1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
use malachite_base::num::arithmetic::traits::{ModPow, ModPowAssign, ModSquare, ModSquareAssign};
use malachite_base::num::basic::traits::Two;
use natural::Natural;

impl ModSquare<Natural> for Natural {
    type Output = Natural;

    /// Squares a [`Natural`] modulo another [`Natural`] $m$. Assumes the input is already reduced
    /// modulo $m$. Both [`Natural`]s are taken by value.
    ///
    /// $f(x, m) = y$, where $x, y < m$ and $x^2 \equiv y \mod m$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `m.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::ModSquare;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::from(2u32).mod_square(Natural::from(10u32)), 4);
    /// assert_eq!(Natural::from(100u32).mod_square(Natural::from(497u32)), 60);
    /// ```
    fn mod_square(self, m: Natural) -> Natural {
        (&self).mod_pow(&Natural::TWO, &m)
    }
}

impl<'a> ModSquare<&'a Natural> for Natural {
    type Output = Natural;

    /// Squares a [`Natural`] modulo another [`Natural`] $m$. Assumes the input is already reduced
    /// modulo $m$. The first [`Natural`] is taken by value and the second by reference.
    ///
    /// $f(x, m) = y$, where $x, y < m$ and $x^2 \equiv y \mod m$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `m.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::ModSquare;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::from(2u32).mod_square(&Natural::from(10u32)), 4);
    /// assert_eq!(Natural::from(100u32).mod_square(&Natural::from(497u32)), 60);
    /// ```
    fn mod_square(self, m: &'a Natural) -> Natural {
        (&self).mod_pow(&Natural::TWO, m)
    }
}

impl<'a> ModSquare<Natural> for &'a Natural {
    type Output = Natural;

    /// Squares a [`Natural`] modulo another [`Natural`] $m$. Assumes the input is already reduced
    /// modulo $m$. The first [`Natural`] is taken by reference and the second by value.
    ///
    /// $f(x, m) = y$, where $x, y < m$ and $x^2 \equiv y \mod m$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `m.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::ModSquare;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!((&Natural::from(2u32)).mod_square(Natural::from(10u32)), 4);
    /// assert_eq!((&Natural::from(100u32)).mod_square(Natural::from(497u32)), 60);
    /// ```
    fn mod_square(self, m: Natural) -> Natural {
        self.mod_pow(&Natural::TWO, &m)
    }
}

impl<'a, 'b> ModSquare<&'b Natural> for &'a Natural {
    type Output = Natural;

    /// Squares a [`Natural`] modulo another [`Natural`] $m$. Assumes the input is already reduced
    /// modulo $m$. Both [`Natural`]s are taken by reference.
    ///
    /// $f(x, m) = y$, where $x, y < m$ and $x^2 \equiv y \mod m$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `m.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::ModSquare;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!((&Natural::from(2u32)).mod_square(&Natural::from(10u32)), 4);
    /// assert_eq!((&Natural::from(100u32)).mod_square(&Natural::from(497u32)), 60);
    /// ```
    fn mod_square(self, m: &'b Natural) -> Natural {
        self.mod_pow(&Natural::TWO, m)
    }
}

impl ModSquareAssign<Natural> for Natural {
    /// Squares a [`Natural`] modulo another [`Natural`] $m$, in place. Assumes the input is
    /// already reduced modulo $m$. The [`Natural`] on the right-hand side is taken by value.
    ///
    /// $x \gets y$, where $x, y < m$ and $x^2 \equiv y \mod m$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `m.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::ModSquareAssign;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut x = Natural::from(2u32);
    /// x.mod_square_assign(Natural::from(10u32));
    /// assert_eq!(x, 4);
    ///
    /// let mut x = Natural::from(100u32);
    /// x.mod_square_assign(Natural::from(497u32));
    /// assert_eq!(x, 60);
    /// ```
    #[inline]
    fn mod_square_assign(&mut self, m: Natural) {
        self.mod_pow_assign(&Natural::TWO, &m);
    }
}

impl<'a> ModSquareAssign<&'a Natural> for Natural {
    /// Squares a [`Natural`] modulo another [`Natural`] $m$, in place. Assumes the input is
    /// already reduced modulo $m$. The [`Natural`] on the right-hand side is taken by reference.
    ///
    /// $x \gets y$, where $x, y < m$ and $x^2 \equiv y \mod m$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `m.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::ModSquareAssign;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut x = Natural::from(2u32);
    /// x.mod_square_assign(&Natural::from(10u32));
    /// assert_eq!(x, 4);
    ///
    /// let mut x = Natural::from(100u32);
    /// x.mod_square_assign(&Natural::from(497u32));
    /// assert_eq!(x, 60);
    /// ```
    #[inline]
    fn mod_square_assign(&mut self, m: &'a Natural) {
        self.mod_pow_assign(&Natural::TWO, m);
    }
}