pub struct Natural(_);
Expand description

A natural (non-negative) integer.

Any Natural small enough to fit into a Limb is represented inline. Only Naturals outside this range incur the costs of heap-allocation. Here’s a diagram of a slice of Naturals (using 32-bit limbs) containing the first 8 values of Sylvester’s sequence:

Natural memory layout

Implementations

Calculates the approximate natural logarithm of a nonzero Natural.

$f(x) = (1+\epsilon)(\log x)$, where $|\epsilon| < 2^{-52}.$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::float::NiceFloat;
use malachite_nz::natural::Natural;

assert_eq!(NiceFloat(Natural::from(10u32).approx_log()), NiceFloat(2.3025850929940455));
assert_eq!(
    NiceFloat(Natural::from(10u32).pow(10000).approx_log()),
    NiceFloat(23025.850929940454)
);

This is equivalent to fmpz_dlog from fmpz/dlog.c, FLINT 2.7.1.

Returns a result of a comparison between two Naturals as if each had been multiplied by some power of 2 to bring it into the interval $[1, 2)$.

That is, the comparison is equivalent to a comparison between $f(x)$ and $f(y)$, where $$ f(n) = n2^{\lfloor\log_2 n \rfloor}. $$

The multiplication is not actually performed.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Panics

Panics if either argument is zero.

Examples
use malachite_nz::natural::Natural;
use std::cmp::Ordering;

// 1 == 1.0 * 2^0, 4 == 1.0 * 2^2
// 1.0 == 1.0
assert_eq!(Natural::from(1u32).cmp_normalized(&Natural::from(4u32)), Ordering::Equal);

// 5 == 1.25 * 2^2, 6 == 1.5 * 2^2
// 1.25 < 1.5
assert_eq!(Natural::from(5u32).cmp_normalized(&Natural::from(6u32)), Ordering::Less);

// 3 == 1.5 * 2^1, 17 == 1.0625 * 2^4
// 1.5 > 1.0625
assert_eq!(Natural::from(3u32).cmp_normalized(&Natural::from(17u32)), Ordering::Greater);

// 9 == 1.125 * 2^3, 36 == 1.125 * 2^5
// 1.125 == 1.125
assert_eq!(Natural::from(9u32).cmp_normalized(&Natural::from(36u32)), Ordering::Equal);

Converts a slice of limbs to a Natural.

The limbs are in ascending order, so that less-significant limbs have lower indices in the input slice.

This function borrows the limbs. If taking ownership of limbs is possible, from_owned_limbs_asc is more efficient.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is xs.len().

This function is more efficient than from_limbs_desc.

Examples
extern crate malachite_base;

use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;

if Limb::WIDTH == u32::WIDTH {
    assert_eq!(Natural::from_limbs_asc(&[]), 0);
    assert_eq!(Natural::from_limbs_asc(&[123]), 123);
    // 10^12 = 232 * 2^32 + 3567587328
    assert_eq!(Natural::from_limbs_asc(&[3567587328, 232]), 1000000000000u64);
}

Converts a slice of limbs to a Natural.

The limbs in descending order, so that less-significant limbs have higher indices in the input slice.

This function borrows the limbs. If taking ownership of the limbs is possible, from_owned_limbs_desc is more efficient.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is xs.len().

This function is less efficient than from_limbs_asc.

Examples
extern crate malachite_base;

use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;

if Limb::WIDTH == u32::WIDTH {
    assert_eq!(Natural::from_limbs_desc(&[]), 0);
    assert_eq!(Natural::from_limbs_desc(&[123]), 123);
    // 10^12 = 232 * 2^32 + 3567587328
    assert_eq!(Natural::from_limbs_desc(&[232, 3567587328]), 1000000000000u64);
}

Converts a Vec of limbs to a Natural.

The limbs are in ascending order, so that less-significant limbs have lower indices in the input Vec.

This function takes ownership of the limbs. If it’s necessary to borrow the limbs instead, use from_limbs_asc.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is xs.len().

This function is more efficient than from_limbs_desc.

Examples
extern crate malachite_base;

use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;

if Limb::WIDTH == u32::WIDTH {
    assert_eq!(Natural::from_owned_limbs_asc(vec![]), 0);
    assert_eq!(Natural::from_owned_limbs_asc(vec![123]), 123);
    // 10^12 = 232 * 2^32 + 3567587328
    assert_eq!(Natural::from_owned_limbs_asc(vec![3567587328, 232]), 1000000000000u64);
}

Converts a Vec of limbs to a Natural.

The limbs are in descending order, so that less-significant limbs have higher indices in the input Vec.

This function takes ownership of the limbs. If it’s necessary to borrow the limbs instead, use from_limbs_desc.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is xs.len().

This function is less efficient than from_limbs_asc.

Examples
extern crate malachite_base;

use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;

if Limb::WIDTH == u32::WIDTH {
    assert_eq!(Natural::from_owned_limbs_desc(vec![]), 0);
    assert_eq!(Natural::from_owned_limbs_desc(vec![123]), 123);
    // 10^12 = 232 * 2^32 + 3567587328
    assert_eq!(Natural::from_owned_limbs_desc(vec![232, 3567587328]), 1000000000000u64);
}

Returns the number of limbs of a Natural.

Zero has 0 limbs.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;

if Limb::WIDTH == u32::WIDTH {
    assert_eq!(Natural::ZERO.limb_count(), 0);
    assert_eq!(Natural::from(123u32).limb_count(), 1);
    assert_eq!(Natural::from(10u32).pow(12).limb_count(), 2);
}

Returns a Natural’s scientific mantissa and exponent.

When $x$ is positive, we can write $x = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1 \leq m_s < 2$. We represent the rational mantissa as a float. The conversion might not be exact, so we round to the nearest float using the provided rounding mode. If the rounding mode is Exact but the conversion is not exact, None is returned. $$ f(x, r) \approx \left (\frac{x}{2^{\lfloor \log_2 x \rfloor}}, \lfloor \log_2 x \rfloor\right ). $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::conversion::traits::SciMantissaAndExponent;
use malachite_base::num::float::NiceFloat;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

let test = |n: Natural, rm: RoundingMode, out: Option<(f32, u64)>| {
    assert_eq!(
        n.sci_mantissa_and_exponent_with_rounding(rm)
            .map(|(m, e)| (NiceFloat(m), e)),
        out.map(|(m, e)| (NiceFloat(m), e))
    );
};
test(Natural::from(3u32), RoundingMode::Down, Some((1.5, 1)));
test(Natural::from(3u32), RoundingMode::Ceiling, Some((1.5, 1)));
test(Natural::from(3u32), RoundingMode::Up, Some((1.5, 1)));
test(Natural::from(3u32), RoundingMode::Nearest, Some((1.5, 1)));
test(Natural::from(3u32), RoundingMode::Exact, Some((1.5, 1)));

test(
    Natural::from(123u32),
    RoundingMode::Floor,
    Some((1.921875, 6)),
);
test(
    Natural::from(123u32),
    RoundingMode::Down,
    Some((1.921875, 6)),
);
test(
    Natural::from(123u32),
    RoundingMode::Ceiling,
    Some((1.921875, 6)),
);
test(Natural::from(123u32), RoundingMode::Up, Some((1.921875, 6)));
test(
    Natural::from(123u32),
    RoundingMode::Nearest,
    Some((1.921875, 6)),
);
test(
    Natural::from(123u32),
    RoundingMode::Exact,
    Some((1.921875, 6)),
);

test(
    Natural::from(1000000000u32),
    RoundingMode::Nearest,
    Some((1.8626451, 29)),
);
test(
    Natural::from(10u32).pow(52),
    RoundingMode::Nearest,
    Some((1.670478, 172)),
);

test(Natural::from(10u32).pow(52), RoundingMode::Exact, None);

Constructs a Natural from its scientific mantissa and exponent.

