1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
use crate::natural::arithmetic::shl::{limbs_shl, limbs_vec_shl_in_place};
use crate::natural::InnerNatural::{Large, Small};
use crate::natural::Natural;
use crate::platform::Limb;
use malachite_base::num::arithmetic::traits::OverflowingAddAssign;
use malachite_base::num::basic::unsigneds::PrimitiveUnsigned;
use std::ops::{Add, AddAssign};

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, returns the
// limbs of the sum of the `Natural` and a `Limb`.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// This is equivalent to `mpn_add_1` from `gmp.h`, GMP 6.2.1, where the result is returned.
pub_crate_test! {limbs_add_limb(xs: &[Limb], mut y: Limb) -> Vec<Limb> {
    let len = xs.len();
    let mut out = Vec::with_capacity(len);
    for i in 0..len {
        let (sum, overflow) = xs[i].overflowing_add(y);
        out.push(sum);
        if overflow {
            y = 1;
        } else {
            y = 0;
            out.extend_from_slice(&xs[i + 1..]);
            break;
        }
    }
    if y != 0 {
        out.push(y);
    }
    out
}}

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, writes the
// limbs of the sum of the `Natural` and a `Limb` to an output slice. The output slice must be at
// least as long as the input slice. Returns whether there is a carry.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `out` is shorter than `xs`.
//
// This is equivalent to `mpn_add_1` from `gmp.h`, GMP 6.2.1.
pub_crate_test! {limbs_add_limb_to_out(out: &mut [Limb], xs: &[Limb], mut y: Limb) -> bool {
    let len = xs.len();
    assert!(out.len() >= len);
    for i in 0..len {
        let overflow;
        (out[i], overflow) = xs[i].overflowing_add(y);
        if overflow {
            y = 1;
        } else {
            y = 0;
            let copy_index = i + 1;
            out[copy_index..len].copy_from_slice(&xs[copy_index..]);
            break;
        }
    }
    y != 0
}}

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, writes the
// limbs of the sum of the `Natural` and a `Limb` to the input slice. Returns whether there is a
// carry.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// This is equivalent to `mpn_add_1` from `gmp.h`, GMP 6.2.1, where the result is written to the
// input slice.
pub_crate_test! {limbs_slice_add_limb_in_place<T: PrimitiveUnsigned>(
    xs: &mut [T],
    mut y: T
) -> bool {
    for x in xs.iter_mut() {
        if x.overflowing_add_assign(y) {
            y = T::ONE;
        } else {
            return false;
        }
    }
    y != T::ZERO
}}

// Interpreting a nonempty `Vec` of `Limb`s as the limbs (in ascending order) of a `Natural`,
// writes the limbs of the sum of the `Natural` and a `Limb` to the input `Vec`.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$ (only if the `Vec` reallocates)
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` is empty.
//
// This is equivalent to `mpz_add_ui` from `mpz/aors_ui.h`, GMP 6.2.1, where the input is
// non-negative.
pub_crate_test! {limbs_vec_add_limb_in_place(xs: &mut Vec<Limb>, y: Limb) {
    assert!(!xs.is_empty());
    if limbs_slice_add_limb_in_place(xs, y) {
        xs.push(1);
    }
}}

// # Worst-case complexity
// Constant time and additional memory.
fn add_and_carry(x: Limb, y: Limb, carry: &mut bool) -> Limb {
    let c = *carry;
    let mut sum;
    (sum, *carry) = x.overflowing_add(y);
    if c {
        *carry |= sum.overflowing_add_assign(1);
    }
    sum
}

// Interpreting two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s, where
// the first slice is at least as long as the second, returns a `Vec` of the limbs of the sum of
// the `Natural`s.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` is shorter than `ys`.
//
// This is equivalent to `mpn_add` from `gmp.h`, GMP 6.2.1, where the first input is at least as
// long as the second, and the output is returned.
pub_crate_test! {limbs_add_greater(xs: &[Limb], ys: &[Limb]) -> Vec<Limb> {
    if std::ptr::eq(xs, ys) {
        return limbs_shl(xs, 1);
    }
    let xs_len = xs.len();
    let ys_len = ys.len();
    assert!(xs_len >= ys_len);
    let mut out = Vec::with_capacity(xs_len);
    let mut carry = false;
    for (&x, &y) in xs.iter().zip(ys.iter()) {
        out.push(add_and_carry(x, y, &mut carry));
    }
    if xs_len == ys_len {
        if carry {
            out.push(1);
        }
    } else {
        out.extend_from_slice(&xs[ys_len..]);
        if carry && limbs_slice_add_limb_in_place(&mut out[ys_len..], 1) {
            out.push(1);
        }
    }
    out
}}

