1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
//! Matrix laboratory.
//!
//! ## Example
//!
//! ```
//! #[macro_use]
//! extern crate matrix;
//!
//! use matrix::prelude::*;
//!
//! # fn main() {
//! let mut sparse = Compressed::zero((2, 4));
//! sparse.set((0, 0), 42.0);
//! sparse.set((1, 3), 69.0);
//!
//! let dense = Conventional::from(&sparse);
//! assert_eq!(&*dense, &*matrix![
//!     42.0, 0.0, 0.0,  0.0;
//!      0.0, 0.0, 0.0, 69.0;
//! ]);
//! # }

#[cfg(test)]
extern crate assert;

#[cfg(feature = "acceleration")]
extern crate blas;

#[cfg(feature = "complex")]
extern crate complex;

#[cfg(feature = "acceleration")]
extern crate lapack;

use std::convert::Into;
use std::{error, fmt};

use format::Conventional;

/// A matrix.
pub trait Matrix: Into<Conventional<<Self as Matrix>::Element>> + Size {
    /// The element type.
    type Element: Element;

    /// Count nonzero elements.
    fn nonzeros(&self) -> usize;

    /// Create a zero matrix.
    fn zero<S: Size>(S) -> Self;
}

/// A macro for composing matrices in the natural order.
///
/// The data of a generic matrix is conventionally stored in the column-major
/// order; see `format::conventional`. Consequently, the vector
///
/// ```norun
/// vec![
///     1.0, 2.0, 3.0, 4.0,
///     5.0, 6.0, 7.0, 8.0,
/// ]
/// ```
///
/// corresponds to the following matrix with four rows and two columns:
///
/// ```math
/// ┌            ┐
/// │  1.0  5.0  │
/// │  2.0  6.0  │
/// │  3.0  7.0  │
/// │  4.0  8.0  │
/// └            ┘
/// ```
///
/// The macro allows one to write such a matrix in the natural order:
///
/// ```norun
/// matrix![
///     1.0, 5.0;
///     2.0, 6.0;
///     3.0, 7.0;
///     4.0, 8.0;
/// ]
/// ```
#[macro_export]
macro_rules! matrix {
    ($([$tail:expr,];)* -> [$($head:expr,)*]) => (
        vec![$($head,)* $($tail,)*]
    );
    ($([$middle:expr, $($tail:expr,)*];)* -> [$($head:expr,)*]) => (
        matrix!($([$($tail,)*];)* -> [$($head,)* $($middle,)*])
    );
    ($($($item:expr),*;)*) => (
        matrix!($([$($item,)*];)* -> [])
    );
    ($($($item:expr,)*;)*) => (
        matrix!($([$($item,)*];)* -> [])
    );
}

/// An error.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Error(String);

/// A result.
pub type Result<T> = std::result::Result<T, Error>;

macro_rules! raise(
    ($message:expr) => (
        return Err(::Error($message.to_string()));
    );
);

impl fmt::Display for Error {
    #[inline]
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(formatter)
    }
}

impl error::Error for Error {
    #[inline]
    fn description(&self) -> &str {
        &self.0
    }
}

mod element;
mod number;
mod position;
mod size;

pub use element::Element;
pub use number::Number;
pub use position::Position;
pub use size::Size;

pub mod decomposition;
pub mod format;
pub mod operation;
pub mod prelude;