1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
use malachite_base::num::arithmetic::traits::{
    ShlRound, ShlRoundAssign, ShrRound, ShrRoundAssign, UnsignedAbs,
};
use malachite_base::num::basic::signeds::PrimitiveSigned;
use malachite_base::rounding_modes::RoundingMode;
use natural::Natural;
use std::ops::{Shl, ShlAssign};

fn shl_round_ref<'a, U, S: PrimitiveSigned + UnsignedAbs<Output = U>>(
    x: &'a Natural,
    bits: S,
    rm: RoundingMode,
) -> Natural
where
    &'a Natural: Shl<U, Output = Natural> + ShrRound<U, Output = Natural>,
{
    if bits >= S::ZERO {
        x << bits.unsigned_abs()
    } else {
        x.shr_round(bits.unsigned_abs(), rm)
    }
}

fn shl_round_assign_n<U, S: PrimitiveSigned + UnsignedAbs<Output = U>>(
    x: &mut Natural,
    bits: S,
    rm: RoundingMode,
) where
    Natural: ShlAssign<U> + ShrRoundAssign<U>,
{
    if bits >= S::ZERO {
        *x <<= bits.unsigned_abs();
    } else {
        x.shr_round_assign(bits.unsigned_abs(), rm);
    }
}

macro_rules! impl_natural_shl_round_signed {
    ($t:ident) => {
        impl ShlRound<$t> for Natural {
            type Output = Natural;

            /// Left-shifts a [`Natural`] (multiplies or divides it by a power of 2), taking it by
            /// value, and rounds according to the specified rounding mode.
            ///
            /// Passing `RoundingMode::Floor` or `RoundingMode::Down` is equivalent to using `>>`.
            /// To test whether `RoundingMode::Exact` can be passed, use
            /// `bits > 0 || self.divisible_by_power_of_2(bits)`. Rounding might only be necessary
            /// if `bits` is negative.
            ///
            /// Let $q = x2^k$:
            ///
            /// $f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$
            ///
            /// $f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$
            ///
            /// $$
            /// f(x, k, \mathrm{Nearest}) = \begin{cases}
            ///     \lfloor q \rfloor & \text{if}
            ///         \\quad q - \lfloor q \rfloor < \frac{1}{2}, \\\\
            ///     \lceil q \rceil & \text{if}
            ///         \\quad q - \lfloor q \rfloor > \frac{1}{2}, \\\\
            ///     \lfloor q \rfloor & \text{if} \\quad q - \lfloor q \rfloor =
            ///         \frac{1}{2} \\ \text{and} \\ \lfloor q \rfloor
            ///     \\ \text{is even}, \\\\
            ///     \lceil q \rceil &
            ///     \text{if} \\quad q - \lfloor q \rfloor = \frac{1}{2} \\ \text{and}
            ///         \\ \lfloor q \rfloor \\ \text{is odd}.
            /// \end{cases}
            /// $$
            ///
            /// $f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.
            ///
            /// # Worst-case complexity
            /// $T(n, m) = O(n + m)$
            ///
            /// $M(n, m) = O(n + m)$
            ///
            /// where $T$ is time, $M$ is additional memory, $n$ is `self.significant_bits()`, and
            /// $m$ is `max(bits, 0)`.
            ///
            /// # Panics
            /// Let $k$ be `bits`. Panics if $k$ is negative and `rm` is `RoundingMode::Exact` but
            /// `self` is not divisible by $2^{-k}$.
            ///
            /// # Examples
            /// See [here](super::shl_round#shl_round).
            #[inline]
            fn shl_round(mut self, bits: $t, rm: RoundingMode) -> Natural {
                self.shl_round_assign(bits, rm);
                self
            }
        }

        impl<'a> ShlRound<$t> for &'a Natural {
            type Output = Natural;

            /// Left-shifts a [`Natural`] (multiplies or divides it by a power of 2), taking it by
            /// reference, and rounds according to the specified rounding mode.
            ///
            /// Passing `RoundingMode::Floor` or `RoundingMode::Down` is equivalent to using `>>`.
            /// To test whether `RoundingMode::Exact` can be passed, use
            /// `bits > 0 || self.divisible_by_power_of_2(bits)`. Rounding might only be necessary
            /// if `bits` is negative.
            ///
            /// Let $q = x2^k$:
            ///
            /// $f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$
            ///
            /// $f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$
            ///
            /// $$
            /// f(x, k, \mathrm{Nearest}) = \begin{cases}
            ///     \lfloor q \rfloor & \text{if}
            ///         \\quad q - \lfloor q \rfloor < \frac{1}{2}, \\\\
            ///     \lceil q \rceil & \text{if}
            ///         \\quad q - \lfloor q \rfloor > \frac{1}{2}, \\\\
            ///     \lfloor q \rfloor & \text{if} \\quad q - \lfloor q \rfloor =
            ///         \frac{1}{2} \\ \text{and} \\ \lfloor q \rfloor
            ///     \\ \text{is even}, \\\\
            ///     \lceil q \rceil &
            ///     \text{if} \\quad q - \lfloor q \rfloor = \frac{1}{2} \\ \text{and}
            ///         \\ \lfloor q \rfloor \\ \text{is odd}.
            /// \end{cases}
            /// $$
            ///
            /// $f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.
            ///
            /// # Worst-case complexity
            /// $T(n, m) = O(n + m)$
            ///
            /// $M(n, m) = O(n + m)$
            ///
            /// where $T$ is time, $M$ is additional memory, $n$ is `self.significant_bits()`, and
            /// $m$ is `max(bits, 0)`.
            ///
            /// # Panics
            /// Let $k$ be `bits`. Panics if $k$ is negative and `rm` is `RoundingMode::Exact` but
            /// `self` is not divisible by $2^{-k}$.
            ///
            /// # Examples
            /// See [here](super::shl_round#shl_round).
            #[inline]
            fn shl_round(self, bits: $t, rm: RoundingMode) -> Natural {
                shl_round_ref(self, bits, rm)
            }
        }

        impl ShlRoundAssign<$t> for Natural {
            /// Left-shifts a [`Natural`] (multiplies or divides it by a power of 2) and rounds
            /// according to the specified rounding mode, in place.
            ///
            /// Passing `RoundingMode::Floor` or `RoundingMode::Down` is equivalent to
            /// using `>>`. To test whether `RoundingMode::Exact` can be passed, use
            /// `bits > 0 || self.divisible_by_power_of_2(bits)`. Rounding might only be
            /// necessary if `bits` is negative.
            ///
            /// See the [`ShlRound`](malachite_base::num::arithmetic::traits::ShlRound)
            /// documentation for details.
            ///
            /// # Worst-case complexity
            /// $T(n, m) = O(n + m)$
            ///
            /// $M(n, m) = O(n + m)$
            ///
            /// where $T$ is time, $M$ is additional memory, $n$ is `self.significant_bits()`, and
            /// $m$ is `max(bits, 0)`.
            ///
            /// # Panics
            /// Let $k$ be `bits`. Panics if $k$ is negative and `rm` is `RoundingMode::Exact` but
            /// `self` is not divisible by $2^{-k}$.
            ///
            /// # Examples
            /// See [here](super::shl_round#shl_round_assign).
            #[inline]
            fn shl_round_assign(&mut self, bits: $t, rm: RoundingMode) {
                shl_round_assign_n(self, bits, rm);
            }
        }
    };
}
apply_to_signeds!(impl_natural_shl_round_signed);