1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
use natural::InnerNatural::{Large, Small};
use natural::Natural;
use platform::Limb;
use std::mem::swap;
use std::ops::{BitXor, BitXorAssign};

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, returns the
// limbs of the bitwise xor of the `Natural` and a `Limb`. `xs` cannot be empty.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` is empty.
pub_test! {limbs_xor_limb(xs: &[Limb], y: Limb) -> Vec<Limb> {
    let mut result = xs.to_vec();
    limbs_xor_limb_in_place(&mut result, y);
    result
}}

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, writes the
// limbs of the bitwise xor of the `Natural` and a `Limb` to an output slice. The output slice must
// be at least as long as the input slice. `xs` cannot be empty.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `out` is shorter than `xs` or if `xs` is empty.
pub_test! {limbs_xor_limb_to_out(out: &mut [Limb], xs: &[Limb], y: Limb) {
    out[..xs.len()].copy_from_slice(xs);
    limbs_xor_limb_in_place(out, y);
}}

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, writes the
// limbs of the bitwise xor of the `Natural` and a `Limb` to the input slice. `xs` cannot be empty.
//
// # Worst-case complexity
// Constant time and additional memory.
//
// # Panics
// Panics if `xs` is empty.
pub_test! {limbs_xor_limb_in_place(xs: &mut [Limb], y: Limb) {
    xs[0] ^= y;
}}

// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, returns a `Vec` of the limbs of the bitwise xor of the `Natural`s. The length of the
// result is the length of one of the input slices.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// This is equivalent to `mpn_xor_n` from `gmp-impl.h`, GMP 6.2.1, where `rp` is returned.
//
// # Panics
// Panics if `xs` and `ys` have different lengths.
pub_test! {limbs_xor_same_length(xs: &[Limb], ys: &[Limb]) -> Vec<Limb> {
    assert_eq!(xs.len(), ys.len());
    xs.iter().zip(ys.iter()).map(|(x, y)| x ^ y).collect()
}}

// Interpreting two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s, returns
// a `Vec` of the limbs of the bitwise xor of the `Natural`s. The length of the result is the
// length of the longer input slice.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `max(xs.len(), ys.len())`.
//
// This is equivalent to `mpz_xor` from `mpz/xor.c`, GMP 6.2.1, where `res` is returned and both
// inputs are non-negative.
pub_test! {limbs_xor(xs: &[Limb], ys: &[Limb]) -> Vec<Limb> {
    let xs_len = xs.len();
    let ys_len = ys.len();
    let mut result;
    if xs_len >= ys_len {
        result = limbs_xor_same_length(&xs[..ys_len], ys);
        result.extend_from_slice(&xs[ys_len..]);
    } else {
        result = limbs_xor_same_length(xs, &ys[..xs_len]);
        result.extend_from_slice(&ys[xs_len..]);
    }
    result
}}

// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, writes the limbs of the bitwise xor of the `Natural`s to an output slice. The output
// must be at least as long as one of the input slices.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` and `ys` have different lengths or if `out` is too short.
//
// This is equivalent to `mpn_xor_n` from `gmp-impl.h`, GMP 6.2.1.
pub_test! {limbs_xor_same_length_to_out(out: &mut [Limb], xs: &[Limb], ys: &[Limb]) {
    let len = xs.len();
    assert_eq!(len, ys.len());
    assert!(out.len() >= len);
    for (z, (x, y)) in out.iter_mut().zip(xs.iter().zip(ys.iter())) {
        *z = x ^ y;
    }
}}

// Interpreting two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s, writes
// the limbs of the bitwise xor of the `Natural`s to an output slice. The output must be at least
// as long as the longer input slice.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `max(xs.len(), ys.len())`.
//
// # Panics
// Panics if `out` is too short.
//
// This is equivalent to `mpz_xor` from `mpz/xor.c`, GMP 6.2.1, where both inputs are non-negative.
pub_test! {limbs_xor_to_out(out: &mut [Limb], xs: &[Limb], ys: &[Limb]) {
    let xs_len = xs.len();
    let ys_len = ys.len();
    if xs_len >= ys_len {
        assert!(out.len() >= xs_len);
        limbs_xor_same_length_to_out(out, &xs[..ys_len], ys);
        out[ys_len..xs_len].copy_from_slice(&xs[ys_len..]);
    } else {
        assert!(out.len() >= ys_len);
        limbs_xor_same_length_to_out(out, xs, &ys[..xs_len]);
        out[xs_len..ys_len].copy_from_slice(&ys[xs_len..]);
    }
}}

// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, writes the limbs of the bitwise xor of the `Natural`s to the first (left) slice.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` and `ys` have different lengths.
//
// This is equivalent to `mpn_xor_n` from `gmp-impl.h`, GMP 6.2.1, where `rp == up`.
pub_test! {limbs_xor_same_length_in_place_left(xs: &mut [Limb], ys: &[Limb]) {
    assert_eq!(xs.len(), ys.len());
    for (x, y) in xs.iter_mut().zip(ys.iter()) {
        *x ^= y;
    }
}}

// Interpreting a `Vec` of `Limb`s and a slice of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, writes the limbs of the bitwise xor of the `Natural`s to the `Vec`. If `ys` is
// longer than `xs`, `xs` will be extended.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `ys.len()`.
//
// This is equivalent to `mpz_xor` from `mpz/xor.c`, GMP 6.2.1, where `res == op1` and both inputs
// are non-negative.
#[doc(hidden)]
pub fn limbs_xor_in_place_left(xs: &mut Vec<Limb>, ys: &[Limb]) {
    let xs_len = xs.len();
    let ys_len = ys.len();
    if xs_len >= ys_len {
        limbs_xor_same_length_in_place_left(&mut xs[..ys_len], ys);
    } else {
        limbs_xor_same_length_in_place_left(xs, &ys[..xs_len]);
        xs.extend_from_slice(&ys[xs_len..]);
    }
}

// Interpreting two `Vec`s of `Limb`s as the limbs (in ascending order) of two `Natural`s, writes
// the limbs of the bitwise xor of the `Natural`s to the longer slice (or the first one, if they
// are equally long). Returns a `bool` which is `false` when the output is to the first slice and
// `true` when it's to the second slice.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `min(xs.len(), ys.len())`.
//
// This is equivalent to `mpz_xor` from `mpz/xor.c`, GMP 6.2.1, where both inputs are non-negative
// and the result is written to the longer input slice.
#[doc(hidden)]
pub fn limbs_xor_in_place_either(xs: &mut [Limb], ys: &mut [Limb]) -> bool {
    let xs_len = xs.len();
    let ys_len = ys.len();
    let right = xs_len < ys_len;
    if right {
        limbs_xor_same_length_in_place_left(&mut ys[..xs_len], xs);
    } else {
        limbs_xor_same_length_in_place_left(&mut xs[..ys_len], ys);
    }
    right
}

impl Natural {
    #[inline]
    fn xor_limb(mut self, other: Limb) -> Natural {
        self.xor_assign_limb(other);
        self
    }

    fn xor_limb_ref(&self, other: Limb) -> Natural {
        Natural(match *self {
            Natural(Small(small)) => Small(small ^ other),
            Natural(Large(ref limbs)) => Large(limbs_xor_limb(limbs, other)),
        })
    }

    fn xor_assign_limb(&mut self, other: Limb) {
        match *self {
            Natural(Small(ref mut small)) => *small ^= other,
            Natural(Large(ref mut limbs)) => limbs_xor_limb_in_place(limbs, other),
        }
    }
}

impl BitXor<Natural> for Natural {
    type Output = Natural;

    /// Takes the bitwise xor of two [`Natural`]s, taking both by value.
    ///
    /// $$
    /// f(x, y) = x \oplus y.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `min(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::One;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::from(123u32) ^ Natural::from(456u32), 435);
    /// assert_eq!(
    ///     Natural::from(10u32).pow(12) ^ (Natural::from(10u32).pow(12) - Natural::ONE),
    ///     8191
    /// );
    /// ```
    #[inline]
    fn bitxor(mut self, other: Natural) -> Natural {
        self ^= other;
        self
    }
}

impl<'a> BitXor<&'a Natural> for Natural {
    type Output = Natural;

