1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
use crate::node;
use crate::node::Node;
use crate::node::{calculate_hash, is_leaf};
use crate::sgxdb::*;
use crate::traits::CalculateHash;
use core::borrow::{Borrow, BorrowMut};
use std::collections::HashMap;
use std::fmt::Debug;

use serde::{Deserialize, Serialize};

///A content addressed B-tree backed by a content addressed hashtable.
/// Each tree node is stored as an object in the content addressed storage, and contains links to its children. Each link is a hash which can be loooked up from the content addressed storage.
#[derive(Clone, Debug)]
pub struct Nodes<T>
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    pub nodes_map: HashMap<i32, Node<T>>,
    pub size: u32, //the number of nodes
    pub root_id: i32,
    pub content_size: i32, //the number of content_item
    pub next_id: i32,      //generate the index of new node
    pub m: u32,            // order (maximum number of children)
}

#[derive(Clone, Deserialize, Serialize, Debug)]
pub struct NodesSerialize {
    pub size: u32, //the number of nodes
    pub root_id: i32,
    pub content_size: i32, //the number of content_item
    pub next_id: i32,      //generate the index of new node
    pub m: u32,            // order (maximum number of children)
}

impl<T> Nodes<T>
where
    T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
{
    pub fn iterator(&self) {
        let mut a = Vec::new();

        let mut looptime = 0;

        'outer: loop {
            if a.len() == 0 {
                let mut b: Vec<&Node<T>> = Vec::new();
                let node = self.nodes_map.get(&0).unwrap();
                b.push(node);
                a.push(b);
                looptime = looptime + 1;
            } else {
                let pre_vec = a.remove(looptime - 1);
                let len = pre_vec.len();
                let mut b: Vec<&Node<T>> = Vec::new();
                for i in 0..len {
                    let node = pre_vec.get(i).unwrap();
                    if node.children_id.len() == 0 {
                        a.insert(looptime - 1, pre_vec);
                        break 'outer;
                    }

                    for i in 0..node.children_id.len() {
                        let node_id = node.children_id.get(i).unwrap();
                        let node = self.nodes_map.get(node_id).unwrap();
                        b.push(node);
                    }
                }
                a.insert(looptime - 1, pre_vec);
                a.push(b);
                looptime = looptime + 1;
            }
        }

        for i in 0..a.len() {
            println!("****************************************************");
            let sub_vec = a.get(i).unwrap();
            for j in 0..sub_vec.len() {
                let node = *sub_vec.get(j).unwrap();
                println!("node.node_id: {}", node.node_id);
                println!("node.children_id: {:?}", node.children_id);
                println!("node.children_hash:{:?}", node.children_hash);
                println!("node.content: {:?}", node.content);
                println!("node.parent_id: {:?}", node.parent_id);
                println!("node.hash:{}", node.hash);
            }
            println!("****************************************************");
        }
    }

    pub fn merkleroot(&self) -> String {
        if self.content_size == 0 {
            String::new()
        } else {
            let node = self.nodes_map.get(&0).unwrap();
            node.hash.clone()
        }
    }

    pub fn recalculate_merkleroot(&mut self) -> Self {
        let mut a = Vec::new();

        let mut nodes_clone = self.clone();
        if self.content_size == 0 {
            return nodes_clone;
        }
        for (i, j) in self.nodes_map.iter() {
            let mut node = nodes_clone.nodes_map.remove(i).unwrap();
            node.hash = String::new();
            nodes_clone.nodes_map.insert(node.node_id, node);
        }

        let mut looptime = 0;

        'outer: loop {
            if a.len() == 0 {
                let mut b: Vec<&Node<T>> = Vec::new();
                let node = self.nodes_map.get(&0).unwrap();
                b.push(node);
                a.push(b);
                looptime = looptime + 1;
            } else {
                let pre_vec = a.remove(looptime - 1);
                let len = pre_vec.len();
                let mut b: Vec<&Node<T>> = Vec::new();
                for i in 0..len {
                    let node = pre_vec.get(i).unwrap();
                    if node.children_id.len() == 0 {
                        a.insert(looptime - 1, pre_vec);
                        break 'outer;
                    }

                    for i in 0..node.children_id.len() {
                        let node_id = node.children_id.get(i).unwrap();
                        let node = self.nodes_map.get(node_id).unwrap();
                        b.push(node);
                    }
                }
                a.insert(looptime - 1, pre_vec);
                a.push(b);
                looptime = looptime + 1;
            }
        }

        for i in 0..a.len() {
            let sub_vec = a.get(a.len() - 1 - i).unwrap();
            for j in 0..sub_vec.len() {
                let node = *sub_vec.get(j).unwrap();
                let node_in_clone = nodes_clone.nodes_map.get(&node.node_id).unwrap();
                calculate_hash(node.node_id, &mut nodes_clone);
            }
        }
        nodes_clone
    }
}

