1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
//! This crate only provides the `MaybeOwned` enum
//!
//! Take a look at it's documentation for more information.
//!
#![warn(missing_docs)]
use std::convert::From;
use std::clone::Clone;
use std::ops::Deref;
use std::default::Default;


use self::MaybeOwned::*;

/// This type provides a way to store data to which you either have a
/// reference to or which you do own.
///
/// It provides `From<T>`, `From<&'a T>` implementations and, in difference
/// to `Cow` does _not_ require `ToOwned` to be implemented which makes it
/// compatible with non cloneable data, as a draw back of this it does not
/// know about `ToOwned`. As a consequence of it can't know that `&str` should
/// be the borrowed version of `String` and not `&String` this is especially
/// bad wrt. `Box` as the borrowed version of `Box<T>` would be `&Box<T>`.
///
/// While this crate has some drawbacks compared to `Cow` is has the benefit,
/// that it works with Types which neither implement `Clone` nor `ToOwned`.
/// Another benefit lies in the ability to write API functions which accept
/// a generic parameter `E: Into<MaybeOwned<'a, T>>` as the API consumer can
/// pass `T`, `&'a T` and `MaybeOwned<'a, T>` as argument, without requiring
/// a explicit `Cow::Onwed` or a split into two functions one accepting
/// owed and the other borrowed values.
///
/// # Alternatives
///
/// If you mainly have values implementing `ToOwned` like `&str`/`String`, `Path`/`PathBuf` or
/// `&[T]`/`Vec<T>` using `std::borrow::Cow` might be preferable.
///
/// If you want to be able to treat `&T`, `&mut T`, `Box<T>` and `Arc<T>` the same
/// consider using [`reffers::rbma::RBMA`](https://docs.rs/reffers)
/// (through not all types/platforms are supported because
/// as it relies on the fact that for many pointers the lowest two bits are 0, and stores
/// the discriminant in them, nevertheless this is can only be used with 32bit-aligned data,
/// e.g. using a &u8 _might_ fail). RBMA also allows you to recover a `&mut T` if it was created
/// from `Box<T>`, `&mut T` or a unique `Arc`.
///
///
/// # Examples
///
/// ```
/// # use maybe_owned::MaybeOwned;
/// struct PseudoBigData(u8);
/// fn pseudo_register_fn<'a, E>(_val: E) where E: Into<MaybeOwned<'a, PseudoBigData>> { }
///
/// let data = PseudoBigData(12);
/// let data2 = PseudoBigData(13);
///
/// pseudo_register_fn(&data);
/// pseudo_register_fn(&data);
/// pseudo_register_fn(data2);
/// pseudo_register_fn(MaybeOwned::Owned(PseudoBigData(111)));
/// ```
///
/// ```
/// # use maybe_owned::MaybeOwned;
/// #[repr(C)]
/// struct OpaqueFFI {
///     ref1:  * const u8
///     //we also might want to have PhantomData etc.
/// }
///
/// // does not work as it does not implement `ToOwned`
/// // let _ = Cow::Owned(OpaqueFFI { ref1: 0 as *const u8});
///
/// // ok, MaybeOwned can do this (but can't do &str<->String as tread of)
/// let _ = MaybeOwned::Owned(OpaqueFFI { ref1: 0 as *const u8 });
/// ```
#[derive(Debug)]
pub enum MaybeOwned<'a, T: 'a> {
    /// owns T
    Owned(T),
    /// has a reference to T
    Borrowed(&'a T)
}

impl<'a, T> MaybeOwned<'a, T> {

    /// returns true if the data is owned else false
    pub fn is_owned(&self) -> bool {
        match *self {
            Owned(_) => true,
            Borrowed(_) => false
        }
    }
}

impl<'a, T> Deref for MaybeOwned<'a, T> {
    type Target = T;

    fn deref(&self) -> &T {
        match *self {
            Owned(ref v) => v,
            Borrowed(v) => v
        }
    }
}

