1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
use malachite_base::num::arithmetic::traits::{CheckedSub, OverflowingSubAssign};
use natural::Natural;
use platform::Limb;
use std::fmt::Display;
use std::ops::{Sub, SubAssign};

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, subtracts the
// `Limb` from the `Natural`. Returns a pair consisting of the limbs of the result, and whether
// there was a borrow left over; that is, whether the `Limb` was greater than the `Natural`.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// This is equivalent to `mpn_sub_1` from `gmp.h`, GMP 6.2.1, where the result is returned.
pub_crate_test! {limbs_sub_limb(xs: &[Limb], mut y: Limb) -> (Vec<Limb>, bool) {
    let len = xs.len();
    let mut out = Vec::with_capacity(len);
    for i in 0..len {
        let (diff, overflow) = xs[i].overflowing_sub(y);
        out.push(diff);
        if overflow {
            y = 1;
        } else {
            y = 0;
            out.extend_from_slice(&xs[i + 1..]);
            break;
        }
    }
    (out, y != 0)
}}

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, subtracts the
// `Limb` from the `Natural`, writing the `xs.len()` limbs of the result to an output slice.
// Returns whether there was a borrow left over; that is, whether the `Limb` was greater than the
// `Natural`. The output slice must be at least as long as the input slice.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `out` is shorter than `xs`.
//
// This is equivalent to `mpn_sub_1` from `gmp.h`, GMP 6.2.1.
pub_crate_test! {limbs_sub_limb_to_out(out: &mut [Limb], xs: &[Limb], mut y: Limb) -> bool {
    let len = xs.len();
    assert!(out.len() >= len);
    for i in 0..len {
        let overflow;
        (out[i], overflow) = xs[i].overflowing_sub(y);
        if overflow {
            y = 1;
        } else {
            y = 0;
            let copy_index = i + 1;
            out[copy_index..len].copy_from_slice(&xs[copy_index..]);
            break;
        }
    }
    y != 0
}}

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, subtracts the
// `Limb` from the `Natural` and writes the limbs of the result to the input slice. Returns whether
// there was a borrow left over; that is, whether the `Limb` was greater than the `Natural`.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// This is equivalent to `mpn_add_1` from `gmp.h`, GMP 6.2.1, where the result is written to the
// input slice.
pub_crate_test! {limbs_sub_limb_in_place(xs: &mut [Limb], mut y: Limb) -> bool {
    for x in xs.iter_mut() {
        if x.overflowing_sub_assign(y) {
            y = 1;
        } else {
            return false;
        }
    }
    y != 0
}}

// # Worst-case complexity
// Constant time and additional memory.
fn sub_and_borrow(x: Limb, y: Limb, borrow: &mut bool) -> Limb {
    let b = *borrow;
    let mut diff;
    (diff, *borrow) = x.overflowing_sub(y);
    if b {
        *borrow |= diff.overflowing_sub_assign(1);
    }
    diff
}

// Interpreting a two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s,
// subtracts the second from the first. Returns a pair consisting of the limbs of the result, and
// whether there was a borrow left over; that is, whether the second `Natural` was greater than the
// first `Natural`. The first slice must be at least as long as the second.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` is shorter than `ys`.
//
// This is equivalent to `mpn_sub` from `gmp.h`, GMP 6.2.1, where the output is returned.
pub_crate_test! {limbs_sub(xs: &[Limb], ys: &[Limb]) -> (Vec<Limb>, bool) {
    let xs_len = xs.len();
    let ys_len = ys.len();
    assert!(xs_len >= ys_len);
    let mut out = Vec::with_capacity(xs_len);
    let mut borrow = false;
    for (&x, &y) in xs.iter().zip(ys.iter()) {
        out.push(sub_and_borrow(x, y, &mut borrow));
    }
    if xs_len != ys_len {
        out.extend_from_slice(&xs[ys_len..]);
        if borrow {
            borrow = limbs_sub_limb_in_place(&mut out[ys_len..], 1);
        }
    }
    (out, borrow)
}}

