1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
use malachite_base::num::arithmetic::traits::{DivExact, DivExactAssign, Gcd, Lcm, LcmAssign};
use malachite_base::num::basic::traits::Zero;
use natural::Natural;

impl Lcm<Natural> for Natural {
    type Output = Natural;

    /// Computes the LCM (least common multiple) of two [`Natural`]s, taking both by value.
    ///
    /// $$
    /// f(x, y) = \operatorname{lcm}(x, y).
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n (\log n)^2 \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Lcm;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::from(3u32).lcm(Natural::from(5u32)), 15);
    /// assert_eq!(Natural::from(12u32).lcm(Natural::from(90u32)), 180);
    /// ```
    fn lcm(mut self, other: Natural) -> Natural {
        self.lcm_assign(other);
        self
    }
}

impl<'a> Lcm<&'a Natural> for Natural {
    type Output = Natural;

    /// Computes the LCM (least common multiple) of two [`Natural`]s, taking the first by value and
    /// the second by reference.
    ///
    /// $$
    /// f(x, y) = \operatorname{lcm}(x, y).
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n (\log n)^2 \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Lcm;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::from(3u32).lcm(&Natural::from(5u32)), 15);
    /// assert_eq!(Natural::from(12u32).lcm(&Natural::from(90u32)), 180);
    /// ```
    #[inline]
    fn lcm(mut self, other: &'a Natural) -> Natural {
        self.lcm_assign(other);
        self
    }
}

impl<'a> Lcm<Natural> for &'a Natural {
    type Output = Natural;

    /// Computes the LCM (least common multiple) of two [`Natural`]s, taking the first by reference
    /// and the second by value.
    ///
    /// $$
    /// f(x, y) = \operatorname{lcm}(x, y).
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n (\log n)^2 \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Lcm;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!((&Natural::from(3u32)).lcm(Natural::from(5u32)), 15);
    /// assert_eq!((&Natural::from(12u32)).lcm(Natural::from(90u32)), 180);
    /// ```
    #[inline]
    fn lcm(self, mut other: Natural) -> Natural {
        other.lcm_assign(self);
        other
    }
}

impl<'a, 'b> Lcm<&'a Natural> for &'b Natural {
    type Output = Natural;

    /// Computes the LCM (least common multiple) of two [`Natural`]s, taking both by reference.
    ///
    /// $$
    /// f(x, y) = \operatorname{lcm}(x, y).
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n (\log n)^2 \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::Lcm;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!((&Natural::from(3u32)).lcm(&Natural::from(5u32)), 15);
    /// assert_eq!((&Natural::from(12u32)).lcm(&Natural::from(90u32)), 180);
    /// ```
    #[inline]
    fn lcm(self, other: &'a Natural) -> Natural {
        if *self == 0 || *other == 0 {
            return Natural::ZERO;
        }
        let gcd = self.gcd(other);
        // Division is slower than multiplication, so we choose the arguments to div_exact to be as
        // small as possible. This also allows the special case of lcm(x, y) when gcd(x, y) = y to
        // be quickly reduced to x.
        if self >= other {
            self * other.div_exact(gcd)
        } else {
            other * self.div_exact(gcd)
        }
    }
}

impl LcmAssign<Natural> for Natural {
    /// Replaces a [`Natural`] by its LCM (least common multiple) with another [`Natural`], taking
    /// the [`Natural`] on the right-hand side by value.
    ///
    /// $$
    /// x \gets \operatorname{lcm}(x, y).
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n (\log n)^2 \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::LcmAssign;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut x = Natural::from(3u32);
    /// x.lcm_assign(Natural::from(5u32));
    /// assert_eq!(x, 15);
    ///
    /// let mut x = Natural::from(12u32);
    /// x.lcm_assign(Natural::from(90u32));
    /// assert_eq!(x, 180);
    /// ```
    #[inline]
    fn lcm_assign(&mut self, other: Natural) {
        if *self == 0 {
            return;
        } else if other == 0 {
            *self = Natural::ZERO;
            return;
        }
        self.div_exact_assign((&*self).gcd(&other));
        *self *= other;
    }
}

impl<'a> LcmAssign<&'a Natural> for Natural {
    /// Replaces a [`Natural`] by its LCM (least common multiple) with another [`Natural`], taking
    /// the [`Natural`] on the right-hand side by reference.
    ///
    /// $$
    /// x \gets \operatorname{lcm}(x, y).
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n (\log n)^2 \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::LcmAssign;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut x = Natural::from(3u32);
    /// x.lcm_assign(&Natural::from(5u32));
    /// assert_eq!(x, 15);
    ///
    /// let mut x = Natural::from(12u32);
    /// x.lcm_assign(&Natural::from(90u32));
    /// assert_eq!(x, 180);
    /// ```
    #[inline]
    fn lcm_assign(&mut self, other: &'a Natural) {
        if *self == 0 {
            return;
        } else if *other == 0 {
            *self = Natural::ZERO;
            return;
        }
        self.div_exact_assign((&*self).gcd(other));
        *self *= other;
    }
}