1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
use malachite_base::num::arithmetic::traits::EqModPowerOf2;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::conversion::traits::{ExactFrom, WrappingFrom};
use natural::arithmetic::divisible_by_power_of_2::limbs_divisible_by_power_of_2;
use natural::InnerNatural::{Large, Small};
use natural::Natural;
use platform::Limb;
use std::cmp::Ordering;

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, returns
// whether the `Natural` is equivalent to a limb mod two to the power of `pow`; that is, whether
// the `pow` least-significant bits of the `Natural` and the limb are equal.
//
// This function assumes that `xs` has length at least 2 and the last (most significant) limb is
// nonzero.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
pub_test! {limbs_eq_limb_mod_power_of_2(xs: &[Limb], y: Limb, pow: u64) -> bool {
    let i = usize::exact_from(pow >> Limb::LOG_WIDTH);
    if i >= xs.len() {
        false
    } else if i == 0 {
        xs[0].eq_mod_power_of_2(y, pow)
    } else {
        let (xs_head, xs_tail) = xs.split_first().unwrap();
        *xs_head == y && limbs_divisible_by_power_of_2(xs_tail, pow - Limb::WIDTH)
    }
}}

// xs.len() == ys.len()
fn limbs_eq_mod_power_of_2_same_length(xs: &[Limb], ys: &[Limb], pow: u64) -> bool {
    let i = usize::exact_from(pow >> Limb::LOG_WIDTH);
    let len = xs.len();
    if i >= len {
        xs == ys
    } else {
        let (xs_last, xs_init) = xs[..i + 1].split_last().unwrap();
        let (ys_last, ys_init) = ys[..i + 1].split_last().unwrap();
        xs_init == ys_init && xs_last.eq_mod_power_of_2(*ys_last, pow & Limb::WIDTH_MASK)
    }
}

// xs.len() > ys.len()
fn limbs_eq_mod_power_of_2_greater(xs: &[Limb], ys: &[Limb], pow: u64) -> bool {
    let i = usize::exact_from(pow >> Limb::LOG_WIDTH);
    let xs_len = xs.len();
    let ys_len = ys.len();
    if i >= xs_len {
        false
    } else if i >= ys_len {
        let (xs_lo, xs_hi) = xs.split_at(ys_len);
        xs_lo == ys
            && limbs_divisible_by_power_of_2(xs_hi, pow - Limb::WIDTH * u64::wrapping_from(ys_len))
    } else {
        let (xs_last, xs_init) = xs[..i + 1].split_last().unwrap();
        let (ys_last, ys_init) = ys[..i + 1].split_last().unwrap();
        xs_init == ys_init && xs_last.eq_mod_power_of_2(*ys_last, pow & Limb::WIDTH_MASK)
    }
}

/// Interpreting two slices of `Limb`s as the limbs (in ascending order) of two [`Natural`]s,
/// returns whether the [`Natural`]s are equivalent mod two to the power of `pow`; that is, whether
/// their `pow` least-significant bits are equal.
///
/// This function assumes that neither slice is empty and their last elements are nonzero.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `min(pow, xs.len(), ys.len())`.
///
/// This is equivalent to `mpz_congruent_2exp_p` from `mpz/cong_2exp.c`, GMP 6.2.1, where `a` and
/// `c` are non-negative.
#[doc(hidden)]
pub fn limbs_eq_mod_power_of_2(xs: &[Limb], ys: &[Limb], pow: u64) -> bool {
    match xs.len().cmp(&ys.len()) {
        Ordering::Equal => limbs_eq_mod_power_of_2_same_length(xs, ys, pow),
        Ordering::Less => limbs_eq_mod_power_of_2_greater(ys, xs, pow),
        Ordering::Greater => limbs_eq_mod_power_of_2_greater(xs, ys, pow),
    }
}

impl Natural {
    fn eq_mod_power_of_2_limb(&self, other: Limb, pow: u64) -> bool {
        match *self {
            Natural(Small(small)) => small.eq_mod_power_of_2(other, pow),
            Natural(Large(ref limbs)) => limbs_eq_limb_mod_power_of_2(limbs, other, pow),
        }
    }
}

impl<'a, 'b> EqModPowerOf2<&'b Natural> for &'a Natural {
    /// Returns whether one [`Natural`] is equal to another modulo $2^k$; that is, whether their
    /// $k$ least-significant bits are equal.
    ///
    /// $f(x, y, k) = (x \equiv y \mod 2^k)$.
    ///
    /// $f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `min(pow, self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// extern crate malachite_base;
    ///
    /// use malachite_base::num::arithmetic::traits::EqModPowerOf2;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!((&Natural::ZERO).eq_mod_power_of_2(&Natural::from(256u32), 8), true);
    /// assert_eq!(
    ///     (&Natural::from(0b1101u32)).eq_mod_power_of_2(&Natural::from(0b10101u32), 3),
    ///     true
    /// );
    /// assert_eq!(
    ///     (&Natural::from(0b1101u32)).eq_mod_power_of_2(&Natural::from(0b10101u32), 4),
    ///     false
    /// );
    /// ```
    fn eq_mod_power_of_2(self, other: &'b Natural, pow: u64) -> bool {
        match (self, other) {
            (_, &Natural(Small(y))) => self.eq_mod_power_of_2_limb(y, pow),
            (&Natural(Small(x)), _) => other.eq_mod_power_of_2_limb(x, pow),
            (&Natural(Large(ref xs)), &Natural(Large(ref ys))) => {
                limbs_eq_mod_power_of_2(xs, ys, pow)
            }
        }
    }
}