1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
use malachite_base::num::arithmetic::traits::{Ceiling, CeilingAssign, DivRound, DivRoundAssign};
use malachite_base::num::basic::traits::One;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
use std::mem::swap;
use Rational;

impl Ceiling for Rational {
    type Output = Integer;

    /// Finds the ceiling of a [`Rational`], taking the [`Rational`] by value.
    ///
    /// $$
    /// f(x) = \lceil x \rceil.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Ceiling;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_q::Rational;
    ///
    /// assert_eq!(Rational::ZERO.ceiling(), 0);
    /// assert_eq!(Rational::from_signeds(22, 7).ceiling(), 4);
    /// assert_eq!(Rational::from_signeds(-22, 7).ceiling(), -3);
    /// ```
    fn ceiling(self) -> Integer {
        if self.sign {
            Integer::from(
                self.numerator
                    .div_round(self.denominator, RoundingMode::Ceiling),
            )
        } else {
            Integer::from_sign_and_abs(false, self.numerator / self.denominator)
        }
    }
}

impl<'a> Ceiling for &'a Rational {
    type Output = Integer;

    /// Finds the ceiling of a [`Rational`], taking the [`Rational`] by reference.
    ///
    /// $$
    /// f(x) = \lceil x \rceil.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Ceiling;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_q::Rational;
    ///
    /// assert_eq!((&Rational::ZERO).ceiling(), 0);
    /// assert_eq!((&Rational::from_signeds(22, 7)).ceiling(), 4);
    /// assert_eq!((&Rational::from_signeds(-22, 7)).ceiling(), -3);
    /// ```
    fn ceiling(self) -> Integer {
        if self.sign {
            Integer::from((&self.numerator).div_round(&self.denominator, RoundingMode::Ceiling))
        } else {
            Integer::from_sign_and_abs(false, &self.numerator / &self.denominator)
        }
    }
}

impl CeilingAssign for Rational {
    /// Replaces a [`Rational`] with its ceiling.
    ///
    /// $$
    /// x \gets \lceil x \rceil.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::CeilingAssign;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_q::Rational;
    ///
    /// let mut x = Rational::ZERO;
    /// x.ceiling_assign();
    /// assert_eq!(x, 0);
    ///
    /// let mut x = Rational::from_signeds(22, 7);
    /// x.ceiling_assign();
    /// assert_eq!(x, 4);
    ///
    /// let mut x = Rational::from_signeds(-22, 7);
    /// x.ceiling_assign();
    /// assert_eq!(x, -3);
    /// ```
    fn ceiling_assign(&mut self) {
        let mut d = Natural::ONE;
        swap(&mut self.denominator, &mut d);
        if self.sign {
            self.numerator.div_round_assign(d, RoundingMode::Ceiling);
        } else {
            self.numerator /= d;
            if !self.sign && self.numerator == 0 {
                self.sign = true;
            }
        }
    }
}