// Interpreting a two equal-length slices of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, subtracts the second from the first, writing the `xs.len()` limbs of the result to
// an output slice. Returns whether there was a borrow left over; that is, whether the second
// `Natural` was greater than the first `Natural`. The output slice must be at least as long as
// either input slice.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `out` is shorter than `xs` or if `xs` and `ys` have different lengths.
//
// This is equivalent to `mpn_sub_n` from `gmp.h`, GMP 6.2.1.
pub_crate_test! {limbs_sub_same_length_to_out(out: &mut [Limb], xs: &[Limb], ys: &[Limb]) -> bool {
    let len = xs.len();
    assert_eq!(len, ys.len());
    assert!(out.len() >= len);
    let mut borrow = false;
    for (out, (&x, &y)) in out.iter_mut().zip(xs.iter().zip(ys.iter())) {
        *out = sub_and_borrow(x, y, &mut borrow);
    }
    borrow
}}

// Interpreting a two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s,
// subtracts the second from the first, writing the `xs.len()` limbs of the result to an output
// slice. Returns whether there was a borrow left over; that is, whether the second `Natural` was
// greater than the first `Natural`. The output slice must be at least as long as the first input
// slice and the first input slice must be at least as long as the second.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `out` is shorter than `xs` or if `xs` is shorter than `ys`.
//
// This is equivalent to `mpn_sub` from `gmp.h`, GMP 6.2.1.
pub_crate_test! {limbs_sub_greater_to_out(out: &mut [Limb], xs: &[Limb], ys: &[Limb]) -> bool {
    let xs_len = xs.len();
    let ys_len = ys.len();
    assert!(out.len() >= xs_len);
    let (xs_lo, xs_hi) = xs.split_at(ys_len);
    let borrow = limbs_sub_same_length_to_out(out, xs_lo, ys);
    if xs_len == ys_len {
        borrow
    } else if borrow {
        limbs_sub_limb_to_out(&mut out[ys_len..], xs_hi, 1)
    } else {
        out[ys_len..xs_len].copy_from_slice(xs_hi);
        false
    }
}}

// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, subtracts the second from the first, writing the `xs.len()` limbs of the result to
// the first (left) slice. Returns whether there was a borrow left over; that is, whether the
// second `Natural` was greater than the first `Natural`.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` and `ys` have different lengths.
//
// This is equivalent to `mpn_sub_n` from `gmp.h`, GMP 6.2.1, where the output is written to the
// first input.
pub_crate_test! {limbs_sub_same_length_in_place_left(xs: &mut [Limb], ys: &[Limb]) -> bool {
    assert_eq!(xs.len(), ys.len());
    let mut borrow = false;
    for (x, &y) in xs.iter_mut().zip(ys.iter()) {
        *x = sub_and_borrow(*x, y, &mut borrow);
    }
    borrow
}}

// Interpreting two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s,
// subtracts the second from the first, writing the `xs.len()` limbs of the result to the first
// (left) slice. Returns whether there was a borrow left over; that is, whether the second
// `Natural` was greater than the first `Natural`. The first slice must be at least as long as the
// second.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` is shorter than `ys`.
//
// This is equivalent to `mpn_sub` from `gmp.h`, GMP 6.2.1, where the output is written to the
// first input.
pub_crate_test! {limbs_sub_greater_in_place_left(xs: &mut [Limb], ys: &[Limb]) -> bool {
    let xs_len = xs.len();
    let ys_len = ys.len();
    let (xs_lo, xs_hi) = xs.split_at_mut(ys_len);
    let borrow = limbs_sub_same_length_in_place_left(xs_lo, ys);
    if xs_len == ys_len {
        borrow
    } else if borrow {
        limbs_sub_limb_in_place(xs_hi, 1)
    } else {
        false
    }
}}

// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, subtracts the second from the first, writing the `xs.len()` limbs of the result to
// the second (right) slice. Returns whether there was a borrow left over; that is, whether the
// second `Natural` was greater than the first `Natural`.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` and `ys` have different lengths.
//
// This is equivalent to `mpn_sub_n` from `gmp.h`, GMP 6.2.1, where the output is written to the
// second input.
pub_crate_test! {limbs_sub_same_length_in_place_right(xs: &[Limb], ys: &mut [Limb]) -> bool {
    assert_eq!(xs.len(), ys.len());
    let mut borrow = false;
    for (&x, y) in xs.iter().zip(ys.iter_mut()) {
        *y = sub_and_borrow(x, *y, &mut borrow);
    }
    borrow
}}

