1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
//! A string table implementation with a tree-like encoding.
//!
//! Each entry in the table represents a string and encoded is a list of
//! components where each component can either be
//!
//! 1. a TAG_STR_VAL that contains actual string content,
//! 2. a TAG_STR_REF that contains a reference to another entry, or
//! 3. a TAG_TERMINATOR which marks the end of a component list.
//!
//! The string content of an entry is defined as the concatenation of the
//! content of its components. The content of a `TAG_STR_VAL` is its actual
//! UTF-8 bytes. The content of a `TAG_STR_REF` is the contents of the entry
//! it references.
//!
//! Each string is referred to via a `StringId`. `StringId`s may be generated in two ways:
//!     1. Calling `StringTable::alloc()` which returns the `StringId` for the allocated string.
//!     2. Calling `StringTable::alloc_with_reserved_id()` and `StringId::reserved()`.
//!
//! Reserved strings allow you to deduplicate strings by allocating a string once and then referring
//! to it by id over and over. This is a useful trick for strings which are recorded many times and
//! it can significantly reduce the size of profile trace files.
//!
//! `StringId`s are partitioned according to type:
//!
//! > [0 .. MAX_PRE_RESERVED_STRING_ID, METADATA_STRING_ID, .. ]
//!
//! From `0` to `MAX_PRE_RESERVED_STRING_ID` are the allowed values for reserved strings.
//! After `MAX_PRE_RESERVED_STRING_ID`, there is one string id (`METADATA_STRING_ID`) which is used
//! internally by `measureme` to record additional metadata about the profiling session.
//! After `METADATA_STRING_ID` are all other `StringId` values.

use crate::file_header::{
    read_file_header, strip_file_header, write_file_header, FILE_MAGIC_STRINGTABLE_DATA,
    FILE_MAGIC_STRINGTABLE_INDEX,
};
use crate::serialization::{Addr, SerializationSink};
use byteorder::{ByteOrder, LittleEndian};
use rustc_hash::FxHashMap;
use std::borrow::Cow;
use std::error::Error;
use std::sync::atomic::{AtomicU32, Ordering};
use std::sync::Arc;

/// A `StringId` is used to identify a string in the `StringTable`.
#[derive(Clone, Copy, Eq, PartialEq, Debug, Hash)]
#[repr(C)]
pub struct StringId(u32);

impl StringId {
    #[inline]
    pub fn reserved(id: u32) -> StringId {
        StringId(id)
    }
}

// Tags for the binary encoding of strings

/// Marks the end of a string component list.
const TAG_TERMINATOR: u8 = 0;

/// Marks a component that contains actual string data.
const TAG_STR_VAL: u8 = 1;

/// Marks a component that contains the ID of another string.
const TAG_STR_REF: u8 = 2;

/// The maximum id value a prereserved string may be.
const MAX_PRE_RESERVED_STRING_ID: u32 = std::u32::MAX / 2;

/// The id of the profile metadata string entry.
pub(crate) const METADATA_STRING_ID: u32 = MAX_PRE_RESERVED_STRING_ID + 1;

/// Write-only version of the string table
pub struct StringTableBuilder<S: SerializationSink> {
    data_sink: Arc<S>,
    index_sink: Arc<S>,
    id_counter: AtomicU32, // initialized to METADATA_STRING_ID + 1
}

/// Anything that implements `SerializableString` can be written to a
/// `StringTable`.
pub trait SerializableString {
    fn serialized_size(&self) -> usize;
    fn serialize(&self, bytes: &mut [u8]);
}

// A simple string is encoded as
//
// [TAG_STR_VAL, len: u16, utf8_bytes, TAG_TERMINATOR]
//
// in the string table.
impl SerializableString for str {
    #[inline]
    fn serialized_size(&self) -> usize {
        1 + // tag
        2 + // len
        self.len() + // actual bytes
        1 // terminator
    }

    #[inline]
    fn serialize(&self, bytes: &mut [u8]) {
        assert!(self.len() <= std::u16::MAX as usize);
        let last_byte_index = bytes.len() - 1;
        bytes[0] = TAG_STR_VAL;
        LittleEndian::write_u16(&mut bytes[1..3], self.len() as u16);
        bytes[3..last_byte_index].copy_from_slice(self.as_bytes());
        bytes[last_byte_index] = TAG_TERMINATOR;
    }
}

/// A single component of a string. Used for building composite table entries.
pub enum StringComponent<'s> {
    Value(&'s str),
    Ref(StringId),
}

impl<'a> SerializableString for [StringComponent<'a>] {
    #[inline]
    fn serialized_size(&self) -> usize {
        unimplemented!()
    }

    #[inline]
    fn serialize(&self, _bytes: &mut [u8]) {
        unimplemented!()
    }
}

fn serialize_index_entry<S: SerializationSink>(sink: &S, id: StringId, addr: Addr) {
    sink.write_atomic(8, |bytes| {
        LittleEndian::write_u32(&mut bytes[0..4], id.0);
        LittleEndian::write_u32(&mut bytes[4..8], addr.0);
    });
}

fn deserialize_index_entry(bytes: &[u8]) -> (StringId, Addr) {
    (
        StringId(LittleEndian::read_u32(&bytes[0..4])),
        Addr(LittleEndian::read_u32(&bytes[4..8])),
    )
}

impl<S: SerializationSink> StringTableBuilder<S> {
    pub fn new(data_sink: Arc<S>, index_sink: Arc<S>) -> StringTableBuilder<S> {
        // The first thing in every file we generate must be the file header.
        write_file_header(&*data_sink, FILE_MAGIC_STRINGTABLE_DATA);
        write_file_header(&*index_sink, FILE_MAGIC_STRINGTABLE_INDEX);

