1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
use malachite_base::num::arithmetic::traits::{Sign, UnsignedAbs};
use malachite_base::num::basic::traits::One;
use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_base::num::logic::traits::SignificantBits;
use malachite_nz::natural::Natural;
use std::cmp::Ordering;
use Rational;

fn partial_cmp_abs_unsigned<T: Copy + One + Ord + Sign + SignificantBits>(
    x: &Rational,
    other: &T,
) -> Option<Ordering>
where
    Natural: From<T> + PartialOrd<T>,
{
    // First check if either value is zero
    let self_sign = x.numerator_ref().sign();
    let other_sign = other.sign();
    let sign_cmp = self_sign.cmp(&other_sign);
    if sign_cmp != Ordering::Equal || self_sign == Ordering::Equal {
        return Some(sign_cmp);
    }
    // Then check if one is < 1 and the other is > 1
    let self_cmp_one = x.numerator.cmp(&x.denominator);
    let other_cmp_one = other.cmp(&T::ONE);
    let one_cmp = self_cmp_one.cmp(&other_cmp_one);
    if one_cmp != Ordering::Equal {
        return Some(one_cmp);
    }
    // Then compare numerators and denominators
    let n_cmp = x.numerator.partial_cmp(other).unwrap();
    let d_cmp = x.denominator.cmp(&Natural::ONE);
    if n_cmp == Ordering::Equal && d_cmp == Ordering::Equal {
        return Some(Ordering::Equal);
    } else {
        let nd_cmp = n_cmp.cmp(&d_cmp);
        if nd_cmp != Ordering::Equal {
            return Some(nd_cmp);
        }
    }
    // Then compare floor ∘ log_2 ∘ abs
    let log_cmp = x
        .floor_log_base_2_of_abs()
        .cmp(&i64::exact_from(other.significant_bits() - 1));
    if log_cmp != Ordering::Equal {
        return Some(log_cmp);
    }
    // Finally, cross-multiply.
    Some(x.numerator.cmp(&(&x.denominator * Natural::from(*other))))
}

macro_rules! impl_unsigned {
    ($t: ident) => {
        impl PartialOrdAbs<$t> for Rational {
            /// Compares the absolute values of a [`Rational`] and an unsigned primitive integer.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n \log n \log\log n)$
            ///
            /// $M(n) = O(n \log n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
            ///
            /// # Examples
            /// See [here](super::partial_cmp_abs_primitive_int#partial_cmp_abs).
            #[inline]
            fn partial_cmp_abs(&self, other: &$t) -> Option<Ordering> {
                partial_cmp_abs_unsigned(self, other)
            }
        }

        impl PartialOrdAbs<Rational> for $t {
            /// Compares the absolute values of an unsigned primitive integer and a [`Rational`].
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n \log n \log\log n)$
            ///
            /// $M(n) = O(n \log n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `other.significant_bits()`.
            ///
            /// See [here](super::partial_cmp_abs_primitive_int#partial_cmp_abs).
            #[inline]
            fn partial_cmp_abs(&self, other: &Rational) -> Option<Ordering> {
                other.partial_cmp_abs(self).map(Ordering::reverse)
            }
        }
    };
}
apply_to_unsigneds!(impl_unsigned);

fn partial_cmp_abs_signed<
    U: Copy + One + Ord + Sign + SignificantBits,
    S: Copy + Sign + SignificantBits + UnsignedAbs<Output = U>,
>(
    x: &Rational,
    other: &S,
) -> Option<Ordering>
where
    Natural: From<U> + PartialOrd<U>,
{
    // First check if either value is zero
    let self_sign = x.numerator_ref().sign();
    let other_abs = other.unsigned_abs();
    let other_sign = other_abs.sign();
    let sign_cmp = self_sign.cmp(&other_sign);
    if sign_cmp != Ordering::Equal || self_sign == Ordering::Equal {
        return Some(sign_cmp);
    }
    // Then check if one is < 1 and the other is > 1
    let self_cmp_one = x.numerator.cmp(&x.denominator);
    let other_cmp_one = other_abs.cmp(&U::ONE);
    let one_cmp = self_cmp_one.cmp(&other_cmp_one);
    if one_cmp != Ordering::Equal {
        return Some(one_cmp);
    }
    // Then compare numerators and denominators
    let n_cmp = x.numerator.partial_cmp(&other_abs).unwrap();
    let d_cmp = x.denominator.cmp(&Natural::ONE);
    if n_cmp == Ordering::Equal && d_cmp == Ordering::Equal {
        return Some(Ordering::Equal);
    } else {
        let nd_cmp = n_cmp.cmp(&d_cmp);
        if nd_cmp != Ordering::Equal {
            return Some(nd_cmp);
        }
    }
    // Then compare floor ∘ log_2 ∘ abs
    let log_cmp = x
        .floor_log_base_2_of_abs()
        .cmp(&i64::exact_from(other.significant_bits() - 1));
    if log_cmp != Ordering::Equal {
        return Some(log_cmp);
    }
    // Finally, cross-multiply.
    Some(
        x.numerator
            .cmp(&(&x.denominator * Natural::from(other_abs))),
    )
}

macro_rules! impl_signed {
    ($t: ident) => {
        impl PartialOrdAbs<$t> for Rational {
            /// Compares the absolute values of a [`Rational`] and a signed primitive integer.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n \log n \log\log n)$
            ///
            /// $M(n) = O(n \log n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
            ///
            /// # Examples
            /// See [here](super::partial_cmp_abs_primitive_int#partial_cmp_abs).
            #[inline]
            fn partial_cmp_abs(&self, other: &$t) -> Option<Ordering> {
                partial_cmp_abs_signed(self, other)
            }
        }

        impl PartialOrdAbs<Rational> for $t {
            /// Compares the absolute values of a signed primitive integer and a [`Rational`].
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n \log n \log\log n)$
            ///
            /// $M(n) = O(n \log n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `other.significant_bits()`.
            ///
            /// See [here](super::partial_cmp_abs_primitive_int#partial_cmp_abs).
            #[inline]
            fn partial_cmp_abs(&self, other: &Rational) -> Option<Ordering> {
                other.partial_cmp_abs(self).map(Ordering::reverse)
            }
        }
    };
}
apply_to_signeds!(impl_signed);