// Given two equal-length slices `xs` and `ys`, computes the difference between the `Natural`s
// whose limbs are `xs` and `&ys[..len]`, and writes the limbs of the result to `ys`. Returns
// whether there was a borrow left over; that is, whether the second `Natural` was greater than the
// first `Natural`.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` and `ys` have different lengths or if `len` is greater than `xs.len()`.
//
// This is equivalent to `mpn_sub_n` from `gmp.h`, GMP 6.2.1, where the output is written to the
// second input (which has `len` limbs) and the second input has enough space past `len` to
// accomodate the output.
pub_crate_test! {limbs_slice_sub_in_place_right(xs: &[Limb], ys: &mut [Limb], len: usize) -> bool {
    let xs_len = xs.len();
    assert_eq!(xs_len, ys.len());
    let (xs_lo, xs_hi) = xs.split_at(len);
    let (ys_lo, ys_hi) = ys.split_at_mut(len);
    let borrow = limbs_sub_same_length_in_place_right(xs_lo, ys_lo);
    if xs_len == len {
        borrow
    } else if borrow {
        limbs_sub_limb_to_out(ys_hi, xs_hi, 1)
    } else {
        ys_hi.copy_from_slice(xs_hi);
        false
    }
}}

// Interpreting a of `Limb`s and a `Vec` of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, subtracts the second from the first, writing the `xs.len()` limbs of the result to
// the `Vec`, possibly extending the `Vec`'s length. Returns whether there was a borrow left over;
// that is, whether the second `Natural` was greater than the first `Natural`. The first slice must
// be at least as long as the second.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(m) = O(m)$
//
// where $T$ is time, $M$ is additional memory, $n$ is `xs.len()`, and $m$ is
// `xs.len()` - `ys.len()`.
//
// # Panics
// Panics if `xs` is shorter than `ys`.
pub_crate_test! {limbs_vec_sub_in_place_right(xs: &[Limb], ys: &mut Vec<Limb>) -> bool {
    let xs_len = xs.len();
    let ys_len = ys.len();
    assert!(xs_len >= ys_len);
    let (xs_lo, xs_hi) = xs.split_at(ys_len);
    let borrow = limbs_sub_same_length_in_place_right(xs_lo, ys);
    if xs_len == ys_len {
        borrow
    } else {
        ys.extend_from_slice(xs_hi);
        if borrow {
            limbs_sub_limb_in_place(&mut ys[ys_len..], 1)
        } else {
            false
        }
    }
}}

// Given a slice `xs`, computes the difference between the `Natural`s whose limbs are
// `&xs[..xs.len() - right_start]` and `&xs[right_start..]`, and writes the limbs of the result to
// `&xs[..xs.len() - right_start]`. Returns whether there was a borrow left over; that is, whether
// the second `Natural` was greater than the first `Natural`. As implied by the name, the input
// slices may overlap.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len() - right_start`.
//
// # Panics
// Panics if `right_start` is greater than `xs.len()`.
//
// This is equivalent to `mpn_sub_n` from `gmp.h`, GMP 6.2.1, where the output is written to the
// first input, and the two inputs are possibly-overlapping subslices of a single slice.
pub_crate_test! {limbs_sub_same_length_in_place_with_overlap(
    xs: &mut [Limb],
    right_start: usize
) -> bool {
    let len = xs.len() - right_start;
    let mut borrow = false;
    for i in 0..len {
        xs[i] = sub_and_borrow(xs[i], xs[i + right_start], &mut borrow);
    }
    borrow
}}

// Given two slices `xs` and `ys`, computes the difference between the `Natural`s whose limbs are
// `&xs[xs.len() - ys.len()..]` and `&ys`, and writes the limbs of the result to `&xs[..ys.len()]`.
// Returns whether there was a borrow left over; that is, whether the second `Natural` was greater
// than the first `Natural`. As implied by the name, the input and output ranges may overlap. `xs`
// must be at least as long as `ys`.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `ys.len()`.
//
// # Panics
// Panics if `xs.len()` is shorter than `ys.len()`.
//
// This is equivalent to `mpn_sub_n` from `gmp.h`, GMP 6.2.1, where the output is a prefix of a
// slice and the left operand of the subtraction is a suffix of the same slice, and the prefix and
// suffix may overlap.
pub_crate_test! {limbs_sub_same_length_to_out_with_overlap(xs: &mut [Limb], ys: &[Limb]) -> bool {
    let xs_len = xs.len();
    let ys_len = ys.len();
    assert!(xs_len >= ys_len);
    let right_start = xs_len - ys_len;
    let mut borrow = false;
    for i in 0..ys_len {
        xs[i] = sub_and_borrow(xs[i + right_start], ys[i], &mut borrow);
    }
    borrow
}}

