the sense
    /// that calling `MiniscriptKey::to_pubkeyhash` followed by this function
    /// should give the same result as calling `to_public_key` and hashing
    /// the result directly.
    fn hash_to_hash160(hash: &<Self as MiniscriptKey>::Hash) -> hash160::Hash;
}

impl ToPublicKey for bitcoin::PublicKey {
    fn to_public_key(&self) -> bitcoin::PublicKey {
        *self
    }

    fn hash_to_hash160(hash: &hash160::Hash) -> hash160::Hash {
        *hash
    }
}

/// Dummy key which de/serializes to the empty string; useful sometimes for testing
#[derive(Copy, Clone, PartialOrd, Ord, PartialEq, Eq, Debug)]
pub struct DummyKey;

impl str::FromStr for DummyKey {
    type Err = &'static str;
    fn from_str(x: &str) -> Result<DummyKey, &'static str> {
        if x.is_empty() {
            Ok(DummyKey)
        } else {
            Err("non empty dummy key")
        }
    }
}

impl MiniscriptKey for DummyKey {
    type Hash = DummyKeyHash;

    fn to_pubkeyhash(&self) -> Self::Hash {
        DummyKeyHash
    }
}

impl hash::Hash for DummyKey {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        "DummyKey".hash(state);
    }
}

impl fmt::Display for DummyKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str("")
    }
}

impl ToPublicKey for DummyKey {
    fn to_public_key(&self) -> bitcoin::PublicKey {
        bitcoin::PublicKey::from_str(
            "0250863ad64a87ae8a2fe83c1af1a8403cb53f53e486d8511dad8a04887e5b2352",
        )
        .unwrap()
    }

    fn hash_to_hash160(_: &DummyKeyHash) -> hash160::Hash {
        hash160::Hash::from_str("f54a5851e9372b87810a8e60cdd2e7cfd80b6e31").unwrap()
    }
}

/// Dummy keyhash which de/serializes to the empty string; useful sometimes for testing
#[derive(Copy, Clone, PartialOrd, Ord, PartialEq, Eq, Debug)]
pub struct DummyKeyHash;

impl str::FromStr for DummyKeyHash {
    type Err = &'static str;
    fn from_str(x: &str) -> Result<DummyKeyHash, &'static str> {
        if x.is_empty() {
            Ok(DummyKeyHash)
        } else {
            Err("non empty dummy key")
        }
    }
}

impl fmt::Display for DummyKeyHash {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str("")
    }
}

impl hash::Hash for DummyKeyHash {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        "DummyKeyHash".hash(state);
    }
}

/// Convert a descriptor using abstract keys to one using specific keys
/// This will panic if translatefpk returns an uncompressed key when
/// converting to a Segwit descriptor. To prevent this panic, ensure
/// translatefpk returns an error in this case instead.
pub trait TranslatePk<P: MiniscriptKey, Q: MiniscriptKey> {
    /// The associated output type. This must be Self<Q>
    type Output;

    /// Translate a struct from one Generic to another where the
    /// translation for Pk is provided by translatefpk, and translation for
    /// PkH is provided by translatefpkh
    fn translate_pk<Fpk, Fpkh, E>(
        &self,
        translatefpk: Fpk,
        translatefpkh: Fpkh,
    ) -> Result<Self::Output, E>
    where
        Fpk: FnMut(&P) -> Result<Q, E>,
        Fpkh: FnMut(&P::Hash) -> Result<Q::Hash, E>;

    /// Calls `translate_pk` with conversion functions that cannot fail
    fn translate_pk_infallible<Fpk, Fpkh>(
        &self,
        mut translatefpk: Fpk,
        mut translatefpkh: Fpkh,
    ) -> Self::Output
    where
        Fpk: FnMut(&P) -> Q,
        Fpkh: FnMut(&P::Hash) -> Q::Hash,
    {
        self.translate_pk::<_, _, ()>(|pk| Ok(translatefpk(pk)), |pkh| Ok(translatefpkh(pkh)))
            .expect("infallible translation function")
    }
}