// Interpreting two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s, returns
// a `Vec` of the limbs of the sum of the `Natural`s.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `max(xs.len(), ys.len())`.
//
// This is equivalent to `mpn_add` from `gmp.h`, GMP 6.2.1, where the output is returned.
pub_crate_test! {limbs_add(xs: &[Limb], ys: &[Limb]) -> Vec<Limb> {
    if xs.len() >= ys.len() {
        limbs_add_greater(xs, ys)
    } else {
        limbs_add_greater(ys, xs)
    }
}}

// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, writes the `xs.len()` least-significant limbs of the sum of the `Natural`s to an
// output slice. The output must be at least as long as one of the input slices. Returns whether
// there is a carry.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` and `ys` have different lengths or if `out` is too short.
//
// This is equivalent to `mpn_add_n` from `gmp.h`, GMP 6.2.1.
pub_crate_test! {limbs_add_same_length_to_out(out: &mut [Limb], xs: &[Limb], ys: &[Limb]) -> bool {
    let len = xs.len();
    assert_eq!(len, ys.len());
    assert!(out.len() >= len);
    let mut carry = false;
    for i in 0..len {
        out[i] = add_and_carry(xs[i], ys[i], &mut carry);
    }
    carry
}}

// Interpreting two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s, where
// the first slice is at least as long as the second, writes the `xs.len()` least-significant limbs
// of the sum of the `Natural`s to an output slice. The output must be at least as long as `xs`.
// Returns whether there is a carry.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` is shorter than `ys` or if `out` is too short.
//
// This is equivalent to `mpn_add` from `gmp.h`, GMP 6.2.1, where the first input is at least as
// long as the second.
pub_crate_test! {limbs_add_greater_to_out(out: &mut [Limb], xs: &[Limb], ys: &[Limb]) -> bool {
    let xs_len = xs.len();
    let ys_len = ys.len();
    assert!(xs_len >= ys_len);
    assert!(out.len() >= xs_len);
    let carry = limbs_add_same_length_to_out(out, &xs[..ys_len], ys);
    if xs_len == ys_len {
        carry
    } else if carry {
        limbs_add_limb_to_out(&mut out[ys_len..], &xs[ys_len..], 1)
    } else {
        out[ys_len..xs_len].copy_from_slice(&xs[ys_len..]);
        false
    }
}}

// Interpreting two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s, writes
// the `max(xs.len(), ys.len())` least-significant limbs of the sum of the `Natural`s to an output
// slice. The output must be at least as long as the longer input slice. Returns whether there is a
// carry.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `max(xs.len(), ys.len())`.
//
// # Panics
// Panics if `out` is too short.
//
// This is equivalent to `mpn_add` from `gmp.h`, GMP 6.2.1.
pub_crate_test! {limbs_add_to_out(out: &mut [Limb], xs: &[Limb], ys: &[Limb]) -> bool {
    if xs.len() >= ys.len() {
        limbs_add_greater_to_out(out, xs, ys)
    } else {
        limbs_add_greater_to_out(out, ys, xs)
    }
}}

// Given two slices of `Limb`s as the limbs `xs` and `ys`, where `xs` is at least as long as `ys`
// and `xs_len` is no greater than `ys.len()`, writes the `ys.len()` lowest limbs of the sum of
// `xs[..xs_len]` and `ys` to `xs`. Returns whether there is a carry.
//
// For example,
// `limbs_add_to_out_aliased(&mut xs[..12], 7, &ys[0..10])`
// would be equivalent to
// `limbs_add_to_out(&mut xs[..12], &xs[..7], &ys[0..10])`
// although the latter expression is not allowed because `xs` cannot be borrowed in that way.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `max(xs.len(), ys.len())`.
//
// # Panics
// Panics if `xs` is shorter than `ys` or `xs_len` is greater than `ys.len()`.
//
// This is equivalent to `mpn_add` from `gmp.h`, GMP 6.2.1, where the second argument is at least
// as long as the first and the output pointer is the same as the first input pointer.
pub_crate_test! {limbs_add_to_out_aliased(xs: &mut [Limb], xs_len: usize, ys: &[Limb]) -> bool {
    let ys_len = ys.len();
    assert!(xs.len() >= ys_len);
    assert!(xs_len <= ys_len);
    let (ys_lo, ys_hi) = ys.split_at(xs_len);
    xs[xs_len..ys_len].copy_from_slice(ys_hi);
    limbs_slice_add_greater_in_place_left(&mut xs[..ys_len], ys_lo)
}}

// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, writes the `xs.len()` least-significant limbs of the sum of the `Natural`s to the
// first (left) slice. Returns whether there is a carry.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` and `ys` have different lengths.
//
// This is equivalent to `mpn_add_n` from `gmp.h`, GMP 6.2.1, where the output is written to the
// first input.
pub_crate_test! {limbs_slice_add_same_length_in_place_left(xs: &mut [Limb], ys: &[Limb]) -> bool {
    let xs_len = xs.len();
    assert_eq!(xs_len, ys.len());
    let mut carry = false;
    for i in 0..xs_len {
        xs[i] = add_and_carry(xs[i], ys[i], &mut carry);
    }
    carry
}}

// Interpreting two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s, where
// the length of the first slice is greater than or equal to the length of the second, writes the
// `xs.len()` least-significant limbs of the sum of the `Natural`s to the first (left) slice.
// Returns whether there is a carry.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` is shorter than `ys`.
//
// This is equivalent to `mpn_add` from `gmp.h`, GMP 6.2.1, where the first input is at least as
// long as the second, and the output is written to the first input.
pub_crate_test! {limbs_slice_add_greater_in_place_left(xs: &mut [Limb], ys: &[Limb]) -> bool {
    let xs_len = xs.len();
    let ys_len = ys.len();
    let (xs_lo, xs_hi) = xs.split_at_mut(ys_len);
    let carry = limbs_slice_add_same_length_in_place_left(xs_lo, ys);
    if xs_len == ys_len {
        carry
    } else if carry {
        limbs_slice_add_limb_in_place(xs_hi, 1)
    } else {
        false
    }
}}

// Interpreting a `Vec` of `Limb`s and a slice of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, writes the limbs of the sum of the `Natural`s to the first (left) slice.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(m) = O(m)$
//
// where $T$ is time, $M$ is additional memory, $n$ is `max(xs.len(), ys.len())`, and $m$ is
// `max(1, ys.len() - xs.len())`.
//
// This is equivalent to `mpz_add` from `mpz/aors.h`, GMP 6.2.1, where both inputs are non-negative
// and the output is written to the first input.
pub_crate_test! {limbs_vec_add_in_place_left(xs: &mut Vec<Limb>, ys: &[Limb]) {
    if std::ptr::eq(xs.as_slice(), ys) {
        limbs_vec_shl_in_place(xs, 1);
        return;
    }
    let xs_len = xs.len();
    let ys_len = ys.len();
    let carry = if xs_len >= ys_len {
        limbs_slice_add_greater_in_place_left(xs, ys)
    } else {
        let (ys_lo, ys_hi) = ys.split_at(xs_len);
        let mut carry = limbs_slice_add_same_length_in_place_left(xs, ys_lo);
        xs.extend_from_slice(ys_hi);
        if carry {
            carry = limbs_slice_add_limb_in_place(&mut xs[xs_len..], 1);
        }
        carry
    };
    if carry {
        xs.push(1);
    }
}}

// TODO

// Interpreting two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s, writes
// the `max(xs.len(), ys.len())` least-significant limbs of the sum of the `Natural`s to the longer
// slice (or the first one, if they are equally long). Returns a pair of `bool`s. The first is
// `false` when the output is to the first slice and `true` when it's to the second slice, and the
// second is whether there is a carry.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `min(xs.len(), ys.len())`.
//
// This is equivalent to `mpn_add` from `gmp.h`, GMP 6.2.1, where the output is written to the
// longer input.
pub_test! {limbs_slice_add_in_place_either(xs: &mut [Limb], ys: &mut [Limb]) -> (bool, bool) {
    if xs.len() >= ys.len() {
        (false, limbs_slice_add_greater_in_place_left(xs, ys))
    } else {
        (true, limbs_slice_add_greater_in_place_left(ys, xs))
    }
}}