// Interpreting a two equal-length slices of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, subtracts the second from the first, and then subtracts a borrow (`false` is 0,
// `true` is 1), writing the `xs.len()` limbs of the result to an output slice. Returns whether
// there was a borrow left over. The output slice must be at least as long as either input slice.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `out` is shorter than `xs` or if `xs` and `ys` have different lengths.
//
// This is equivalent to `mpn_sub_nc` from `gmp-impl.h`, GMP 6.2.1, where `rp`, `up`, and `vp` are
// disjoint.
pub_crate_test! {limbs_sub_same_length_with_borrow_in_to_out(
    out: &mut [Limb],
    xs: &[Limb],
    ys: &[Limb],
    borrow_in: bool,
) -> bool {
    let mut borrow = limbs_sub_same_length_to_out(out, xs, ys);
    if borrow_in {
        borrow |= limbs_sub_limb_in_place(&mut out[..xs.len()], 1);
    }
    borrow
}}

// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, subtracts the second from the first, and then subtracts a borrow (`false` is 0,
// `true` is 1), writing the `xs.len()` limbs of the result to the first (left) slice. Return
// whether there was a borrow left over.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` and `ys` have different lengths.
//
// This is equivalent to `mpn_sub_nc` from `gmp-impl.h`, GMP 6.2.1, where `rp` is the same as `up`.
pub_crate_test! {limbs_sub_same_length_with_borrow_in_in_place_left(
    xs: &mut [Limb],
    ys: &[Limb],
    borrow_in: bool,
) -> bool {
    let mut borrow = limbs_sub_same_length_in_place_left(xs, ys);
    if borrow_in {
        borrow |= limbs_sub_limb_in_place(xs, 1);
    }
    borrow
}}

// Interpreting two equal-length slices of `Limb`s as the limbs (in ascending order) of two
// `Natural`s, subtracts the second from the first, and then subtracts a borrow (`false` is 0,
// `true` is 1), writing the `xs.len()` limbs of the result to the second (right) slice. Returns
// whether there was a borrow left over.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// # Panics
// Panics if `xs` and `ys` have different lengths.
//
// This is equivalent to `mpn_sub_nc` from `gmp-impl.h`, GMP 6.2.1, where `rp` is the same as `vp`.
pub_crate_test! {limbs_sub_same_length_with_borrow_in_in_place_right(
    xs: &[Limb],
    ys: &mut [Limb],
    borrow_in: bool,
) -> bool {
    let mut borrow = limbs_sub_same_length_in_place_right(xs, ys);
    if borrow_in {
        borrow |= limbs_sub_limb_in_place(ys, 1);
    }
    borrow
}}

fn sub_panic<S: Display, T: Display>(x: S, y: T) -> ! {
    panic!(
        "Cannot subtract a number from a smaller number. self: {}, other: {}",
        x, y
    );
}

impl Natural {
    pub(crate) fn sub_limb(self, other: Limb) -> Natural {
        self.checked_sub_limb(other)
            .expect("Cannot subtract a Limb from a smaller Natural")
    }

    pub(crate) fn sub_limb_ref(&self, other: Limb) -> Natural {
        self.checked_sub_limb_ref(other).unwrap_or_else(|| {
            sub_panic(self, other);
        })
    }
}

impl Sub<Natural> for Natural {
    type Output = Natural;