/// Variant of `TranslatePk` where P and Q both have the same hash
/// type, and the hashes can be converted by just cloning them
pub trait TranslatePk1<P: MiniscriptKey, Q: MiniscriptKey<Hash = P::Hash>>:
    TranslatePk<P, Q>
{
    /// Translate a struct from one generic to another where the
    /// translation for Pk is provided by translatefpk
    fn translate_pk1<Fpk, E>(
        &self,
        translatefpk: Fpk,
    ) -> Result<<Self as TranslatePk<P, Q>>::Output, E>
    where
        Fpk: FnMut(&P) -> Result<Q, E>,
    {
        self.translate_pk(translatefpk, |h| Ok(h.clone()))
    }

    /// Translate a struct from one generic to another where the
    /// translation for Pk is provided by translatefpk
    fn translate_pk1_infallible<Fpk: FnMut(&P) -> Q>(
        &self,
        translatefpk: Fpk,
    ) -> <Self as TranslatePk<P, Q>>::Output {
        self.translate_pk_infallible(translatefpk, P::Hash::clone)
    }
}
impl<P: MiniscriptKey, Q: MiniscriptKey<Hash = P::Hash>, T: TranslatePk<P, Q>> TranslatePk1<P, Q>
    for T
{
}

/// Variant of `TranslatePk` where P's hash is P, so the hashes
/// can be converted by reusing the key-conversion function
pub trait TranslatePk2<P: MiniscriptKey<Hash = P>, Q: MiniscriptKey>: TranslatePk<P, Q> {
    /// Translate a struct from one generic to another where the
    /// translation for Pk is provided by translatefpk
    fn translate_pk2<Fpk: Fn(&P) -> Result<Q, E>, E>(
        &self,
        translatefpk: Fpk,
    ) -> Result<<Self as TranslatePk<P, Q>>::Output, E> {
        self.translate_pk(&translatefpk, |h| {
            translatefpk(h).map(|q| q.to_pubkeyhash())
        })
    }

    /// Translate a struct from one generic to another where the
    /// translation for Pk is provided by translatefpk
    fn translate_pk2_infallible<Fpk: Fn(&P) -> Q>(
        &self,
        translatefpk: Fpk,
    ) -> <Self as TranslatePk<P, Q>>::Output {
        self.translate_pk_infallible(&translatefpk, |h| translatefpk(h).to_pubkeyhash())
    }
}
impl<P: MiniscriptKey<Hash = P>, Q: MiniscriptKey, T: TranslatePk<P, Q>> TranslatePk2<P, Q> for T {}

/// Variant of `TranslatePk` where Q's hash is `hash160` so we can
/// derive hashes by calling `hash_to_hash160`
pub trait TranslatePk3<P: MiniscriptKey + ToPublicKey, Q: MiniscriptKey<Hash = hash160::Hash>>:
    TranslatePk<P, Q>
{
    /// Translate a struct from one generic to another where the
    /// translation for Pk is provided by translatefpk
    fn translate_pk3<Fpk, E>(
        &self,
        translatefpk: Fpk,
    ) -> Result<<Self as TranslatePk<P, Q>>::Output, E>
    where
        Fpk: FnMut(&P) -> Result<Q, E>,
    {
        self.translate_pk(translatefpk, |h| Ok(P::hash_to_hash160(h)))
    }

    /// Translate a struct from one generic to another where the
    /// translation for Pk is provided by translatefpk
    fn translate_pk3_infallible<Fpk: FnMut(&P) -> Q>(
        &self,
        translatefpk: Fpk,
    ) -> <Self as TranslatePk<P, Q>>::Output {
        self.translate_pk_infallible(translatefpk, P::hash_to_hash160)
    }
}
impl<
        P: MiniscriptKey + ToPublicKey,
        Q: MiniscriptKey<Hash = hash160::Hash>,
        T: TranslatePk<P, Q>,
    > TranslatePk3<P, Q> for T
{
}