#[derive(Clone, Debug)]
pub struct MerkleBTree {
    pub rootid: i32,
    pub m: u32, // order (maximum number of children)
}

impl MerkleBTree {
    pub fn new_empty<T>(order: u32, nodes: &mut Nodes<T>) -> Self
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        let mut tree = MerkleBTree {
            rootid: -1,
            m: order,
        };
        nodes.m = order;

        tree
    }

    pub fn new_with<T>(order: u32, value: T, nodes: &mut Nodes<T>) -> Self
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        let mut tree = MerkleBTree {
            rootid: nodes.root_id,
            m: order,
        };
        nodes
            .nodes_map
            .insert(nodes.root_id, Node::new_node(value, nodes.root_id));
        nodes.nodes_map.get_mut(&(nodes.root_id)).unwrap().root_flag = true;
        nodes.next_id = nodes.next_id + 1;
        nodes.size = nodes.size + 1;
        nodes.content_size = nodes.content_size + 1;
        tree
    }

    pub fn put<T>(&mut self, value: T, nodes: &mut Nodes<T>) -> ()
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        if nodes.size == 0 {
            //insert root node
            self.rootid = nodes.root_id;
            nodes
                .nodes_map
                .insert(nodes.root_id, Node::new_node(value, self.rootid));
            nodes.nodes_map.get_mut(&(nodes.root_id)).unwrap().root_flag = true;
            nodes.next_id = nodes.next_id + 1;
            nodes.size = nodes.size + 1;
            nodes.content_size = nodes.content_size + 1;
        } else {
            let a = self.rootid;
            let mut pre_not_existed = node::insert(a, value, nodes.m, nodes);
            if pre_not_existed {
                nodes.content_size = nodes.content_size + 1;
            }
        }
    }

    pub fn put_clone<T>(&mut self, value: T, nodes: &mut Nodes<T>) -> Nodes<T>
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        let mut clone_nodes = Nodes {
            nodes_map: Default::default(),
            size: nodes.size,
            root_id: nodes.root_id,
            content_size: nodes.content_size,
            next_id: nodes.next_id,
            m: nodes.m,
        };
        if nodes.size == 0 {
            //insert root node
            self.rootid = nodes.root_id;
            nodes
                .nodes_map
                .insert(nodes.root_id, Node::new_node(value, self.rootid));
            nodes.nodes_map.get_mut(&(nodes.root_id)).unwrap().root_flag = true;
            nodes.next_id = nodes.next_id + 1;
            nodes.size = nodes.size + 1;
            nodes.content_size = nodes.content_size + 1;
        } else {
            let a = self.rootid;
            let mut pre_not_existed = clone_insert(a, value, nodes.m, nodes, &mut clone_nodes);
            if pre_not_existed {
                nodes.content_size = nodes.content_size + 1;
            }
        }
        clone_nodes
    }

    pub fn remove<T>(&mut self, value: T, nodes: &mut Nodes<T>) -> ()
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        let (search_node_id, index, found) = self.search_recursively(nodes.root_id, &value, nodes);

        if found {
            node::delete(search_node_id, index, nodes);
            nodes.content_size = nodes.content_size - 1;
        }
    }

    pub fn remove_clone<T>(&mut self, value: T, nodes: &mut Nodes<T>) -> Nodes<T>
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        let mut clone_nodes = Nodes {
            nodes_map: Default::default(),
            size: nodes.size,
            root_id: nodes.root_id,
            content_size: nodes.content_size,
            next_id: nodes.next_id,
            m: nodes.m,
        };
        let (search_node_id, index, found) = self.search_recursively(nodes.root_id, &value, nodes);

        if found {
            clone_delete(search_node_id, index, nodes, &mut clone_nodes);
            nodes.content_size = nodes.content_size - 1;
        }
        clone_nodes
    }

    pub fn height<T>(&self, nodes: &Nodes<T>) -> i32
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        let mut height = 1;
        let mut node_id = nodes.root_id;
        loop {
            if nodes.content_size == 0 {
                return 0;
            } else {
                let node = nodes.nodes_map.get(&node_id).unwrap();
                if node.children_id.len() != 0 {
                    height = height + 1;
                    node_id = *node.children_id.get(0).unwrap();
                } else {
                    return height;
                }
            }
        }
    }

    pub fn get<T>(&mut self, value: T, nodes: &mut Nodes<T>) -> (T, bool)
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        let (node_id, content_index, found) = self.search_recursively(0, &value, nodes);
        if found {
            let mut node = nodes.nodes_map.remove(&node_id).unwrap();
            let value = node.content.remove(content_index as usize);
            let value_copy = value.clone();
            node.content.insert(content_index as usize, value_copy);
            nodes.nodes_map.insert(node_id, node);
            return (value, true);
        }
        (value, false)
    }