    /// Subtracts a [`Natural`] by another [`Natural`], taking both by value.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::from(123u32) - Natural::ZERO, 123);
    /// assert_eq!(Natural::from(456u32) - Natural::from(123u32), 333);
    /// assert_eq!(
    ///     Natural::from(10u32).pow(12) * Natural::from(3u32) - Natural::from(10u32).pow(12),
    ///     2000000000000u64
    /// );
    /// ```
    fn sub(self, other: Natural) -> Natural {
        self.checked_sub(other)
            .expect("Cannot subtract a Natural from a smaller Natural")
    }
}

impl<'a> Sub<&'a Natural> for Natural {
    type Output = Natural;

    /// Subtracts a [`Natural`] by another [`Natural`], taking the first by value and the second by
    /// reference.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::from(123u32) - &Natural::ZERO, 123);
    /// assert_eq!(Natural::from(456u32) - &Natural::from(123u32), 333);
    /// assert_eq!(
    ///     Natural::from(10u32).pow(12) * Natural::from(3u32) - &Natural::from(10u32).pow(12),
    ///     2000000000000u64
    /// );
    /// ```
    fn sub(self, other: &'a Natural) -> Natural {
        self.checked_sub(other)
            .expect("Cannot subtract a Natural from a smaller Natural")
    }
}

impl<'a> Sub<Natural> for &'a Natural {
    type Output = Natural;

    /// Subtracts a [`Natural`] by another [`Natural`], taking the first by reference and the
    /// second by value.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(&Natural::from(123u32) - Natural::ZERO, 123);
    /// assert_eq!(&Natural::from(456u32) - Natural::from(123u32), 333);
    /// assert_eq!(
    ///     &(Natural::from(10u32).pow(12) * Natural::from(3u32)) - Natural::from(10u32).pow(12),
    ///     2000000000000u64
    /// );
    /// ```
    fn sub(self, other: Natural) -> Natural {
        self.checked_sub(other)
            .expect("Cannot subtract a Natural from a smaller Natural")
    }
}

impl<'a, 'b> Sub<&'a Natural> for &'b Natural {
    type Output = Natural;

    /// Subtracts a [`Natural`] by another [`Natural`], taking both by reference.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(&Natural::from(123u32) - &Natural::ZERO, 123);
    /// assert_eq!(&Natural::from(456u32) - &Natural::from(123u32), 333);
    /// assert_eq!(
    ///     &(Natural::from(10u32).pow(12) * Natural::from(3u32)) - &Natural::from(10u32).pow(12),
    ///     2000000000000u64
    /// );
    /// ```
    fn sub(self, other: &'a Natural) -> Natural {
        self.checked_sub(other).unwrap_or_else(|| {
            sub_panic(self, other);
        })
    }
}

impl SubAssign<Natural> for Natural {
    /// Subtracts a [`Natural`] by another [`Natural`] in place, taking the [`Natural`] on the
    /// right-hand side by value.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Panics
    /// Panics if `other` is greater than `self`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut x = Natural::from(10u32).pow(12) * Natural::from(10u32);
    /// x -= Natural::from(10u32).pow(12);
    /// x -= Natural::from(10u32).pow(12) * Natural::from(2u32);
    /// x -= Natural::from(10u32).pow(12) * Natural::from(3u32);
    /// x -= Natural::from(10u32).pow(12) * Natural::from(4u32);
    /// assert_eq!(x, 0);
    /// ```
    fn sub_assign(&mut self, other: Natural) {
        if self.sub_assign_no_panic(other) {
            panic!("Cannot subtract a Natural from a smaller Natural");
        }
    }
}

impl<'a> SubAssign<&'a Natural> for Natural {
    /// Subtracts a [`Natural`] by another [`Natural`] in place, taking the [`Natural`] on the
    /// right-hand side by reference.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Panics
    /// Panics if `other` is greater than `self`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut x = Natural::from(10u32).pow(12) * Natural::from(10u32);
    /// x -= &Natural::from(10u32).pow(12);
    /// x -= &(Natural::from(10u32).pow(12) * Natural::from(2u32));
    /// x -= &(Natural::from(10u32).pow(12) * Natural::from(3u32));
    /// x -= &(Natural::from(10u32).pow(12) * Natural::from(4u32));
    /// assert_eq!(x, 0);
    /// ```
    fn sub_assign(&mut self, other: &'a Natural) {
        if self.sub_assign_ref_no_panic(other) {
            panic!("Cannot subtract a Natural from a smaller Natural");
        }
    }
}