/// Either a key or a keyhash
pub enum ForEach<'a, Pk: MiniscriptKey + 'a> {
    /// A key
    Key(&'a Pk),
    /// A keyhash
    Hash(&'a Pk::Hash),
}

impl<'a, Pk: MiniscriptKey<Hash = Pk>> ForEach<'a, Pk> {
    /// Convenience method to avoid distinguishing between keys and hashes when these are the same type
    pub fn as_key(&self) -> &'a Pk {
        match *self {
            ForEach::Key(ref_key) => ref_key,
            ForEach::Hash(ref_key) => ref_key,
        }
    }
}

/// Trait describing the ability to iterate over every key
pub trait ForEachKey<Pk: MiniscriptKey> {
    /// Run a predicate on every key in the descriptor, returning whether
    /// the predicate returned true for every key
    fn for_each_key<'a, F: FnMut(ForEach<'a, Pk>) -> bool>(&'a self, pred: F) -> bool
    where
        Pk: 'a,
        Pk::Hash: 'a;

    /// Run a predicate on every key in the descriptor, returning whether
    /// the predicate returned true for any key
    fn for_any_key<'a, F: FnMut(ForEach<'a, Pk>) -> bool>(&'a self, mut pred: F) -> bool
    where
        Pk: 'a,
        Pk::Hash: 'a,
    {
        !self.for_each_key(|key| !pred(key))
    }
}

/// Miniscript

#[derive(Debug)]
pub enum Error {
    /// Opcode appeared which is not part of the script subset
    InvalidOpcode(opcodes::All),
    /// Some opcode occurred followed by `OP_VERIFY` when it had
    /// a `VERIFY` version that should have been used instead
    NonMinimalVerify(miniscript::lex::Token),
    /// Push was illegal in some context
    InvalidPush(Vec<u8>),
    /// rust-bitcoin script error
    Script(script::Error),
    /// A `CHECKMULTISIG` opcode was preceded by a number > 20
    CmsTooManyKeys(u32),
    /// Encountered unprintable character in descriptor
    Unprintable(u8),
    /// expected character while parsing descriptor; didn't find one
    ExpectedChar(char),
    /// While parsing backward, hit beginning of script
    UnexpectedStart,
    /// Got something we were not expecting
    Unexpected(String),
    /// Name of a fragment contained `:` multiple times
    MultiColon(String),
    /// Name of a fragment contained `@` multiple times
    MultiAt(String),
    /// Name of a fragment contained `@` but we were not parsing an OR
    AtOutsideOr(String),
    /// Fragment was an `and_v(_, true)` which should be written as `t:`
    NonCanonicalTrue,
    /// Fragment was an `or_i(_, false)` or `or_i(false,_)` which should be written as `u:` or `l:`
    NonCanonicalFalse,
    /// Encountered a `l:0` which is syntactically equal to `u:0` except stupid
    LikelyFalse,
    /// Encountered a wrapping character that we don't recognize
    UnknownWrapper(char),
    /// Parsed a miniscript and the result was not of type T
    NonTopLevel(String),
    /// Parsed a miniscript but there were more script opcodes after it
    Trailing(String),
    /// Failed to parse a push as a public key
    BadPubkey(bitcoin::util::key::Error),
    /// Could not satisfy a script (fragment) because of a missing hash preimage
    MissingHash(sha256::Hash),
    /// Could not satisfy a script (fragment) because of a missing signature
    MissingSig(bitcoin::PublicKey),
    /// Could not satisfy, relative locktime not met
    RelativeLocktimeNotMet(u32),
    /// Could not satisfy, absolute locktime not met
    AbsoluteLocktimeNotMet(u32),
    /// General failure to satisfy
    CouldNotSatisfy,
    /// Typechecking failed
    TypeCheck(String),
    /// General error in creating descriptor
    BadDescriptor(String),
    /// Forward-secp related errors
    Secp(bitcoin::secp256k1::Error),
    #[cfg(feature = "compiler")]
    /// Compiler related errors
    CompilerError(policy::compiler::CompilerError),
    /// Errors related to policy
    PolicyError(policy::concrete::PolicyError),
    /// Errors related to lifting
    LiftError(policy::LiftError),
    /// Forward script context related errors
    ContextError(miniscript::context::ScriptContextError),
    /// Recursion depth exceeded when parsing policy/miniscript from string
    MaxRecursiveDepthExceeded,
    /// Script size too large
    ScriptSizeTooLarge,
    /// Anything but c:pk(key) (P2PK), c:pk_h(key) (P2PKH), and thresh_m(k,...)
    /// up to n=3 is invalid by standardness (bare)
    NonStandardBareScript,
    /// Analysis Error
    AnalysisError(miniscript::analyzable::AnalysisError),
    /// Miniscript is equivalent to false. No possible satisfaction
    ImpossibleSatisfaction,
    /// Bare descriptors don't have any addresses
    BareDescriptorAddr,
}