impl<'a, T> From<&'a T> for MaybeOwned<'a, T> {
    fn from(v: &'a T) -> MaybeOwned<'a, T> {
        Borrowed(v)
    }
}


impl<'a, T> From<T> for MaybeOwned<'a, T> {
    fn from(v: T) -> MaybeOwned<'a, T> {
        Owned(v)
    }
}

impl<'a, T> Default for MaybeOwned<'a, T> where T: Default {
    fn default() -> Self {
        Owned(T::default())
    }
}


impl<'a, T> Clone for MaybeOwned<'a, T> where T: Clone {
    fn clone(&self) -> MaybeOwned<'a, T> {
        match *self {
            Owned(ref v) => Owned(v.clone()),
            Borrowed(v) => Borrowed(v)
        }
    }
}


impl<'a, T> MaybeOwned<'a, T> where T: Clone {

    /// Aquires a mutable reference to owned data.
    ///
    /// Clones data if it is not already owned.
    ///
    /// ## Example
    ///
    /// ```
    /// use maybe_owned::MaybeOwned;
    ///
    /// #[derive(Clone, Debug, PartialEq, Eq)]
    /// struct PseudoBigData(u8);
    ///
    /// let data = PseudoBigData(12);
    ///
    /// let mut maybe: MaybeOwned<PseudoBigData> = (&data).into();
    /// assert_eq!(false, maybe.is_owned());
    ///
    /// {
    ///     let reference = maybe.to_mut();
    ///     assert_eq!(&mut PseudoBigData(12), reference);
    /// }
    /// assert!(maybe.is_owned());
    /// ```
    ///
    pub fn to_mut(&mut self) -> &mut T {
        match *self {
            Owned(ref mut v) => v,
            Borrowed(v) => {
                *self = Owned(v.clone());
                match *self {
                    Owned(ref mut v) => v,
                    Borrowed(..) => unreachable!()
                }
            }

        }
    }

    /// Extracts the owned data.
    ///
    /// If the data is borrowed it is cloned before being extracted.
    pub fn into_owned(self) -> T {
        match self {
            Owned(v) => v,
            Borrowed(v) => v.clone()
        }
    }
}


#[cfg(test)]
mod tests {
    use super::MaybeOwned;

    type TestType = Vec<()>;

    fn with_into<'a, I: Into<MaybeOwned<'a, TestType>>>(v: I) -> MaybeOwned<'a, TestType> {
        v.into()
    }

    #[test]
    fn is_owned() {
        let data = TestType::default();
        assert!(MaybeOwned::Owned(data).is_owned());
    }

    #[test]
    fn into_with_owned() {
        //ty check if it accepts references
        let data = TestType::default();
        assert!(with_into(data).is_owned())

    }
    #[test]
    fn into_with_borrow() {
        //ty check if it accepts references
        let data = TestType::default();
        assert!(!with_into(&data).is_owned());
    }

    #[test]
    fn clone_owned() {
        let maybe = MaybeOwned::<TestType>::default();
        assert!(maybe.clone().is_owned());
    }

    #[test]
    fn clone_borrow() {
        let data = TestType::default();
        let maybe: MaybeOwned<TestType> = (&data).into();
        assert!(!maybe.clone().is_owned());
    }

    #[test]
    fn to_mut() {
        let data = TestType::default();
        let mut maybe: MaybeOwned<TestType> = (&data).into();
        assert!(!maybe.is_owned());
        {
            let _mut_ref = maybe.to_mut();
        }
        assert!(maybe.is_owned());
    }

    #[test]
    fn into_inner() {
        let data = vec![1u32,2];
        let maybe: MaybeOwned<Vec<u32>> = (&data).into();
        assert_eq!(data, maybe.into_owned());
    }


    #[test]
    fn has_default() {
        #[derive(Default)]
        struct TestType(u8);
        let _x: MaybeOwned<TestType> = Default::default();
    }

    #[test]
    fn has_clone() {
        #[derive(Clone)]
        struct TestType(u8);
        let _x  = TestType(12).clone();
    }
}