1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
use crate::Rational;
use malachite_base::num::arithmetic::traits::{
    CeilingLogBase2, CheckedLogBase2, FloorLogBase2, IsPowerOf2,
};
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_base::num::logic::traits::SignificantBits;
use std::cmp::Ordering;

impl Rational {
    pub(crate) fn floor_log_base_2_of_abs(&self) -> i64 {
        let exponent = i64::exact_from(self.numerator.significant_bits())
            - i64::exact_from(self.denominator.significant_bits());
        if self.numerator.cmp_normalized(&self.denominator) == Ordering::Less {
            exponent - 1
        } else {
            exponent
        }
    }

    pub(crate) fn ceiling_log_base_2_of_abs(&self) -> i64 {
        let exponent = i64::exact_from(self.numerator.significant_bits())
            - i64::exact_from(self.denominator.significant_bits());
        if self.numerator.cmp_normalized(&self.denominator) == Ordering::Greater {
            exponent + 1
        } else {
            exponent
        }
    }
}

impl<'a> FloorLogBase2 for &'a Rational {
    type Output = i64;

    /// Returns the floor of the base-2 logarithm of a positive [`Rational`].
    ///
    /// $f(x) = \lfloor\log_2 x\rfloor$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Panics
    /// Panics if `self` less than or equal to zero.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::FloorLogBase2;
    /// use malachite_q::Rational;
    ///
    /// assert_eq!(Rational::from(3u32).floor_log_base_2(), 1);
    /// assert_eq!(Rational::from_signeds(1, 3).floor_log_base_2(), -2);
    /// assert_eq!(Rational::from_signeds(1, 4).floor_log_base_2(), -2);
    /// assert_eq!(Rational::from_signeds(1, 5).floor_log_base_2(), -3);
    /// ```
    #[inline]
    fn floor_log_base_2(self) -> i64 {
        assert!(*self > 0u32);
        self.floor_log_base_2_of_abs()
    }
}

impl<'a> CeilingLogBase2 for &'a Rational {
    type Output = i64;

    /// Returns the ceiling of the base-2 logarithm of a positive [`Rational`].
    ///
    /// $f(x) = \lfloor\log_2 x\rfloor$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Panics
    /// Panics if `self` less than or equal to zero.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::CeilingLogBase2;
    /// use malachite_q::Rational;
    ///
    /// assert_eq!(Rational::from(3u32).ceiling_log_base_2(), 2);
    /// assert_eq!(Rational::from_signeds(1, 3).ceiling_log_base_2(), -1);
    /// assert_eq!(Rational::from_signeds(1, 4).ceiling_log_base_2(), -2);
    /// assert_eq!(Rational::from_signeds(1, 5).ceiling_log_base_2(), -2);
    /// ```
    #[inline]
    fn ceiling_log_base_2(self) -> i64 {
        assert!(*self > 0u32);
        self.ceiling_log_base_2_of_abs()
    }
}

impl<'a> CheckedLogBase2 for &'a Rational {
    type Output = i64;

    /// Returns the base-2 logarithm of a positive [`Rational`]. If the [`Rational`] is not a power
    /// of 2, then `None` is returned.
    ///
    /// $$
    /// f(x) = \\begin{cases}
    ///     \operatorname{Some}(\log_2 x) & \text{if} \\quad \log_2 x \in \Z, \\\\
    ///     \operatorname{None} & \textrm{otherwise}.
    /// \\end{cases}
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Panics
    /// Panics if `self` is less than or equal to zero.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::CheckedLogBase2;
    /// use malachite_q::Rational;
    ///
    /// assert_eq!(Rational::from(3u32).checked_log_base_2(), None);
    /// assert_eq!(Rational::from_signeds(1, 3).checked_log_base_2(), None);
    /// assert_eq!(Rational::from_signeds(1, 4).checked_log_base_2(), Some(-2));
    /// assert_eq!(Rational::from_signeds(1, 5).checked_log_base_2(), None);
    /// ```
    fn checked_log_base_2(self) -> Option<i64> {
        assert!(*self > 0u32);
        if self.denominator == 1u32 && self.numerator.is_power_of_2() {
            Some(i64::exact_from(self.numerator.significant_bits()) - 1)
        } else if self.numerator == 1u32 && self.denominator.is_power_of_2() {
            Some(1 - i64::exact_from(self.denominator.significant_bits()))
        } else {
            None
        }
    }
}