#[doc(hidden)]
impl<Pk, Ctx> From<miniscript::types::Error<Pk, Ctx>> for Error
where
    Pk: MiniscriptKey,
    Ctx: ScriptContext,
{
    fn from(e: miniscript::types::Error<Pk, Ctx>) -> Error {
        Error::TypeCheck(e.to_string())
    }
}

#[doc(hidden)]
impl From<policy::LiftError> for Error {
    fn from(e: policy::LiftError) -> Error {
        Error::LiftError(e)
    }
}

#[doc(hidden)]
impl From<miniscript::context::ScriptContextError> for Error {
    fn from(e: miniscript::context::ScriptContextError) -> Error {
        Error::ContextError(e)
    }
}

#[doc(hidden)]
impl From<miniscript::analyzable::AnalysisError> for Error {
    fn from(e: miniscript::analyzable::AnalysisError) -> Error {
        Error::AnalysisError(e)
    }
}

#[doc(hidden)]
impl From<bitcoin::secp256k1::Error> for Error {
    fn from(e: bitcoin::secp256k1::Error) -> Error {
        Error::Secp(e)
    }
}

fn errstr(s: &str) -> Error {
    Error::Unexpected(s.to_owned())
}

impl error::Error for Error {
    fn cause(&self) -> Option<&error::Error> {
        match *self {
            Error::BadPubkey(ref e) => Some(e),
            _ => None,
        }
    }
}

// https://github.com/sipa/miniscript/pull/5 for discussion on this number
const MAX_RECURSION_DEPTH: u32 = 402;
// https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
const MAX_SCRIPT_SIZE: u32 = 10000;

