1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#![deny(missing_docs)]
#![warn(missing_doc_code_examples)]

//! Message Worker is a library for Rust for the creation of event-listeners using futures and
//! streams. Notably, Message Worker supports non-sync and non-send (i.e. non-thread-safe)
//! contexts within listeners.
//!
//! This is a fairly low-level library that can be used to build a wide-array of stream-processing
//! and event-driven systems. It can even be used to build actor systems!
//!
//! This library must be used in a [tokio](https://tokio.rs/) runtime.
//!
//! # Examples
//! ## Printer
//! ```
//! use message_worker::non_blocking::listen;
//! use message_worker::{Context, ThreadSafeContext};
//! use std::sync::Arc;
//! use anyhow::Result;
//!
//! let mut rt = tokio::runtime::Runtime::new().unwrap();
//! rt.block_on(async {
//!     // We don't need any state for this example
//!     struct EmptyCtx;
//!     impl Context for EmptyCtx {} impl ThreadSafeContext for EmptyCtx {}
//!
//!     // Create our stream
//!     let source = tokio_stream::iter(vec![42, 0xff6900, 1337]);
//!
//!     // Create a listener that prints out each item in the stream
//!     async fn on_item(_ctx: Arc<EmptyCtx>, event: usize) -> Result<()> {
//!         eprintln!("{}", event);
//!         Ok(())
//!     }
//!
//!     // Start listening
//!     listen(source, move || EmptyCtx, on_item).await.unwrap();
//!
//!     /* Prints:
//!        42
//!        0xff6900
//!        1337
//!     */
//! })
//! ```
//!
//! ## Two-way communication
//! ```
//! use message_worker::non_blocking::listen;
//! use message_worker::{Context, ThreadSafeContext};
//! use std::sync::Arc;
//! use anyhow::Result;
//! use tokio::sync::RwLock;
//! use tokio_stream::StreamExt;
//! use tokio_stream::wrappers::ReceiverStream;
//!
//! let mut rt = tokio::runtime::Runtime::new().unwrap();
//! rt.block_on(async {
//!     struct BiCtx { output: RwLock<tokio::sync::mpsc::Sender<usize>> }
//!     impl Context for BiCtx {} impl ThreadSafeContext for BiCtx {}
//!
//!     // Create our stream
//!     let source = tokio_stream::iter(vec![42, 0xff6900, 1337]);
//!
//!     // Create a listener that outputs each item in the stream multiplied by two
//!     async fn on_item(ctx: Arc<BiCtx>, event: usize) -> Result<()> {
//!         let mut output = ctx.output.write().await;
//!         output.send(event * 2).await?; // Send the output
//!         Ok(())
//!     }
//!
//!     // Connect the number stream to `on_item`
//!     let (tx, rx) = tokio::sync::mpsc::channel::<usize>(3);
//!     listen(source, move || BiCtx {
//!         output: RwLock::new(tx)
//!     }, on_item);
//!
//!     let mut  rx = ReceiverStream::new(rx);
//!     assert_eq!(rx.next().await, Some(84));
//!     assert_eq!(rx.next().await, Some(0x1fed200));
//!     assert_eq!(rx.next().await, Some(2674));
//! })
//! ```
//!
//! ## Ping-pong (Actors)
//! ```
//! use message_worker::non_blocking::listen;
//! use message_worker::{Context, ThreadSafeContext};
//! use std::sync::Arc;
//! use anyhow::{Result, bail, anyhow};
//! use tokio::sync::RwLock;
//! use tokio_stream::wrappers::BroadcastStream;
//! use tokio_stream::StreamExt;
//!
//! let mut rt = tokio::runtime::Runtime::new().unwrap();
//! rt.block_on(async {
//!     struct ActorCtx { output: RwLock<tokio::sync::broadcast::Sender<Message>> }
//!     impl Context for ActorCtx {} impl ThreadSafeContext for ActorCtx {}
//!
//!     // Create our messages
//!     #[derive(Debug, Copy, Clone, Eq, PartialEq)]
//!     enum Message { Ping, Pong }
//!
//!
//!     // Create the ping actor
//!     async fn ping_actor(ctx: Arc<ActorCtx>, event: Message) -> Result<()> {
//!         match event {
//!             Message::Ping => bail!("I'm meant to be the pinger!"),
//!             Message::Pong =>
//!                 ctx.output
//!                     .write().await
//!                     .send(Message::Ping)
//!                     .map_err(|err| anyhow!(err))?
//!         };
//!         Ok(())
//!     }
//!
//!     // Create the pong actor
//!     async fn pong_actor(ctx: Arc<ActorCtx>, event: Message) -> Result<()> {
//!         match event {
//!             Message::Ping =>
//!                 ctx.output
//!                     .write().await
//!                     .send(Message::Pong)
//!                     .map_err(|err| anyhow!(err))?,
//!             Message::Pong => bail!("I'm meant to be the ponger!")
//!         };
//!         Ok(())
//!     }
//!
//!     // Create our initial stream
//!     let initial_ping = tokio_stream::iter(vec![Message::Ping]);
//!
//!     // Connect everything together
//!     let (tx_ping, mut rx_ping) = tokio::sync::broadcast::channel::<Message>(128);
//!     let (tx_pong, mut rx_pong) = tokio::sync::broadcast::channel::<Message>(128);
//!     let mut watch_pongs = BroadcastStream::new(tx_ping.clone().subscribe()).map(|msg| msg.unwrap());
//!     let mut watch_pings = BroadcastStream::new(tx_pong.clone().subscribe()).map(|msg| msg.unwrap());
//!
//!     // Start the ping actor
//!     listen(
//!         BroadcastStream::new(rx_ping).map(|msg| msg.unwrap()),
//!         move || ActorCtx { output: RwLock::new(tx_pong) },
//!         ping_actor
//!     );
//!
//!     // Start the pong actor
//!     listen(
//!         initial_ping.chain(BroadcastStream::new(rx_pong).map(|msg| msg.unwrap())),
//!         move || ActorCtx { output: RwLock::new(tx_ping) },
//!         pong_actor
//!     );
//!
//!     assert_eq!(watch_pings.next().await, Some(Message::Ping));
//!     assert_eq!(watch_pongs.next().await, Some(Message::Pong));
//!     assert_eq!(watch_pings.next().await, Some(Message::Ping));
//!     assert_eq!(watch_pongs.next().await, Some(Message::Pong));
//! })
//! ```
//!
//! ## The Wild Example (calling V8's C++ via Deno within an event listener to run JS)
//! ```
//! use message_worker::blocking::listen;
//! use message_worker::Context;
//! use std::cell::RefCell;
//! use deno_core::{JsRuntime, RuntimeOptions};
//! use std::rc::Rc;
//! use anyhow::Result;
//! use tokio_stream::StreamExt;
//! use tokio_stream::wrappers::ReceiverStream;
//!
//! let mut rt = tokio::runtime::Runtime::new().unwrap();
//! rt.block_on(async {
//!     struct MockCtx {
//!         test_res: RefCell<tokio::sync::mpsc::Sender<()>>,
//!         runtime: RefCell<JsRuntime>
//!     }
//!     impl Context for MockCtx {}
//!
//!     let (mut tx, rx) = tokio::sync::mpsc::channel::<()>(1);
//!     let stream = ReceiverStream::new(rx);
//!
//!     let (test_res_tx, mut test_res) = {
//!         let (tx, rx) = tokio::sync::mpsc::channel::<()>(1);
//!         (tx, ReceiverStream::new(rx))
//!     };
//!
//!     async fn mock_handle(ctx: Rc<MockCtx>, _event: ()) -> Result<()> {
//!         let mut runtime = ctx.runtime.borrow_mut();
//!
//!         runtime.execute(
//!             "<test>",
//!             r#"Deno.core.print(`Got a message!\n`);"#
//!         )?;
//!         runtime.run_event_loop().await?;
//!
//!         ctx.test_res.borrow_mut().send(()).await?;
//!         Ok(())
//!     }
//!
//!     listen(stream, move || {
//!         let runtime: JsRuntime = {
//!             let tokio_rt = tokio::runtime::Handle::current();
//!             tokio_rt.block_on(async {
//!                 let local = tokio::task::LocalSet::new();
//!                 local.run_until(async {
//!                     let mut runtime = JsRuntime::new(RuntimeOptions {
//!                         module_loader: Some(Rc::new(deno_core::FsModuleLoader)),
//!                         will_snapshot: false,
//!                         ..RuntimeOptions::default()
//!                     });
//!
//!                     runtime.execute(
//!                         "<test>",
//!                         r#"Deno.core.print(`Starting up the JS runtime via C++ FFI and Deno 🤯\n`);"#
//!                     ).unwrap();
//!                     runtime.run_event_loop().await.unwrap();
//!
//!                     runtime
//!                 }).await
//!             })
//!         };
//!
//!         MockCtx {
//!             test_res: RefCell::new(test_res_tx),
//!             runtime: RefCell::new(runtime)
//!         }
//!     }, mock_handle);
//!     tx.send(()).await.unwrap();
//!
//!     /* Prints:
//!        Starting up the JS runtime via C++ FFI and Deno 🤯
//!        Got a message!
//!     */
//!     assert_eq!(test_res.next().await, Some(()));
//! })
//! ```
//!