When $x$ is positive, we can write $x = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1 \leq m_s < 2$. Here, the rational mantissa is provided as a float. If the mantissa is outside the range $[1, 2)$, None is returned.

Some combinations of mantissas and exponents do not specify a Natural, in which case the resulting value is rounded to a Natural using the specified rounding mode. If the rounding mode is Exact but the input does not exactly specify a Natural, None is returned.

$$ f(x, r) \approx 2^{e_s}m_s. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is sci_exponent.

Panics

Panics if sci_mantissa is zero.

Examples
extern crate malachite_base;

use malachite_base::num::conversion::traits::SciMantissaAndExponent;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;
use std::str::FromStr;

let test = |mantissa: f32, exponent: u64, rm: RoundingMode, out: Option<Natural>| {
    assert_eq!(
        Natural::from_sci_mantissa_and_exponent_with_rounding(mantissa, exponent, rm),
        out
    );
};
test(1.5, 1, RoundingMode::Floor, Some(Natural::from(3u32)));
test(1.5, 1, RoundingMode::Down, Some(Natural::from(3u32)));
test(1.5, 1, RoundingMode::Ceiling, Some(Natural::from(3u32)));
test(1.5, 1, RoundingMode::Up, Some(Natural::from(3u32)));
test(1.5, 1, RoundingMode::Nearest, Some(Natural::from(3u32)));
test(1.5, 1, RoundingMode::Exact, Some(Natural::from(3u32)));

test(1.51, 1, RoundingMode::Floor, Some(Natural::from(3u32)));
test(1.51, 1, RoundingMode::Down, Some(Natural::from(3u32)));
test(1.51, 1, RoundingMode::Ceiling, Some(Natural::from(4u32)));
test(1.51, 1, RoundingMode::Up, Some(Natural::from(4u32)));
test(1.51, 1, RoundingMode::Nearest, Some(Natural::from(3u32)));
test(1.51, 1, RoundingMode::Exact, None);

test(
    1.670478,
    172,
    RoundingMode::Nearest,
    Some(
        Natural::from_str("10000000254586612611935772707803116801852191350456320").unwrap()
    ),
);

test(2.0, 1, RoundingMode::Floor, None);
test(10.0, 1, RoundingMode::Floor, None);
test(0.5, 1, RoundingMode::Floor, None);

Returns the limbs of a Natural, in ascending order, so that less-significant limbs have lower indices in the output vector.

There are no trailing zero limbs.

This function borrows the Natural. If taking ownership is possible instead, into_limbs_asc is more efficient.

This function is more efficient than to_limbs_desc.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;

if Limb::WIDTH == u32::WIDTH {
    assert!(Natural::ZERO.to_limbs_asc().is_empty());
    assert_eq!(Natural::from(123u32).to_limbs_asc(), &[123]);
    // 10^12 = 232 * 2^32 + 3567587328
    assert_eq!(Natural::from(10u32).pow(12).to_limbs_asc(), &[3567587328, 232]);
}

Returns the limbs of a Natural in descending order, so that less-significant limbs have higher indices in the output vector.

There are no leading zero limbs.

This function borrows the Natural. If taking ownership is possible instead, into_limbs_desc is more efficient.

This function is less efficient than to_limbs_asc.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;

if Limb::WIDTH == u32::WIDTH {
    assert!(Natural::ZERO.to_limbs_desc().is_empty());
    assert_eq!(Natural::from(123u32).to_limbs_desc(), &[123]);
    // 10^12 = 232 * 2^32 + 3567587328
    assert_eq!(Natural::from(10u32).pow(12).to_limbs_desc(), &[232, 3567587328]);
}

Returns the limbs of a Natural, in ascending order, so that less-significant limbs have lower indices in the output vector.

There are no trailing zero limbs.

This function takes ownership of the Natural. If it’s necessary to borrow instead, use to_limbs_asc.

This function is more efficient than into_limbs_desc.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;

if Limb::WIDTH == u32::WIDTH {
    assert!(Natural::ZERO.into_limbs_asc().is_empty());
    assert_eq!(Natural::from(123u32).into_limbs_asc(), &[123]);
    // 10^12 = 232 * 2^32 + 3567587328
    assert_eq!(Natural::from(10u32).pow(12).into_limbs_asc(), &[3567587328, 232]);
}

Returns the limbs of a Natural, in descending order, so that less-significant limbs have higher indices in the output vector.

There are no leading zero limbs.

This function takes ownership of the Natural. If it’s necessary to borrow instead, use to_limbs_desc.

This function is less efficient than into_limbs_asc.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;

if Limb::WIDTH == u32::WIDTH {
    assert!(Natural::ZERO.into_limbs_desc().is_empty());
    assert_eq!(Natural::from(123u32).into_limbs_desc(), &[123]);
    // 10^12 = 232 * 2^32 + 3567587328
    assert_eq!(Natural::from(10u32).pow(12).into_limbs_desc(), &[232, 3567587328]);
}

Returns a double-ended iterator over the limbs of a Natural.

The forward order is ascending, so that less-significant limbs appear first. There are no trailing zero limbs going forward, or leading zeros going backward.

If it’s necessary to get a Vec of all the limbs, consider using to_limbs_asc, to_limbs_desc, into_limbs_asc, or into_limbs_desc instead.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate itertools;
extern crate malachite_base;

use itertools::Itertools;
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use malachite_nz::platform::Limb;

if Limb::WIDTH == u32::WIDTH {
    assert!(Natural::ZERO.limbs().next().is_none());
    assert_eq!(Natural::from(123u32).limbs().collect_vec(), &[123]);
    // 10^12 = 232 * 2^32 + 3567587328
    assert_eq!(Natural::from(10u32).pow(12).limbs().collect_vec(), &[3567587328, 232]);

    assert!(Natural::ZERO.limbs().rev().next().is_none());
    assert_eq!(Natural::from(123u32).limbs().rev().collect_vec(), &[123]);
    // 10^12 = 232 * 2^32 + 3567587328
    assert_eq!(
        Natural::from(10u32).pow(12).limbs().rev().collect_vec(),
        &[232, 3567587328]
    );
}

Returns the number of trailing zeros in the binary expansion of a Natural (equivalently, the multiplicity of 2 in its prime factorization), or None is the Natural is 0.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.trailing_zeros(), None);
assert_eq!(Natural::from(3u32).trailing_zeros(), Some(0));
assert_eq!(Natural::from(72u32).trailing_zeros(), Some(3));
assert_eq!(Natural::from(100u32).trailing_zeros(), Some(2));
assert_eq!(Natural::from(10u32).pow(12).trailing_zeros(), Some(12));

Trait Implementations

Adds two Naturals, taking the first by reference and the second by value.

$$ f(x, y) = x + y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO + &Natural::from(123u32), 123);
assert_eq!(Natural::from(123u32) + &Natural::ZERO, 123);
assert_eq!(Natural::from(123u32) + &Natural::from(456u32), 579);
assert_eq!(
    Natural::from(10u32).pow(12) + &(Natural::from(10u32).pow(12) << 1),
    3000000000000u64
);

The resulting type after applying the + operator.

Adds two Naturals, taking both by reference.

$$ f(x, y) = x + y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(&Natural::ZERO + &Natural::from(123u32), 123);
assert_eq!(&Natural::from(123u32) + &Natural::ZERO, 123);
assert_eq!(&Natural::from(123u32) + &Natural::from(456u32), 579);
assert_eq!(
    &Natural::from(10u32).pow(12) + &(Natural::from(10u32).pow(12) << 1),
    3000000000000u64
);

The resulting type after applying the + operator.

