1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
use conversion::continued_fraction::to_continued_fraction::RationalContinuedFraction;
use conversion::traits::ContinuedFraction;
use conversion::traits::Convergents;
use malachite_base::num::arithmetic::traits::{AddMulAssign, UnsignedAbs};
use malachite_base::num::basic::traits::{One, Zero};
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
use std::mem::swap;
use Rational;

/// An iterator that produces the convergents of a [`Rational`].
///
/// See [`convergents`](Rational::convergents) for more information.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct RationalConvergents {
    first: bool,
    previous_numerator: Integer,
    previous_denominator: Natural,
    numerator: Integer,
    denominator: Natural,
    cf: RationalContinuedFraction,
}

impl Iterator for RationalConvergents {
    type Item = Rational;

    fn next(&mut self) -> Option<Rational> {
        if self.first {
            self.first = false;
            Some(Rational::from(&self.numerator))
        } else if let Some(n) = self.cf.next() {
            self.previous_numerator
                .add_mul_assign(&self.numerator, Integer::from(&n));
            self.previous_denominator
                .add_mul_assign(&self.denominator, n);
            swap(&mut self.numerator, &mut self.previous_numerator);
            swap(&mut self.denominator, &mut self.previous_denominator);
            Some(Rational {
                sign: self.numerator >= 0,
                numerator: (&self.numerator).unsigned_abs(),
                denominator: self.denominator.clone(),
            })
        } else {
            None
        }
    }
}

impl Convergents for Rational {
    type C = RationalConvergents;

    /// Returns the convergents of a [`Rational`], taking the [`Rational`] by value.
    ///
    /// The convergents of a number are the sequence of rational numbers whose continued fractions
    /// are the prefixes of the number's continued fraction. The first convergent is the floor of
    /// the number. The sequence of convergents is finite iff the number is rational, in which case
    /// the last convergent is the number itself. Each convergent is closer to the number than the
    /// previous convergent is. The even-indexed convergents are less than or equal to the number,
    /// and the odd-indexed ones are greater than or equal to it.
    ///
    /// $f(x) = ([a_0; a_1, a_2, \ldots, a_i])_{i=0}^{n}$, where $x = [a_0; a_1, a_2, \ldots, a_n]$
    /// and $a_n \neq 1$.
    ///
    /// The output length is $O(n)$, where $n$ is `self.significant_bits()`.
    ///
    /// # Worst-case complexity per iteration
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate itertools;
    /// extern crate malachite_base;
    ///
    /// use itertools::Itertools;
    /// use malachite_base::strings::ToDebugString;
    /// use malachite_q::conversion::traits::Convergents;
    /// use malachite_q::Rational;
    ///
    /// assert_eq!(
    ///     Rational::from_signeds(2, 3).convergents().collect_vec().to_debug_string(),
    ///     "[0, 1, 2/3]"
    /// );
    /// assert_eq!(
    ///     Rational::from_signeds(355, 113).convergents().collect_vec().to_debug_string(),
    ///     "[3, 22/7, 355/113]",
    /// );
    /// ```
    fn convergents(self) -> RationalConvergents {
        let (floor, cf) = self.continued_fraction();
        RationalConvergents {
            first: true,
            previous_numerator: Integer::ONE,
            previous_denominator: Natural::ZERO,
            numerator: floor,
            denominator: Natural::ONE,
            cf,
        }
    }
}

impl<'a> Convergents for &'a Rational {
    type C = RationalConvergents;

    /// Returns the convergents of a [`Rational`], taking the [`Rational`] by reference.
    ///
    /// The convergents of a number are the sequence of rational numbers whose continued fractions
    /// are the prefixes of the number's continued fraction. The first convergent is the floor of
    /// the number. The sequence of convergents is finite iff the number is rational, in which case
    /// the last convergent is the number itself. Each convergent is closer to the number than the
    /// previous convergent is. The even-indexed convergents are less than or equal to the number,
    /// and the odd-indexed ones are greater than or equal to it.
    ///
    /// $f(x) = ([a_0; a_1, a_2, \ldots, a_i])_{i=0}^{n}$, where $x = [a_0; a_1, a_2, \ldots, a_n]$
    /// and $a_n \neq 1$.
    ///
    /// The output length is $O(n)$, where $n$ is `self.significant_bits()`.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate itertools;
    /// extern crate malachite_base;
    ///
    /// use itertools::Itertools;
    /// use malachite_base::strings::ToDebugString;
    /// use malachite_q::conversion::traits::Convergents;
    /// use malachite_q::Rational;
    ///
    /// assert_eq!(
    ///     (&Rational::from_signeds(2, 3)).convergents().collect_vec().to_debug_string(),
    ///     "[0, 1, 2/3]"
    /// );
    /// assert_eq!(
    ///     (&Rational::from_signeds(355, 113)).convergents().collect_vec().to_debug_string(),
    ///     "[3, 22/7, 355/113]",
    /// );
    /// ```
    fn convergents(self) -> RationalConvergents {
        let (floor, cf) = self.continued_fraction();
        RationalConvergents {
            first: true,
            previous_numerator: Integer::ONE,
            previous_denominator: Natural::ZERO,
            numerator: floor,
            denominator: Natural::ONE,
            cf,
        }
    }
}