/// Listeners that perform CPU intensive/blocking tasks or work with non-threadsafe data
pub mod blocking;
/// Listeners that don't block and work with threadsafe (`Sync` + `Send`) data.
pub mod non_blocking;

/// This trait needs to be implemented by the item you're using as the state for the listener.
///
/// For example, if the listener has no state you can simply go:
/// ```
/// use message_worker::Context;
/// struct EmptyCtx;
/// impl Context for EmptyCtx {}
/// ```
///
/// `EmptyCtx` can now be used as the context for your listeners. For mutability inside a `Context`
/// you can use [RefCell](https://doc.rust-lang.org/std/cell/struct.RefCell.html)s. The Message Worker
/// runtime guarantees that it will never attempt to access your context in parallel from one listener.
pub trait Context: 'static {}

/// If you are using a [`non_blocking`](non_blocking) listener, this implementation is required
/// alongside `Context`.
///
/// For mutability inside a `Context`
/// you can use [Mutex](https://doc.rust-lang.org/std/sync/struct.Mutex.html)es
/// or [RwLock](https://docs.rs/tokio/0.2/tokio/sync/struct.RwLock.html)s.
/// The Message Worker runtime guarantees that it will never attempt to access your context
/// in parallel from one listener.
pub trait ThreadSafeContext: Context + Send + Sync {}

/// A predefined context for listeners that don't need any state.
pub struct EmptyCtx;
impl Context for EmptyCtx {}
impl ThreadSafeContext for EmptyCtx {}

#[cfg(test)]
mod tests {}