Adds two Naturals, taking both by value.

$$ f(x, y) = x + y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$ (only if the underlying Vec needs to reallocate)

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO + Natural::from(123u32), 123);
assert_eq!(Natural::from(123u32) + Natural::ZERO, 123);
assert_eq!(Natural::from(123u32) + Natural::from(456u32), 579);
assert_eq!(
    Natural::from(10u32).pow(12) + (Natural::from(10u32).pow(12) << 1),
    3000000000000u64
);

The resulting type after applying the + operator.

Adds two Naturals, taking the first by value and the second by reference.

$$ f(x, y) = x + y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(&Natural::ZERO + Natural::from(123u32), 123);
assert_eq!(&Natural::from(123u32) + Natural::ZERO, 123);
assert_eq!(&Natural::from(123u32) + Natural::from(456u32), 579);
assert_eq!(
    &Natural::from(10u32).pow(12) + (Natural::from(10u32).pow(12) << 1),
    3000000000000u64
);

The resulting type after applying the + operator.

Adds a Natural to a Natural in place, taking the Natural on the right-hand side by reference.

$$ x \gets x + y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x += &Natural::from(10u32).pow(12);
x += &(Natural::from(10u32).pow(12) * Natural::from(2u32));
x += &(Natural::from(10u32).pow(12) * Natural::from(3u32));
x += &(Natural::from(10u32).pow(12) * Natural::from(4u32));
assert_eq!(x, 10000000000000u64);

Adds a Natural to a Natural in place, taking the Natural on the right-hand side by value.

$$ x \gets x + y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$ (only if the underlying Vec needs to reallocate)

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x += Natural::from(10u32).pow(12);
x += Natural::from(10u32).pow(12) * Natural::from(2u32);
x += Natural::from(10u32).pow(12) * Natural::from(3u32);
x += Natural::from(10u32).pow(12) * Natural::from(4u32);
assert_eq!(x, 10000000000000u64);

Adds a Natural and the product of two other Naturals, taking the first by value and the second and third by reference.

$f(x, y, z) = x + yz$.

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{AddMul, Pow};
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(10u32).add_mul(&Natural::from(3u32), &Natural::from(4u32)), 22);
assert_eq!(
    Natural::from(10u32).pow(12)
        .add_mul(&Natural::from(0x10000u32), &Natural::from(10u32).pow(12)),
    65537000000000000u64
);

Adds a Natural and the product of two other Naturals, taking all three by reference.

$f(x, y, z) = x + yz$.

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n, m) = O(m + n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{AddMul, Pow};
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(10u32)).add_mul(&Natural::from(3u32), &Natural::from(4u32)), 22);
assert_eq!(
    (&Natural::from(10u32).pow(12))
        .add_mul(&Natural::from(0x10000u32), &Natural::from(10u32).pow(12)),
    65537000000000000u64
);

Adds a Natural and the product of two other Naturals, taking the first and third by value and the second by reference.

$f(x, y, z) = x + yz$.

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{AddMul, Pow};
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(10u32).add_mul(&Natural::from(3u32), Natural::from(4u32)), 22);
assert_eq!(
    Natural::from(10u32).pow(12)
        .add_mul(&Natural::from(0x10000u32), Natural::from(10u32).pow(12)),
    65537000000000000u64
);

Adds a Natural and the product of two other Naturals, taking the first two by value and the third by reference.

$f(x, y, z) = x + yz$.

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{AddMul, Pow};
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(10u32).add_mul(Natural::from(3u32), &Natural::from(4u32)), 22);
assert_eq!(
    Natural::from(10u32).pow(12)
        .add_mul(Natural::from(0x10000u32), &Natural::from(10u32).pow(12)),
    65537000000000000u64
);

Adds a Natural and the product of two other Naturals, taking all three by value.

$f(x, y, z) = x + yz$.

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{AddMul, Pow};
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(10u32).add_mul(Natural::from(3u32), Natural::from(4u32)), 22);
assert_eq!(
    Natural::from(10u32).pow(12)
        .add_mul(Natural::from(0x10000u32), Natural::from(10u32).pow(12)),
    65537000000000000u64
);

Adds the product of two other Naturals to a Natural in place, taking both Naturals on the right-hand side by reference.

$x \gets x + yz$.

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{AddMulAssign, Pow};
use malachite_nz::natural::Natural;

let mut x = Natural::from(10u32);
x.add_mul_assign(&Natural::from(3u32), &Natural::from(4u32));
assert_eq!(x, 22);

let mut x = Natural::from(10u32).pow(12);
x.add_mul_assign(&Natural::from(0x10000u32), &Natural::from(10u32).pow(12));
assert_eq!(x, 65537000000000000u64);

Adds the product of two other Naturals to a Natural in place, taking the first Natural on the right-hand side by reference and the second by value.

$x \gets x + yz$.

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{AddMulAssign, Pow};
use malachite_nz::natural::Natural;

let mut x = Natural::from(10u32);
x.add_mul_assign(&Natural::from(3u32), Natural::from(4u32));
assert_eq!(x, 22);

let mut x = Natural::from(10u32).pow(12);
x.add_mul_assign(&Natural::from(0x10000u32), Natural::from(10u32).pow(12));
assert_eq!(x, 65537000000000000u64);

Adds the product of two other Naturals to a Natural in place, taking the first Natural on the right-hand side by value and the second by reference.

$x \gets x + yz$.

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{AddMulAssign, Pow};
use malachite_nz::natural::Natural;

let mut x = Natural::from(10u32);
x.add_mul_assign(Natural::from(3u32), &Natural::from(4u32));
assert_eq!(x, 22);

let mut x = Natural::from(10u32).pow(12);
x.add_mul_assign(Natural::from(0x10000u32), &Natural::from(10u32).pow(12));
assert_eq!(x, 65537000000000000u64);

Adds the product of two other Naturals to a Natural in place, taking both Naturals on the right-hand side by value.

$x \gets x + yz$.

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{AddMulAssign, Pow};
use malachite_nz::natural::Natural;

let mut x = Natural::from(10u32);
x.add_mul_assign(Natural::from(3u32), Natural::from(4u32));
assert_eq!(x, 22);

let mut x = Natural::from(10u32).pow(12);
x.add_mul_assign(Natural::from(0x10000u32), Natural::from(10u32).pow(12));
assert_eq!(x, 65537000000000000u64);

Converts a Natural to a binary String.

Using the # format flag prepends "0b" to the string.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_base::strings::ToBinaryString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::ZERO.to_binary_string(), "0");
assert_eq!(Natural::from(123u32).to_binary_string(), "1111011");
assert_eq!(
    Natural::from_str("1000000000000").unwrap().to_binary_string(),
    "1110100011010100101001010001000000000000"
);
assert_eq!(format!("{:011b}", Natural::from(123u32)), "00001111011");

assert_eq!(format!("{:#b}", Natural::ZERO), "0b0");
assert_eq!(format!("{:#b}", Natural::from(123u32)), "0b1111011");
assert_eq!(
    format!("{:#b}", Natural::from_str("1000000000000").unwrap()),
    "0b1110100011010100101001010001000000000000"
);
assert_eq!(format!("{:#011b}", Natural::from(123u32)), "0b001111011");

Provides functions for accessing and modifying the $i$th bit of a Natural, or the coefficient of $2^i$ in its binary expansion.

Examples

extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_base::num::logic::traits::BitAccess;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x.assign_bit(2, true);
x.assign_bit(5, true);
x.assign_bit(6, true);
assert_eq!(x, 100);
x.assign_bit(2, false);
x.assign_bit(5, false);
x.assign_bit(6, false);
assert_eq!(x, 0);

let mut x = Natural::ZERO;
x.flip_bit(10);
assert_eq!(x, 1024);
x.flip_bit(10);
assert_eq!(x, 0);

Determines whether the $i$th bit of a Natural, or the coefficient of $2^i$ in its binary expansion, is 0 or 1.

false means 0 and true means 1. Getting bits beyond the Natural’s width is allowed; those bits are false.