        StringTableBuilder {
            data_sink,
            index_sink,
            id_counter: AtomicU32::new(METADATA_STRING_ID + 1),
        }
    }

    #[inline]
    pub fn alloc_with_reserved_id<STR: SerializableString + ?Sized>(
        &self,
        id: StringId,
        s: &STR,
    ) -> StringId {
        assert!(id.0 <= MAX_PRE_RESERVED_STRING_ID);
        self.alloc_unchecked(id, s);
        id
    }

    pub(crate) fn alloc_metadata<STR: SerializableString + ?Sized>(&self, s: &STR) -> StringId {
        let id = StringId(METADATA_STRING_ID);
        self.alloc_unchecked(id, s);
        id
    }

    #[inline]
    pub fn alloc<STR: SerializableString + ?Sized>(&self, s: &STR) -> StringId {
        let id = StringId(self.id_counter.fetch_add(1, Ordering::SeqCst));
        debug_assert!(id.0 > METADATA_STRING_ID);
        self.alloc_unchecked(id, s);
        id
    }

    #[inline]
    fn alloc_unchecked<STR: SerializableString + ?Sized>(&self, id: StringId, s: &STR) {
        let size_in_bytes = s.serialized_size();
        let addr = self.data_sink.write_atomic(size_in_bytes, |mem| {
            s.serialize(mem);
        });

        serialize_index_entry(&*self.index_sink, id, addr);
    }
}

#[derive(Copy, Clone)]
pub struct StringRef<'st> {
    id: StringId,
    table: &'st StringTable,
}

impl<'st> StringRef<'st> {
    pub fn to_string(&self) -> Cow<'st, str> {
        let addr = self.table.index[&self.id].as_usize();
        let tag = self.table.string_data[addr];

        match tag {
            TAG_STR_VAL => {
                let len =
                    LittleEndian::read_u16(&self.table.string_data[addr + 1..addr + 3]) as usize;
                let next_component_addr = addr + 3 + len;
                let next_tag = self.table.string_data[next_component_addr];

                if next_tag == TAG_TERMINATOR {
                    let bytes = &self.table.string_data[addr + 3..addr + 3 + len];
                    return Cow::from(std::str::from_utf8(bytes).unwrap());
                }
            }
            TAG_TERMINATOR => {
                return Cow::from("");
            }
            _ => {
                // we have to take the allocating path
            }
        }

        let mut output = String::new();
        self.write_to_string(&mut output);
        Cow::from(output)
    }

    pub fn write_to_string(&self, output: &mut String) {
        let addr = self.table.index[&self.id];

        let mut pos = addr.as_usize();

        loop {
            let tag = self.table.string_data[pos];

            match tag {
                TAG_STR_VAL => {
                    pos += 1;
                    let len =
                        LittleEndian::read_u16(&self.table.string_data[pos..pos + 2]) as usize;
                    pos += 2;
                    let bytes = &self.table.string_data[pos..pos + len];
                    let s = std::str::from_utf8(bytes).unwrap();
                    output.push_str(s);
                    pos += len;
                }

                TAG_STR_REF => {
                    unimplemented!();
                }

                TAG_TERMINATOR => return,

                _ => unreachable!(),
            }
        }
    }
}

/// Read-only version of the string table
pub struct StringTable {
    // TODO: Replace with something lazy
    string_data: Vec<u8>,
    index: FxHashMap<StringId, Addr>,
}

impl StringTable {
    pub fn new(string_data: Vec<u8>, index_data: Vec<u8>) -> Result<StringTable, Box<dyn Error>> {
        let string_data_format = read_file_header(&string_data, FILE_MAGIC_STRINGTABLE_DATA)?;
        let index_data_format = read_file_header(&index_data, FILE_MAGIC_STRINGTABLE_INDEX)?;

        if string_data_format != index_data_format {
            Err("Mismatch between StringTable DATA and INDEX format version")?;
        }

        if string_data_format != 0 {
            Err(format!(
                "StringTable file format version '{}' is not supported
                         by this version of `measureme`.",
                string_data_format
            ))?;
        }

        assert!(index_data.len() % 8 == 0);
        let index: FxHashMap<_, _> = strip_file_header(&index_data)
            .chunks(8)
            .map(deserialize_index_entry)
            .collect();

        Ok(StringTable { string_data, index })
    }

    #[inline]
    pub fn get<'a>(&'a self, id: StringId) -> StringRef<'a> {
        StringRef { id, table: self }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn simple_strings() {
        use crate::serialization::test::TestSink;

        let data_sink = Arc::new(TestSink::new());
        let index_sink = Arc::new(TestSink::new());

        let expected_strings = &[
            "abc",
            "",
            "xyz",
            "g2h9284hgjv282y32983849&(*^&YIJ#R)(F83 f 23 2g4 35g5y",
            "",
            "",
            "g2h9284hgjv282y32983849&35g5y",
        ];

        let mut string_ids = vec![];

        {
            let builder = StringTableBuilder::new(data_sink.clone(), index_sink.clone());

            for &s in expected_strings {
                string_ids.push(builder.alloc(s));
            }
        }

        let data_bytes = Arc::try_unwrap(data_sink).unwrap().into_bytes();
        let index_bytes = Arc::try_unwrap(index_sink).unwrap().into_bytes();

        let string_table = StringTable::new(data_bytes, index_bytes).unwrap();

        for (&id, &expected_string) in string_ids.iter().zip(expected_strings.iter()) {
            let str_ref = string_table.get(id);

            assert_eq!(str_ref.to_string(), expected_string);

            let mut write_to = String::new();
            str_ref.write_to_string(&mut write_to);
            assert_eq!(str_ref.to_string(), write_to);
        }
    }
}