// Interpreting two `Vec`s of `Limb`s as the limbs (in ascending order) of two `Natural`s, writes
// the limbs of the sum of the `Natural`s to the longer slice (or the first one, if they are
// equally long). Returns a `bool` which is `false` when the output is to the first `Vec` and
// `true` when it's to the second `Vec`.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$ (only if the `Vec` reallocates)
//
// where $T$ is time, $M$ is additional memory, and $n$ is `min(xs.len(), ys.len())`.
//
// This is equivalent to `mpz_add` from `mpz/aors.h`, GMP 6.2.1, where both inputs are non-negative
// and the output is written to the longer input.
pub_test! {limbs_vec_add_in_place_either(xs: &mut Vec<Limb>, ys: &mut Vec<Limb>) -> bool {
    if xs.len() >= ys.len() {
        if limbs_slice_add_greater_in_place_left(xs, ys) {
            xs.push(1);
        }
        false
    } else {
        if limbs_slice_add_greater_in_place_left(ys, xs) {
            ys.push(1);
        }
        true
    }
}}

// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, writes the `xs.len()` least-significant limbs of the sum of the `Natural`s and a
// carry (`false` is 0, `true` is 1) to an output slice. The output must be at least as long as one
// of the input slices. Returns whether there is a carry.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` and `ys` have different lengths or if `out` is too short.
//
// This is equivalent to `mpn_add_nc` from `gmp-impl.h`, GMP 6.2.1, where `rp` and `up` are
// disjoint.
pub_crate_test! {limbs_add_same_length_with_carry_in_to_out(
    out: &mut [Limb],
    xs: &[Limb],
    ys: &[Limb],
    carry_in: bool,
) -> bool {
    let mut carry = limbs_add_same_length_to_out(out, xs, ys);
    if carry_in {
        carry |= limbs_slice_add_limb_in_place(&mut out[..xs.len()], 1);
    }
    carry
}}

// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, writes the `xs.len()` least-significant limbs of the sum of the `Natural`s and a
// carry (`false` is 0, `true` is 1) to the first (left) slice. Returns whether there is a carry.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` and `ys` have different lengths.
//
// This is equivalent to `mpn_add_nc` from `gmp-impl.h`, GMP 6.2.1, where `rp` is the same as `up`.
pub_crate_test! {limbs_add_same_length_with_carry_in_in_place_left(
    xs: &mut [Limb],
    ys: &[Limb],
    carry_in: bool,
) -> bool {
    let mut carry = limbs_slice_add_same_length_in_place_left(xs, ys);
    if carry_in {
        carry |= limbs_slice_add_limb_in_place(xs, 1);
    }
    carry
}}

impl Natural {
    #[inline]
    pub(crate) fn add_limb(mut self, other: Limb) -> Natural {
        self.add_assign_limb(other);
        self
    }

    pub(crate) fn add_limb_ref(&self, other: Limb) -> Natural {
        match (self, other) {
            (x, 0) => x.clone(),
            (Natural(Small(small)), other) => match small.overflowing_add(other) {
                (sum, false) => Natural::from(sum),
                (sum, true) => Natural(Large(vec![sum, 1])),
            },
            (Natural(Large(ref limbs)), other) => Natural(Large(limbs_add_limb(limbs, other))),
        }
    }

    fn add_assign_limb(&mut self, other: Limb) {
        match (&mut *self, other) {
            (_, 0) => {}
            (&mut natural_zero!(), _) => *self = Natural::from(other),
            (&mut Natural(Small(ref mut small)), other) => {
                let (sum, overflow) = small.overflowing_add(other);
                if overflow {
                    *self = Natural(Large(vec![sum, 1]));
                } else {
                    *small = sum;
                }
            }
            (&mut Natural(Large(ref mut limbs)), other) => {
                limbs_vec_add_limb_in_place(limbs, other);
            }
        }
    }
}

impl Add<Natural> for Natural {
    type Output = Natural;

    /// Adds two [`Natural`]s, taking both by value.
    ///
    /// $$
    /// f(x, y) = x + y.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$ (only if the underlying [`Vec`] needs to reallocate)
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `min(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::ZERO + Natural::from(123u32), 123);
    /// assert_eq!(Natural::from(123u32) + Natural::ZERO, 123);
    /// assert_eq!(Natural::from(123u32) + Natural::from(456u32), 579);
    /// assert_eq!(
    ///     Natural::from(10u32).pow(12) + (Natural::from(10u32).pow(12) << 1),
    ///     3000000000000u64
    /// );
    /// ```
    fn add(mut self, other: Natural) -> Natural {
        self += other;
        self
    }
}

impl<'a> Add<&'a Natural> for Natural {
    type Output = Natural;