Let $$ n = \sum_{i=0}^\infty 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$; so finitely many of the bits are 1, and the rest are 0. Then $f(n, j) = (b_j = 1)$.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::logic::traits::BitAccess;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(123u32).get_bit(2), false);
assert_eq!(Natural::from(123u32).get_bit(3), true);
assert_eq!(Natural::from(123u32).get_bit(100), false);
assert_eq!(Natural::from(10u32).pow(12).get_bit(12), true);
assert_eq!(Natural::from(10u32).pow(12).get_bit(100), false);

Sets the $i$th bit of a Natural, or the coefficient of $2^i$ in its binary expansion, to 1.

Let $$ n = \sum_{i=0}^\infty 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$; so finitely many of the bits are 1, and the rest are 0. Then $$ n \gets \begin{cases} n + 2^j & \text{if} \quad b_j = 0, \\ n & \text{otherwise}. \end{cases} $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is index.

Examples
extern crate malachite_base;

use malachite_base::num::logic::traits::BitAccess;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x.set_bit(2);
x.set_bit(5);
x.set_bit(6);
assert_eq!(x, 100);

Sets the $i$th bit of a Natural, or the coefficient of $2^i$ in its binary expansion, to 0.

Clearing bits beyond the Natural’s width is allowed; since those bits are already false, clearing them does nothing.

Let $$ n = \sum_{i=0}^\infty 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$; so finitely many of the bits are 1, and the rest are 0. Then $$ n \gets \begin{cases} n - 2^j & \text{if} \quad b_j = 1, \\ n & \text{otherwise}. \end{cases} $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is index.

Examples
extern crate malachite_base;

use malachite_base::num::logic::traits::BitAccess;
use malachite_nz::natural::Natural;

let mut x = Natural::from(0x7fu32);
x.clear_bit(0);
x.clear_bit(1);
x.clear_bit(3);
x.clear_bit(4);
assert_eq!(x, 100);

Sets the bit at index to whichever value bit is. Read more

Sets the bit at index to the opposite of its original value. Read more

Takes the bitwise and of two Naturals, taking the first by value and the second by reference.

$$ f(x, y) = x \wedge y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(123u32) & &Natural::from(456u32), 72);
assert_eq!(
    Natural::from(10u32).pow(12) & &(Natural::from(10u32).pow(12) - Natural::ONE),
    999999995904u64
);

The resulting type after applying the & operator.

Takes the bitwise and of two Naturals, taking both by reference.

$$ f(x, y) = x \wedge y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;

assert_eq!(&Natural::from(123u32) & &Natural::from(456u32), 72);
assert_eq!(
    &Natural::from(10u32).pow(12) & &(Natural::from(10u32).pow(12) - Natural::ONE),
    999999995904u64
);

The resulting type after applying the & operator.

Takes the bitwise and of two Naturals, taking both by value.

$$ f(x, y) = x \wedge y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(123u32) & Natural::from(456u32), 72);
assert_eq!(
    Natural::from(10u32).pow(12) & (Natural::from(10u32).pow(12) - Natural::ONE),
    999999995904u64
);

The resulting type after applying the & operator.

Takes the bitwise and of two Naturals, taking the first by reference and the seocnd by value.

$$ f(x, y) = x \wedge y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;

assert_eq!(&Natural::from(123u32) & Natural::from(456u32), 72);
assert_eq!(
    &Natural::from(10u32).pow(12) & (Natural::from(10u32).pow(12) - Natural::ONE),
    999999995904u64
);

The resulting type after applying the & operator.

Bitwise-ands a Natural with another Natural in place, taking the Natural on the right-hand side by reference.

$$ x \gets x \wedge y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

Examples
use malachite_nz::natural::Natural;

let mut x = Natural::from(u32::MAX);
x &= &Natural::from(0xf0ffffffu32);
x &= &Natural::from(0xfff0_ffffu32);
x &= &Natural::from(0xfffff0ffu32);
x &= &Natural::from(0xfffffff0u32);
assert_eq!(x, 0xf0f0_f0f0u32);

Bitwise-ands a Natural with another Natural in place, taking the Natural on the right-hand side by value.

$$ x \gets x \wedge y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
use malachite_nz::natural::Natural;

let mut x = Natural::from(u32::MAX);
x &= Natural::from(0xf0ffffffu32);
x &= Natural::from(0xfff0_ffffu32);
x &= Natural::from(0xfffff0ffu32);
x &= Natural::from(0xfffffff0u32);
assert_eq!(x, 0xf0f0_f0f0u32);

Extracts a block of adjacent bits from a Natural, taking the Natural by reference.

The first index is start and last index is end - 1.

Let $n$ be self, and let $p$ and $q$ be start and end, respectively.

Let $$ n = \sum_{i=0}^\infty 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$; so finitely many of the bits are 1, and the rest are 0. Then $$ f(n, p, q) = \sum_{i=p}^{q-1} 2^{b_{i-p}}. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if start > end.

Examples
extern crate malachite_base;

use malachite_base::num::logic::traits::BitBlockAccess;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(0xabcdef0112345678u64).get_bits(16, 48), 0xef011234u32);
assert_eq!(Natural::from(0xabcdef0112345678u64).get_bits(4, 16), 0x567u32);
assert_eq!(Natural::from(0xabcdef0112345678u64).get_bits(0, 100), 0xabcdef0112345678u64);
assert_eq!(Natural::from(0xabcdef0112345678u64).get_bits(10, 10), 0);

Extracts a block of adjacent bits from a Natural, taking the Natural by value.

The first index is start and last index is end - 1.

Let $n$ be self, and let $p$ and $q$ be start and end, respectively.

Let $$ n = \sum_{i=0}^\infty 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$; so finitely many of the bits are 1, and the rest are 0. Then $$ f(n, p, q) = \sum_{i=p}^{q-1} 2^{b_{i-p}}. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if start > end.

Examples
extern crate malachite_base;

use malachite_base::num::logic::traits::BitBlockAccess;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(0xabcdef0112345678u64).get_bits_owned(16, 48), 0xef011234u32);
assert_eq!(Natural::from(0xabcdef0112345678u64).get_bits_owned(4, 16), 0x567u32);
assert_eq!(
    Natural::from(0xabcdef0112345678u64).get_bits_owned(0, 100),
    0xabcdef0112345678u64
);
assert_eq!(Natural::from(0xabcdef0112345678u64).get_bits_owned(10, 10), 0);

Replaces a block of adjacent bits in a Natural with other bits.

The least-significant end - start bits of bits are assigned to bits start through end - 1, inclusive, of self.

Let $n$ be self and let $m$ be bits, and let $p$ and $q$ be start and end, respectively.

If bits has fewer bits than end - start, the high bits are interpreted as 0. Let $$ n = \sum_{i=0}^\infty 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$; so finitely many of the bits are 1, and the rest are 0. Let $$ m = \sum_{i=0}^k 2^{d_i}, $$ where for all $i$, $d_i\in \{0, 1\}$. Also, let $p, q \in \mathbb{N}$, and let $W$ be max(self.significant_bits(), end + 1).

Then $$ n \gets \sum_{i=0}^{W-1} 2^{c_i}, $$ where $$ \{c_0, c_1, c_2, \ldots, c_ {W-1}\} = \{b_0, b_1, b_2, \ldots, b_{p-1}, d_0, d_1, \ldots, d_{p-q-1}, b_q, \ldots, b_ {W-1}\}. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is end.

Panics

Panics if start > end.

Examples
extern crate malachite_base;

use malachite_base::num::logic::traits::BitBlockAccess;
use malachite_nz::natural::Natural;

let mut n = Natural::from(123u32);
n.assign_bits(5, 7, &Natural::from(456u32));
assert_eq!(n, 27);

let mut n = Natural::from(123u32);
n.assign_bits(64, 128, &Natural::from(456u32));
assert_eq!(n.to_string(), "8411715297611555537019");

let mut n = Natural::from(123u32);
n.assign_bits(80, 100, &Natural::from(456u32));
assert_eq!(n.to_string(), "551270173744270903666016379");

Returns a Vec containing the bits of a Natural in ascending order: least- to most-significant.