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Error::InvalidOpcode(op) => write!(f, "invalid opcode {}", op),
            Error::NonMinimalVerify(tok) => write!(f, "{} VERIFY", tok),
            Error::InvalidPush(ref push) => write!(f, "invalid push {:?}", push), // TODO hexify this
            Error::Script(ref e) => fmt::Display::fmt(e, f),
            Error::CmsTooManyKeys(n) => write!(f, "checkmultisig with {} keys", n),
            Error::Unprintable(x) => write!(f, "unprintable character 0x{:02x}", x),
            Error::ExpectedChar(c) => write!(f, "expected {}", c),
            Error::UnexpectedStart => f.write_str("unexpected start of script"),
            Error::Unexpected(ref s) => write!(f, "unexpected «{}»", s),
            Error::MultiColon(ref s) => write!(f, "«{}» has multiple instances of «:»", s),
            Error::MultiAt(ref s) => write!(f, "«{}» has multiple instances of «@»", s),
            Error::AtOutsideOr(ref s) => write!(f, "«{}» contains «@» in non-or() context", s),
            Error::NonCanonicalTrue => f.write_str("Use «t:X» rather than «and_v(X,true())»"),
            Error::NonCanonicalFalse => {
                f.write_str("Use «u:X» «l:X» rather than «or_i(X,false)» «or_i(false,X)»")
            }
            Error::LikelyFalse => write!(f, "0 is not very likely (use «u:0»)"),
            Error::UnknownWrapper(ch) => write!(f, "unknown wrapper «{}:»", ch),
            Error::NonTopLevel(ref s) => write!(f, "non-T miniscript: {}", s),
            Error::Trailing(ref s) => write!(f, "trailing tokens: {}", s),
            Error::MissingHash(ref h) => write!(f, "missing preimage of hash {}", h),
            Error::MissingSig(ref pk) => write!(f, "missing signature for key {:?}", pk),
            Error::RelativeLocktimeNotMet(n) => {
                write!(f, "required relative locktime CSV of {} blocks, not met", n)
            }
            Error::AbsoluteLocktimeNotMet(n) => write!(
                f,
                "required absolute locktime CLTV of {} blocks, not met",
                n
            ),
            Error::CouldNotSatisfy => f.write_str("could not satisfy"),
            Error::BadPubkey(ref e) => fmt::Display::fmt(e, f),
            Error::TypeCheck(ref e) => write!(f, "typecheck: {}", e),
            Error::BadDescriptor(ref e) => write!(f, "Invalid descriptor: {}", e),
            Error::Secp(ref e) => fmt::Display::fmt(e, f),
            Error::ContextError(ref e) => fmt::Display::fmt(e, f),
            #[cfg(feature = "compiler")]
            Error::CompilerError(ref e) => fmt::Display::fmt(e, f),
            Error::PolicyError(ref e) => fmt::Display::fmt(e, f),
            Error::LiftError(ref e) => fmt::Display::fmt(e, f),
            Error::MaxRecursiveDepthExceeded => write!(
                f,
                "Recursive depth over {} not permitted",
                MAX_RECURSION_DEPTH
            ),
            Error::ScriptSizeTooLarge => write!(
                f,
                "Standardness rules imply bitcoin than {} bytes",
                MAX_SCRIPT_SIZE
            ),
            Error::NonStandardBareScript => write!(
                f,
                "Anything but c:pk(key) (P2PK), c:pk_h(key) (P2PKH), and thresh_m(k,...) \
                up to n=3 is invalid by standardness (bare).
                "
            ),
            Error::AnalysisError(ref e) => e.fmt(f),
            Error::ImpossibleSatisfaction => write!(f, "Impossible to satisfy Miniscript"),
            Error::BareDescriptorAddr => write!(f, "Bare descriptors don't have address"),
        }
    }
}

#[doc(hidden)]
#[cfg(feature = "compiler")]
impl From<policy::compiler::CompilerError> for Error {
    fn from(e: policy::compiler::CompilerError) -> Error {
        Error::CompilerError(e)
    }
}

#[doc(hidden)]
impl From<policy::concrete::PolicyError> for Error {
    fn from(e: policy::concrete::PolicyError) -> Error {
        Error::PolicyError(e)
    }
}

/// The size of an encoding of a number in Script
pub fn script_num_size(n: usize) -> usize {
    match n {
        n if n <= 0x10 => 1,      // OP_n
        n if n < 0x80 => 2,       // OP_PUSH1 <n>
        n if n < 0x8000 => 3,     // OP_PUSH2 <n>
        n if n < 0x800000 => 4,   // OP_PUSH3 <n>
        n if n < 0x80000000 => 5, // OP_PUSH4 <n>
        _ => 6,                   // OP_PUSH5 <n>
    }
}

/// Returns the size of the smallest push opcode used to push a given number of bytes onto the stack
///
/// For sizes ≤ 75, there are dedicated single-byte opcodes, so the push size is one. Otherwise,
/// if the size can fit into 1, 2 or 4 bytes, we use the `PUSHDATA{1,2,4}` opcode respectively,
/// followed by the actual size encoded in that many bytes.
fn push_opcode_size(script_size: usize) -> usize {
    if script_size < 76 {
        1
    } else if script_size < 0x100 {
        2
    } else if script_size < 0x10000 {
        3
    } else {
        5
    }
}

/// Helper function used by tests
#[cfg(test)]
fn hex_script(s: &str) -> bitcoin::Script {
    let v: Vec<u8> = bitcoin::hashes::hex::FromHex::from_hex(s).unwrap();
    bitcoin::Script::from(v)
}