    /// Takes the bitwise xor of two [`Natural`]s, taking the first by value and the second by
    /// reference.
    ///
    /// $$
    /// f(x, y) = x \oplus y.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `other.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::One;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::from(123u32) ^ &Natural::from(456u32), 435);
    /// assert_eq!(
    ///     Natural::from(10u32).pow(12) ^ &(Natural::from(10u32).pow(12) - Natural::ONE),
    ///     8191
    /// );
    /// ```
    #[inline]
    fn bitxor(mut self, other: &'a Natural) -> Natural {
        self ^= other;
        self
    }
}

impl<'a> BitXor<Natural> for &'a Natural {
    type Output = Natural;

    /// Takes the bitwise xor of two [`Natural`]s, taking the first by reference and the second by
    /// value.
    ///
    /// $$
    /// f(x, y) = x \oplus y.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::One;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(&Natural::from(123u32) ^ Natural::from(456u32), 435);
    /// assert_eq!(
    ///     &Natural::from(10u32).pow(12) ^ (Natural::from(10u32).pow(12) - Natural::ONE),
    ///     8191
    /// );
    /// ```
    #[inline]
    fn bitxor(self, mut other: Natural) -> Natural {
        other ^= self;
        other
    }
}

impl<'a, 'b> BitXor<&'a Natural> for &'b Natural {
    type Output = Natural;

    /// Takes the bitwise xor of two [`Natural`]s, taking both by reference.
    ///
    /// $$
    /// f(x, y) = x \oplus y.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::One;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(&Natural::from(123u32) ^ &Natural::from(456u32), 435);
    /// assert_eq!(
    ///     &Natural::from(10u32).pow(12) ^ &(Natural::from(10u32).pow(12) - Natural::ONE),
    ///     8191
    /// );
    /// ```
    fn bitxor(self, other: &'a Natural) -> Natural {
        match (self, other) {
            (x, &Natural(Small(y))) => x.xor_limb_ref(y),
            (&Natural(Small(x)), y) => y.xor_limb_ref(x),
            (&Natural(Large(ref xs)), &Natural(Large(ref ys))) => {
                Natural::from_owned_limbs_asc(limbs_xor(xs, ys))
            }
        }
    }
}

impl BitXorAssign<Natural> for Natural {
    /// Bitwise-xors a [`Natural`] with another [`Natural`] in place, taking the [`Natural`] on the
    /// right-hand side by value.
    ///
    /// $$
    /// x \gets x \oplus y.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `min(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut x = Natural::ZERO;
    /// x ^= Natural::from(0x0000000fu32);
    /// x ^= Natural::from(0x00000f00u32);
    /// x ^= Natural::from(0x000f_0000u32);
    /// x ^= Natural::from(0x0f000000u32);
    /// assert_eq!(x, 0x0f0f_0f0f);
    /// ```
    fn bitxor_assign(&mut self, mut other: Natural) {
        match (&mut *self, &mut other) {
            (_, Natural(Small(y))) => self.xor_assign_limb(*y),
            (Natural(Small(ref mut x)), _) => *self = other.xor_limb(*x),
            (Natural(Large(ref mut xs)), Natural(Large(ref mut ys))) => {
                if limbs_xor_in_place_either(xs, ys) {
                    swap(xs, ys);
                }
                self.trim();
            }
        }
    }
}

impl<'a> BitXorAssign<&'a Natural> for Natural {
    /// Bitwise-xors a [`Natural`] with another [`Natural`] in place, taking the [`Natural`] on the
    /// right-hand side by reference.
    ///
    /// $$
    /// x \gets x \oplus y.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `other.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut x = Natural::ZERO;
    /// x |= Natural::from(0x0000000fu32);
    /// x |= Natural::from(0x00000f00u32);
    /// x |= Natural::from(0x000f_0000u32);
    /// x |= Natural::from(0x0f000000u32);
    /// assert_eq!(x, 0x0f0f_0f0f);
    /// ```
    fn bitxor_assign(&mut self, other: &'a Natural) {
        match (&mut *self, other) {
            (_, Natural(Small(y))) => self.xor_assign_limb(*y),
            (Natural(Small(ref mut x)), _) => *self = other.xor_limb_ref(*x),
            (Natural(Large(ref mut xs)), Natural(Large(ref ys))) => {
                limbs_xor_in_place_left(xs, ys);
                self.trim();
            }
        }
    }
}