If the number is 0, the Vec is empty; otherwise, it ends with true.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::logic::traits::BitConvertible;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert!(Natural::ZERO.to_bits_asc().is_empty());
// 105 = 1101001b
assert_eq!(
    Natural::from(105u32).to_bits_asc(),
    &[true, false, false, true, false, true, true]
);

Returns a Vec containing the bits of a Natural in descending order: most- to least-significant.

If the number is 0, the Vec is empty; otherwise, it begins with true.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::logic::traits::BitConvertible;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert!(Natural::ZERO.to_bits_desc().is_empty());
// 105 = 1101001b
assert_eq!(
    Natural::from(105u32).to_bits_desc(),
    &[true, true, false, true, false, false, true]
);

Converts an iterator of bits into a Natural. The bits should be in ascending order (least- to most-significant).

$$ f((b_i)_ {i=0}^{k-1}) = \sum_{i=0}^{k-1}2^i [b_i], $$ where braces denote the Iverson bracket, which converts a bit to 0 or 1.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is xs.count().

Examples
extern crate malachite_base;

use malachite_base::num::logic::traits::BitConvertible;
use malachite_nz::natural::Natural;
use std::iter::empty;

assert_eq!(Natural::from_bits_asc(empty()), 0);
// 105 = 1101001b
assert_eq!(
    Natural::from_bits_asc([true, false, false, true, false, true, true].iter().cloned()),
    105
);

Converts an iterator of bits into a Natural. The bits should be in descending order (most- to least-significant).

$$ f((b_i)_ {i=0}^{k-1}) = \sum_{i=0}^{k-1}2^{k-i-1} [b_i], $$ where braces denote the Iverson bracket, which converts a bit to 0 or 1.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is xs.count().

Examples
extern crate malachite_base;

use malachite_base::num::logic::traits::BitConvertible;
use malachite_nz::natural::Natural;
use std::iter::empty;

assert_eq!(Natural::from_bits_desc(empty()), 0);
// 105 = 1101001b
assert_eq!(
    Natural::from_bits_desc([true, true, false, true, false, false, true].iter().cloned()),
    105
);

Returns a double-ended iterator over the bits of a Natural.

The forward order is ascending, so that less significant bits appear first. There are no trailing false bits going forward, or leading falses going backward.

If it’s necessary to get a Vec of all the bits, consider using to_bits_asc or to_bits_desc instead.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_base::num::logic::traits::BitIterable;
use malachite_nz::natural::Natural;

assert!(Natural::ZERO.bits().next().is_none());
// 105 = 1101001b
assert_eq!(
    Natural::from(105u32).bits().collect::<Vec<bool>>(),
    &[true, false, false, true, false, true, true]
);

assert!(Natural::ZERO.bits().next_back().is_none());
// 105 = 1101001b
assert_eq!(
    Natural::from(105u32).bits().rev().collect::<Vec<bool>>(),
    &[true, true, false, true, false, false, true]
);

Takes the bitwise or of two Naturals, taking the first by value and the second by reference.

$$ f(x, y) = x \vee y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(123u32) | &Natural::from(456u32), 507);
assert_eq!(
    Natural::from(10u32).pow(12) | &(Natural::from(10u32).pow(12) - Natural::ONE),
    1000000004095u64
);

The resulting type after applying the | operator.

Takes the bitwise or of two Naturals, taking both by reference.

$$ f(x, y) = x \vee y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;

assert_eq!(&Natural::from(123u32) | &Natural::from(456u32), 507);
assert_eq!(
    &Natural::from(10u32).pow(12) | &(Natural::from(10u32).pow(12) - Natural::ONE),
    1000000004095u64
);

The resulting type after applying the | operator.

Takes the bitwise or of two Naturals, taking both by value.

$$ f(x, y) = x \vee y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(123u32) | Natural::from(456u32), 507);
assert_eq!(
    Natural::from(10u32).pow(12) | (Natural::from(10u32).pow(12) - Natural::ONE),
    1000000004095u64
);

The resulting type after applying the | operator.

Takes the bitwise or of two Naturals, taking the first by reference and the second by value.

$$ f(x, y) = x \vee y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;

assert_eq!(&Natural::from(123u32) | Natural::from(456u32), 507);
assert_eq!(
    &Natural::from(10u32).pow(12) | (Natural::from(10u32).pow(12) - Natural::ONE),
    1000000004095u64
);

The resulting type after applying the | operator.

Bitwise-ors a Natural with another Natural in place, taking the Natural on the right-hand side by reference.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x |= &Natural::from(0x0000000fu32);
x |= &Natural::from(0x00000f00u32);
x |= &Natural::from(0x000f_0000u32);
x |= &Natural::from(0x0f000000u32);
assert_eq!(x, 0x0f0f_0f0f);

Bitwise-ors a Natural with another Natural in place, taking the Natural on the right-hand side by value.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x |= Natural::from(0x0000000fu32);
x |= Natural::from(0x00000f00u32);
x |= Natural::from(0x000f_0000u32);
x |= Natural::from(0x0f000000u32);
assert_eq!(x, 0x0f0f_0f0f);

Given a Natural and a starting index, searches the Natural for the smallest index of a false bit that is greater than or equal to the starting index.

Since every Natural has an implicit prefix of infinitely-many zeros, this function always returns a value.

Starting beyond the Natural’s width is allowed; the result is the starting index.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::logic::traits::BitScan;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(0xb00000000u64).index_of_next_false_bit(0), Some(0));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_false_bit(20), Some(20));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_false_bit(31), Some(31));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_false_bit(32), Some(34));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_false_bit(33), Some(34));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_false_bit(34), Some(34));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_false_bit(35), Some(36));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_false_bit(100), Some(100));

Given a Natural and a starting index, searches the Natural for the smallest index of a true bit that is greater than or equal to the starting index.

If the starting index is greater than or equal to the Natural’s width, the result is None since there are no true bits past that point.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::logic::traits::BitScan;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(0xb00000000u64).index_of_next_true_bit(0), Some(32));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_true_bit(20), Some(32));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_true_bit(31), Some(32));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_true_bit(32), Some(32));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_true_bit(33), Some(33));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_true_bit(34), Some(35));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_true_bit(35), Some(35));
assert_eq!(Natural::from(0xb00000000u64).index_of_next_true_bit(36), None);
assert_eq!(Natural::from(0xb00000000u64).index_of_next_true_bit(100), None);

Takes the bitwise xor of two Naturals, taking the first by value and the second by reference.

$$ f(x, y) = x \oplus y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(123u32) ^ &Natural::from(456u32), 435);
assert_eq!(
    Natural::from(10u32).pow(12) ^ &(Natural::from(10u32).pow(12) - Natural::ONE),
    8191
);

The resulting type after applying the ^ operator.

Takes the bitwise xor of two Naturals, taking both by reference.

$$ f(x, y) = x \oplus y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;

assert_eq!(&Natural::from(123u32) ^ &Natural::from(456u32), 435);
assert_eq!(
    &Natural::from(10u32).pow(12) ^ &(Natural::from(10u32).pow(12) - Natural::ONE),
    8191
);

The resulting type after applying the ^ operator.

Takes the bitwise xor of two Naturals, taking both by value.

$$ f(x, y) = x \oplus y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(123u32) ^ Natural::from(456u32), 435);
assert_eq!(
    Natural::from(10u32).pow(12) ^ (Natural::from(10u32).pow(12) - Natural::ONE),
    8191
);

The resulting type after applying the ^ operator.