    pub fn get_clone<T>(&mut self, value: T, nodes: &mut Nodes<T>) -> (T, bool, Nodes<T>)
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        let (node_id, content_index, found, subnodes) =
            self.clone_search_subnode_from_root(0, &value, nodes);
        if found {
            let mut node = nodes.nodes_map.remove(&node_id).unwrap();
            let value = node.content.remove(content_index as usize);
            let value_copy = value.clone();
            node.content.insert(content_index as usize, value_copy);
            nodes.nodes_map.insert(node_id, node);
            return (value, true, subnodes);
        }
        (value, false, subnodes)
    }

    pub fn search_recursively<T>(
        &mut self,
        mut start_node_id: i32,
        value: &T,
        nodes: &mut Nodes<T>,
    ) -> (i32, i32, bool)
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        if nodes.size == 0 {
            return (-1, -1, false);
        }
        loop {
            let node = nodes.nodes_map.get_mut(&start_node_id).unwrap();
            let content_slice = node.content.as_slice();
            match content_slice.binary_search(&value) {
                Ok(t) => {
                    return (node.node_id, t as i32, true);
                }
                Err(e) => {
                    if node.children_id.len() == 0 {
                        return (-1, -1, false);
                    }
                    start_node_id = *node.children_id.get(e).unwrap();
                }
            }
        }
    }

    pub fn clone_search_subnode_from_root<T>(
        &mut self,
        mut start_node_id: i32,
        value: &T,
        nodes: &mut Nodes<T>,
    ) -> (i32, i32, bool, Nodes<T>)
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        let mut clone_nodes = Nodes {
            nodes_map: Default::default(),
            size: nodes.size,
            root_id: nodes.root_id,
            content_size: nodes.content_size,
            next_id: nodes.next_id,
            m: nodes.m,
        };

        let mut nodes_map: HashMap<i32, Node<T>> = HashMap::new();
        if nodes.size == 0 {
            clone_nodes.nodes_map = nodes_map.clone();
            return (-1, -1, false, clone_nodes);
        }

        loop {
            let node = nodes.nodes_map.get_mut(&start_node_id).unwrap();
            nodes_map.insert(start_node_id, node.clone());
            let content_slice = node.content.as_slice();
            match content_slice.binary_search(&value) {
                Ok(t) => {
                    clone_nodes.nodes_map = nodes_map.clone();
                    return (node.node_id, t as i32, true, clone_nodes);
                }
                Err(e) => {
                    if node.children_id.len() == 0 {
                        nodes_map.clear();
                        clone_nodes.nodes_map.clear();
                        return (-1, -1, false, clone_nodes);
                    }
                    start_node_id = *node.children_id.get(e).unwrap();
                }
            }
        }
    }

    pub fn left<T>(&self, mut node_id: i32, nodes: &Nodes<T>) -> i32
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        if nodes.content_size == 0 {
            return -1;
        }
        let mut node = nodes.nodes_map.get(&node_id).unwrap();
        loop {
            if node.children_id.len() == 0 {
                return node_id;
            } else {
                node_id = *node.children_id.get(0).unwrap();
                node = nodes.nodes_map.get(&node_id).unwrap();
            }
        }
    }

    pub fn leftItem<T>(&self, mut node_id: i32, nodes: &mut Nodes<T>) -> Option<T>
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        let node_id = self.left(node_id, nodes);
        if node_id == -1 {
            return None;
        } else {
            let mut node = nodes.nodes_map.remove(&node_id).unwrap();
            let mut node_clone = node.clone();
            nodes.nodes_map.insert(node_id, node);
            return Some(node_clone.content.remove(0));
        }
    }

    pub fn right<T>(&self, mut node_id: i32, nodes: &Nodes<T>) -> i32
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        if nodes.content_size == 0 {
            return -1;
        }
        let mut node = nodes.nodes_map.get(&node_id).unwrap();
        loop {
            if node.children_id.len() == 0 {
                return node_id;
            } else {
                node_id = *node.children_id.last().unwrap();
                node = nodes.nodes_map.get(&node_id).unwrap();
            }
        }
    }

    pub fn rightItem<T>(&self, mut node_id: i32, nodes: &mut Nodes<T>) -> Option<T>
    where
        T: PartialEq + PartialOrd + Ord + Clone + Debug + CalculateHash,
    {
        let node_id = self.right(node_id, nodes);
        if node_id == -1 {
            return None;
        } else {
            let mut node = nodes.nodes_map.remove(&node_id).unwrap();
            let mut node_clone = node.clone();
            nodes.nodes_map.insert(node_id, node);
            Some(node_clone.content.pop().unwrap())
        }
    }
}