    /// Adds two [`Natural`]s, taking the first by reference and the second by value.
    ///
    /// $$
    /// f(x, y) = x + y.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::ZERO + &Natural::from(123u32), 123);
    /// assert_eq!(Natural::from(123u32) + &Natural::ZERO, 123);
    /// assert_eq!(Natural::from(123u32) + &Natural::from(456u32), 579);
    /// assert_eq!(
    ///     Natural::from(10u32).pow(12) + &(Natural::from(10u32).pow(12) << 1),
    ///     3000000000000u64
    /// );
    /// ```
    #[inline]
    fn add(mut self, other: &'a Natural) -> Natural {
        self += other;
        self
    }
}

impl<'a> Add<Natural> for &'a Natural {
    type Output = Natural;

    /// Adds two [`Natural`]s, taking the first by value and the second by reference.
    ///
    /// $$
    /// f(x, y) = x + y.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(&Natural::ZERO + Natural::from(123u32), 123);
    /// assert_eq!(&Natural::from(123u32) + Natural::ZERO, 123);
    /// assert_eq!(&Natural::from(123u32) + Natural::from(456u32), 579);
    /// assert_eq!(
    ///     &Natural::from(10u32).pow(12) + (Natural::from(10u32).pow(12) << 1),
    ///     3000000000000u64
    /// );
    /// ```
    #[inline]
    fn add(self, mut other: Natural) -> Natural {
        other += self;
        other
    }
}

impl<'a, 'b> Add<&'a Natural> for &'b Natural {
    type Output = Natural;

    /// Adds two [`Natural`]s, taking both by reference.
    ///
    /// $$
    /// f(x, y) = x + y.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(&Natural::ZERO + &Natural::from(123u32), 123);
    /// assert_eq!(&Natural::from(123u32) + &Natural::ZERO, 123);
    /// assert_eq!(&Natural::from(123u32) + &Natural::from(456u32), 579);
    /// assert_eq!(
    ///     &Natural::from(10u32).pow(12) + &(Natural::from(10u32).pow(12) << 1),
    ///     3000000000000u64
    /// );
    /// ```
    fn add(self, other: &'a Natural) -> Natural {
        match (self, other) {
            (x, &Natural(Small(y))) => x.add_limb_ref(y),
            (&Natural(Small(x)), y) => y.add_limb_ref(x),
            (&Natural(Large(ref xs)), &Natural(Large(ref ys))) => Natural(Large(limbs_add(xs, ys))),
        }
    }
}

impl AddAssign<Natural> for Natural {
    /// Adds a [`Natural`] to a [`Natural`] in place, taking the [`Natural`] on the right-hand side
    /// by value.
    ///
    /// $$
    /// x \gets x + y.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$ (only if the underlying [`Vec`] needs to reallocate)
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `min(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut x = Natural::ZERO;
    /// x += Natural::from(10u32).pow(12);
    /// x += Natural::from(10u32).pow(12) * Natural::from(2u32);
    /// x += Natural::from(10u32).pow(12) * Natural::from(3u32);
    /// x += Natural::from(10u32).pow(12) * Natural::from(4u32);
    /// assert_eq!(x, 10000000000000u64);
    /// ```
    fn add_assign(&mut self, mut other: Natural) {
        match (&mut *self, &mut other) {
            (x, &mut Natural(Small(y))) => x.add_assign_limb(y),
            (&mut Natural(Small(x)), y) => *self = y.add_limb_ref(x),
            (&mut Natural(Large(ref mut xs)), &mut Natural(Large(ref mut ys))) => {
                if limbs_vec_add_in_place_either(xs, ys) {
                    *self = other;
                }
            }
        }
    }
}

impl<'a> AddAssign<&'a Natural> for Natural {
    /// Adds a [`Natural`] to a [`Natural`] in place, taking the [`Natural`] on the right-hand side
    /// by reference.
    ///
    /// $$
    /// x \gets x + y.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut x = Natural::ZERO;
    /// x += &Natural::from(10u32).pow(12);
    /// x += &(Natural::from(10u32).pow(12) * Natural::from(2u32));
    /// x += &(Natural::from(10u32).pow(12) * Natural::from(3u32));
    /// x += &(Natural::from(10u32).pow(12) * Natural::from(4u32));
    /// assert_eq!(x, 10000000000000u64);
    /// ```
    fn add_assign(&mut self, other: &'a Natural) {
        match (&mut *self, other) {
            (x, &Natural(Small(y))) => x.add_assign_limb(y),
            (&mut Natural(Small(x)), y) => *self = y.add_limb_ref(x),
            (&mut Natural(Large(ref mut xs)), &Natural(Large(ref ys))) => {
                limbs_vec_add_in_place_left(xs, ys);
            }
        }
    }
}