Takes the bitwise xor of two Naturals, taking the first by reference and the second by value.

$$ f(x, y) = x \oplus y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;

assert_eq!(&Natural::from(123u32) ^ Natural::from(456u32), 435);
assert_eq!(
    &Natural::from(10u32).pow(12) ^ (Natural::from(10u32).pow(12) - Natural::ONE),
    8191
);

The resulting type after applying the ^ operator.

Bitwise-xors a Natural with another Natural in place, taking the Natural on the right-hand side by reference.

$$ x \gets x \oplus y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x |= Natural::from(0x0000000fu32);
x |= Natural::from(0x00000f00u32);
x |= Natural::from(0x000f_0000u32);
x |= Natural::from(0x0f000000u32);
assert_eq!(x, 0x0f0f_0f0f);

Bitwise-xors a Natural with another Natural in place, taking the Natural on the right-hand side by value.

$$ x \gets x \oplus y. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x ^= Natural::from(0x0000000fu32);
x ^= Natural::from(0x00000f00u32);
x ^= Natural::from(0x000f_0000u32);
x ^= Natural::from(0x0f000000u32);
assert_eq!(x, 0x0f0f_0f0f);

Divides a Natural by another Natural in place, taking the Natural on the right-hand side by reference and returning the remainder of the negative of the first number divided by the second.

The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.

$$ f(x, y) = y\left \lceil \frac{x}{y} \right \rceil - x, $$ $$ x \gets \left \lceil \frac{x}{y} \right \rceil. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingDivAssignNegMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 3 * 10 - 7 = 23
let mut x = Natural::from(23u32);
assert_eq!(x.ceiling_div_assign_neg_mod(&Natural::from(10u32)), 7);
assert_eq!(x, 3);

// 810000006724 * 1234567890987 - 704498996588 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
assert_eq!(
    x.ceiling_div_assign_neg_mod(&Natural::from_str("1234567890987").unwrap()),
    704498996588u64,
);
assert_eq!(x, 810000006724u64);

Divides a Natural by another Natural in place, taking the Natural on the right-hand side by value and returning the remainder of the negative of the first number divided by the second.

The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.

$$ f(x, y) = y\left \lceil \frac{x}{y} \right \rceil - x, $$ $$ x \gets \left \lceil \frac{x}{y} \right \rceil. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingDivAssignNegMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 3 * 10 - 7 = 23
let mut x = Natural::from(23u32);
assert_eq!(x.ceiling_div_assign_neg_mod(Natural::from(10u32)), 7);
assert_eq!(x, 3);

// 810000006724 * 1234567890987 - 704498996588 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
assert_eq!(
    x.ceiling_div_assign_neg_mod(Natural::from_str("1234567890987").unwrap()),
    704498996588u64,
);
assert_eq!(x, 810000006724u64);

Divides a Natural by another Natural, taking the first by value and the second by reference and returning the ceiling of the quotient and the remainder of the negative of the first Natural divided by the second.

The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.

$$ f(x, y) = \left ( \left \lceil \frac{x}{y} \right \rceil, \space y\left \lceil \frac{x}{y} \right \rceil - x \right ). $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingDivNegMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 3 * 10 - 7 = 23
assert_eq!(
    Natural::from(23u32).ceiling_div_neg_mod(&Natural::from(10u32)).to_debug_string(),
    "(3, 7)"
);

// 810000006724 * 1234567890987 - 704498996588 = 1000000000000000000000000
assert_eq!(
    Natural::from_str("1000000000000000000000000").unwrap()
            .ceiling_div_neg_mod(&Natural::from_str("1234567890987").unwrap())
            .to_debug_string(),
    "(810000006724, 704498996588)"
);

Divides a Natural by another Natural, taking both by reference and returning the ceiling of the quotient and the remainder of the negative of the first Natural divided by the second.

The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.

$$ f(x, y) = \left ( \left \lceil \frac{x}{y} \right \rceil, \space y\left \lceil \frac{x}{y} \right \rceil - x \right ). $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingDivNegMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 3 * 10 - 7 = 23
assert_eq!(
    (&Natural::from(23u32)).ceiling_div_neg_mod(&Natural::from(10u32)).to_debug_string(),
    "(3, 7)"
);

// 810000006724 * 1234567890987 - 704498996588 = 1000000000000000000000000
assert_eq!(
    (&Natural::from_str("1000000000000000000000000").unwrap())
            .ceiling_div_neg_mod(&Natural::from_str("1234567890987").unwrap())
            .to_debug_string(),
    "(810000006724, 704498996588)"
);

Divides a Natural by another Natural, taking both by value and returning the ceiling of the quotient and the remainder of the negative of the first Natural divided by the second.

The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.

$$ f(x, y) = \left ( \left \lceil \frac{x}{y} \right \rceil, \space y\left \lceil \frac{x}{y} \right \rceil - x \right ). $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingDivNegMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 3 * 10 - 7 = 23
assert_eq!(
    Natural::from(23u32).ceiling_div_neg_mod(Natural::from(10u32)).to_debug_string(),
    "(3, 7)"
);

// 810000006724 * 1234567890987 - 704498996588 = 1000000000000000000000000
assert_eq!(
    Natural::from_str("1000000000000000000000000").unwrap()
            .ceiling_div_neg_mod(Natural::from_str("1234567890987").unwrap())
            .to_debug_string(),
    "(810000006724, 704498996588)"
);

Divides a Natural by another Natural, taking the first by reference and the second by value and returning the ceiling of the quotient and the remainder of the negative of the first Natural divided by the second.

The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.

$$ f(x, y) = \left ( \left \lceil \frac{x}{y} \right \rceil, \space y\left \lceil \frac{x}{y} \right \rceil - x \right ). $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingDivNegMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 3 * 10 - 7 = 23
assert_eq!(
    (&Natural::from(23u32)).ceiling_div_neg_mod(Natural::from(10u32)).to_debug_string(),
    "(3, 7)"
);

// 810000006724 * 1234567890987 - 704498996588 = 1000000000000000000000000
assert_eq!(
    (&Natural::from_str("1000000000000000000000000").unwrap())
            .ceiling_div_neg_mod(Natural::from_str("1234567890987").unwrap())
            .to_debug_string(),
    "(810000006724, 704498996588)"
);

Returns the ceiling of the base-$b$ logarithm of a positive Natural.

$f(x, b) = \lceil\log_b x\rceil$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is x.significant_bits().

Panics

Panics if self is 0 or base is less than 2.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingLogBase;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(80u32).ceiling_log_base(&Natural::from(3u32)), 4);
assert_eq!(Natural::from(81u32).ceiling_log_base(&Natural::from(3u32)), 4);
assert_eq!(Natural::from(82u32).ceiling_log_base(&Natural::from(3u32)), 5);
assert_eq!(Natural::from(4294967296u64).ceiling_log_base(&Natural::from(10u32)), 10);

This is equivalent to fmpz_clog from fmpz/clog.c, FLINT 2.7.1.

Returns the ceiling of the base-2 logarithm of a positive Natural.

$f(x) = \lceil\log_2 x\rceil$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if self is 0.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingLogBase2;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).ceiling_log_base_2(), 2);
assert_eq!(Natural::from(100u32).ceiling_log_base_2(), 7);

Returns the ceiling of the base-$2^k$ logarithm of a positive Natural.

$f(x, k) = \lceil\log_{2^k} x\rceil$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if self is 0 or pow is 0.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingLogBasePowerOf2;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(100u32).ceiling_log_base_power_of_2(2), 4);
assert_eq!(Natural::from(4294967296u64).ceiling_log_base_power_of_2(8), 4);

Returns the ceiling of the $n$th root of a Natural, taking the Natural by value.

$f(x, n) = \lceil\sqrt[n]{x}\rceil$.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if exp is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingRoot;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(999u16).ceiling_root(3), 10);
assert_eq!(Natural::from(1000u16).ceiling_root(3), 10);
assert_eq!(Natural::from(1001u16).ceiling_root(3), 11);
assert_eq!(Natural::from(100000000000u64).ceiling_root(5), 159);

Returns the ceiling of the $n$th root of a Natural, taking the Natural by reference.

$f(x, n) = \lceil\sqrt[n]{x}\rceil$.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if exp is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingRoot;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(999u16).ceiling_root(3), 10);
assert_eq!(Natural::from(1000u16).ceiling_root(3), 10);
assert_eq!(Natural::from(1001u16).ceiling_root(3), 11);
assert_eq!(Natural::from(100000000000u64).ceiling_root(5), 159);

Replaces a Natural with the ceiling of its $n$th root.

$x \gets \lceil\sqrt[n]{x}\rceil$.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if exp is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingRootAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(999u16);
x.ceiling_root_assign(3);
assert_eq!(x, 10);

let mut x = Natural::from(1000u16);
x.ceiling_root_assign(3);
assert_eq!(x, 10);

let mut x = Natural::from(1001u16);
x.ceiling_root_assign(3);
assert_eq!(x, 11);

let mut x = Natural::from(100000000000u64);
x.ceiling_root_assign(5);
assert_eq!(x, 159);

Returns the ceiling of the square root of a Natural, taking it by value.

$f(x) = \lceil\sqrt{x}\rceil$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingSqrt;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(99u8).ceiling_sqrt(), 10);
assert_eq!(Natural::from(100u8).ceiling_sqrt(), 10);
assert_eq!(Natural::from(101u8).ceiling_sqrt(), 11);
assert_eq!(Natural::from(1000000000u32).ceiling_sqrt(), 31623);
assert_eq!(Natural::from(10000000000u64).ceiling_sqrt(), 100000);

Returns the ceiling of the square root of a Natural, taking it by value.

$f(x) = \lceil\sqrt{x}\rceil$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingSqrt;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(99u8).ceiling_sqrt(), 10);
assert_eq!(Natural::from(100u8).ceiling_sqrt(), 10);
assert_eq!(Natural::from(101u8).ceiling_sqrt(), 11);
assert_eq!(Natural::from(1000000000u32).ceiling_sqrt(), 31623);
assert_eq!(Natural::from(10000000000u64).ceiling_sqrt(), 100000);

Replaces a Natural with the ceiling of its square root.

$x \gets \lceil\sqrt{x}\rceil$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CeilingSqrtAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(99u8);
x.ceiling_sqrt_assign();
assert_eq!(x, 10);

let mut x = Natural::from(100u8);
x.ceiling_sqrt_assign();
assert_eq!(x, 10);

let mut x = Natural::from(101u8);
x.ceiling_sqrt_assign();
assert_eq!(x, 11);

let mut x = Natural::from(1000000000u32);
x.ceiling_sqrt_assign();
assert_eq!(x, 31623);

let mut x = Natural::from(10000000000u64);
x.ceiling_sqrt_assign();
assert_eq!(x, 100000);

Converts an Integer to a Natural, taking the Natural by reference. If the Integer is negative, None is returned.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is value.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::conversion::traits::CheckedFrom;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert_eq!(Natural::checked_from(&Integer::from(123)).to_debug_string(), "Some(123)");
assert_eq!(Natural::checked_from(&Integer::from(-123)).to_debug_string(), "None");
assert_eq!(
    Natural::checked_from(&Integer::from(10u32).pow(12)).to_debug_string(),
    "Some(1000000000000)"
);
assert_eq!(
    Natural::checked_from(&(-Integer::from(10u32).pow(12))).to_debug_string(),
    "None"
);

Converts a Natural to a primitive float.

If the input isn’t exactly equal to some float, None is returned.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is value.significant_bits().

Examples

See here.

Converts a Natural to a primitive float.

If the input isn’t exactly equal to some float, None is returned.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is value.significant_bits().

Examples

See here.

Converts a Natural to a SignedLimb (the signed type whose width is the same as a limb’s), returning None if the Natural is too large.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to an isize or value of a signed primitive integer type that’s larger than a Limb, returning None if the Natural is too large.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s larger than a Limb, returning None if the Natural is too large.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to an isize or value of a signed primitive integer type that’s larger than a Limb, returning None if the Natural is too large.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a usize, returning None if the Natural is too large.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb, returning None if the Natural is too large.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of a signed primitive integer type that’s smaller than a Limb, returning None if the Natural is too large.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb, returning None if the Natural is too large.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of a signed primitive integer type that’s smaller than a Limb, returning None if the Natural is too large.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb, returning None if the Natural is too large.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of a signed primitive integer type that’s smaller than a Limb, returning None if the Natural is too large.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a Limb, returning None if the Natural is too large.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts an Integer to a Natural, taking the Natural by value. If the Integer is negative, None is returned.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::conversion::traits::CheckedFrom;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert_eq!(Natural::checked_from(Integer::from(123)).to_debug_string(), "Some(123)");
assert_eq!(Natural::checked_from(Integer::from(-123)).to_debug_string(), "None");
assert_eq!(
    Natural::checked_from(Integer::from(10u32).pow(12)).to_debug_string(),
    "Some(1000000000000)"
);
assert_eq!(Natural::checked_from(-Integer::from(10u32).pow(12)).to_debug_string(), "None");

Converts a floating-point value to a Natural type.

If the input isn’t exactly equal to some Natural, None is returned.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is value.sci_exponent().

Examples

See here.

Converts a floating-point value to a Natural type.

If the input isn’t exactly equal to some Natural, None is returned.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is value.sci_exponent().

Examples

See here.

Converts a signed primitive integer to a Natural. If the integer is negative, None is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a signed primitive integer to a Natural. If the integer is negative, None is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a signed primitive integer to a Natural. If the integer is negative, None is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a signed primitive integer to a Natural. If the integer is negative, None is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a signed primitive integer to a Natural. If the integer is negative, None is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a signed primitive integer to a Natural. If the integer is negative, None is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns the base-$b$ logarithm of a positive Natural. If the Natural is not a power of $b$, then None is returned.

$$ f(x, b) = \begin{cases} \operatorname{Some}(\log_b x) & \text{if} \quad \log_b x \in \Z, \\ \operatorname{None} & \textrm{otherwise}. \end{cases} $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is x.significant_bits().

Panics

Panics if self is 0 or base is less than 2.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CheckedLogBase;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(80u32).checked_log_base(&Natural::from(3u32)), None);
assert_eq!(Natural::from(81u32).checked_log_base(&Natural::from(3u32)), Some(4));
assert_eq!(Natural::from(82u32).checked_log_base(&Natural::from(3u32)), None);
assert_eq!(Natural::from(4294967296u64).checked_log_base(&Natural::from(10u32)), None);

Returns the base-2 logarithm of a positive Natural. If the Natural is not a power of 2, then None is returned.

$$ f(x) = \begin{cases} \operatorname{Some}(\log_2 x) & \text{if} \quad \log_2 x \in \Z, \\ \operatorname{None} & \textrm{otherwise}. \end{cases} $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if self is 0.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CheckedLogBase2;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::from(3u32).checked_log_base_2(), None);
assert_eq!(Natural::from(4u32).checked_log_base_2(), Some(2));
assert_eq!(
    Natural::from_str("1267650600228229401496703205376").unwrap().checked_log_base_2(),
    Some(100)
);

Returns the base-$2^k$ logarithm of a positive Natural. If the Natural is not a power of $2^k$, then None is returned.

$$ f(x, k) = \begin{cases} \operatorname{Some}(\log_{2^k} x) & \text{if} \quad \log_{2^k} x \in \Z, \\ \operatorname{None} & \textrm{otherwise}. \end{cases} $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if self is 0 or pow is 0.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CheckedLogBasePowerOf2;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::from(100u32).checked_log_base_power_of_2(2), None);
assert_eq!(Natural::from(4294967296u64).checked_log_base_power_of_2(8), Some(4));

Returns the the $n$th root of a Natural, or None if the Natural is not a perfect $n$th power. The Natural is taken by value.

$$ f(x, n) = \begin{cases} \operatorname{Some}(sqrt[n]{x}) & \text{if} \quad \sqrt[n]{x} \in \Z, \\ \operatorname{None} & \textrm{otherwise}. \end{cases} $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if exp is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CheckedRoot;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(999u16).checked_root(3).to_debug_string(), "None");
assert_eq!(Natural::from(1000u16).checked_root(3).to_debug_string(), "Some(10)");
assert_eq!(Natural::from(1001u16).checked_root(3).to_debug_string(), "None");
assert_eq!(Natural::from(100000000000u64).checked_root(5).to_debug_string(), "None");
assert_eq!(Natural::from(10000000000u64).checked_root(5).to_debug_string(), "Some(100)");

Returns the the $n$th root of a Natural, or None if the Natural is not a perfect $n$th power. The Natural is taken by reference.

$$ f(x, n) = \begin{cases} \operatorname{Some}(sqrt[n]{x}) & \text{if} \quad \sqrt[n]{x} \in \Z, \\ \operatorname{None} & \textrm{otherwise}. \end{cases} $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if exp is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CheckedRoot;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(999u16)).checked_root(3).to_debug_string(), "None");
assert_eq!((&Natural::from(1000u16)).checked_root(3).to_debug_string(), "Some(10)");
assert_eq!((&Natural::from(1001u16)).checked_root(3).to_debug_string(), "None");
assert_eq!((&Natural::from(100000000000u64)).checked_root(5).to_debug_string(), "None");
assert_eq!(
    (&Natural::from(10000000000u64)).checked_root(5).to_debug_string(),
    "Some(100)"
);

Returns the the square root of a Natural, or None if it is not a perfect square. The Natural is taken by value.

$$ f(x) = \begin{cases} \operatorname{Some}(sqrt{x}) & \text{if} \quad \sqrt{x} \in \Z, \\ \operatorname{None} & \textrm{otherwise}. \end{cases} $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CheckedSqrt;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(99u8).checked_sqrt().to_debug_string(), "None");
assert_eq!(Natural::from(100u8).checked_sqrt().to_debug_string(), "Some(10)");
assert_eq!(Natural::from(101u8).checked_sqrt().to_debug_string(), "None");
assert_eq!(Natural::from(1000000000u32).checked_sqrt().to_debug_string(), "None");
assert_eq!(Natural::from(10000000000u64).checked_sqrt().to_debug_string(), "Some(100000)");

Returns the the square root of a Natural, or None if it is not a perfect square. The Natural is taken by value.

$$ f(x) = \begin{cases} \operatorname{Some}(sqrt{x}) & \text{if} \quad \sqrt{x} \in \Z, \\ \operatorname{None} & \textrm{otherwise}. \end{cases} $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CheckedSqrt;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(99u8)).checked_sqrt().to_debug_string(), "None");
assert_eq!((&Natural::from(100u8)).checked_sqrt().to_debug_string(), "Some(10)");
assert_eq!((&Natural::from(101u8)).checked_sqrt().to_debug_string(), "None");
assert_eq!((&Natural::from(1000000000u32)).checked_sqrt().to_debug_string(), "None");
assert_eq!(
    (&Natural::from(10000000000u64)).checked_sqrt().to_debug_string(),
    "Some(100000)"
);

Subtracts a Natural by another Natural, taking the first by value and the second by reference and returning None if the result is negative.

$$ f(x, y) = \begin{cases} \operatorname{Some}(x - y) & \text{if} \quad x \geq y, \\ \operatorname{None} & \text{otherwise}. \end{cases} $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{CheckedSub, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.checked_sub(&Natural::from(123u32)).to_debug_string(), "None");
assert_eq!(
    Natural::from(123u32).checked_sub(&Natural::ZERO).to_debug_string(),
    "Some(123)"
);
assert_eq!(Natural::from(456u32).checked_sub(&Natural::from(123u32)).to_debug_string(),
    "Some(333)");
assert_eq!(
    (Natural::from(10u32).pow(12) * Natural::from(3u32))
            .checked_sub(&Natural::from(10u32).pow(12)).to_debug_string(),
    "Some(2000000000000)"
);

Subtracts a Natural by another Natural, taking both by reference and returning None if the result is negative.

$$ f(x, y) = \begin{cases} \operatorname{Some}(x - y) & \text{if} \quad x \geq y, \\ \operatorname{None} & \text{otherwise}. \end{cases} $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{CheckedSub, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).checked_sub(&Natural::from(123u32)).to_debug_string(), "None");
assert_eq!((&Natural::from(123u32)).checked_sub(&Natural::ZERO).to_debug_string(),
    "Some(123)");
assert_eq!((&Natural::from(456u32)).checked_sub(&Natural::from(123u32)).to_debug_string(),
    "Some(333)");
assert_eq!(
    (&(Natural::from(10u32).pow(12) * Natural::from(3u32)))
            .checked_sub(&Natural::from(10u32).pow(12)).to_debug_string(),
    "Some(2000000000000)"
);

Subtracts a Natural by another Natural, taking both by value and returning None if the result is negative.

$$ f(x, y) = \begin{cases} \operatorname{Some}(x - y) & \text{if} \quad x \geq y, \\ \operatorname{None} & \text{otherwise}. \end{cases} $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{CheckedSub, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.checked_sub(Natural::from(123u32)).to_debug_string(), "None");
assert_eq!(
    Natural::from(123u32).checked_sub(Natural::ZERO).to_debug_string(),
    "Some(123)"
);
assert_eq!(
    Natural::from(456u32).checked_sub(Natural::from(123u32)).to_debug_string(),
    "Some(333)"
);
assert_eq!(
    (Natural::from(10u32).pow(12) * Natural::from(3u32))
            .checked_sub(Natural::from(10u32).pow(12)).to_debug_string(),
    "Some(2000000000000)"
);

Subtracts a Natural by another Natural, taking the first by reference and the second by value and returning None if the result is negative.

$$ f(x, y) = \begin{cases} \operatorname{Some}(x - y) & \text{if} \quad x \geq y, \\ \operatorname{None} & \text{otherwise}. \end{cases} $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{CheckedSub, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).checked_sub(Natural::from(123u32)).to_debug_string(), "None");
assert_eq!((&Natural::from(123u32)).checked_sub(Natural::ZERO).to_debug_string(),
    "Some(123)");
assert_eq!((&Natural::from(456u32)).checked_sub(Natural::from(123u32)).to_debug_string(),
    "Some(333)");
assert_eq!(
    (&(Natural::from(10u32).pow(12) * Natural::from(3u32)))
            .checked_sub(Natural::from(10u32).pow(12)).to_debug_string(),
    "Some(2000000000000)"
);

Subtracts a Natural by the product of two other Naturals, taking the first by value and the second and third by reference and returning None if the result is negative.

$$ f(x, y, z) = \begin{cases} \operatorname{Some}(x - yz) & \text{if} \quad x \geq yz, \\ \operatorname{None} & \text{otherwise}. \end{cases} $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Panics

Panics if y * z is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{CheckedSubMul, Pow};
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(20u32).checked_sub_mul(&Natural::from(3u32), &Natural::from(4u32))
            .to_debug_string(),
    "Some(8)"
);
assert_eq!(
    Natural::from(10u32).checked_sub_mul(&Natural::from(3u32), &Natural::from(4u32))
            .to_debug_string(),
    "None"
);
assert_eq!(
    Natural::from(10u32).pow(12)
            .checked_sub_mul(&Natural::from(0x10000u32), &Natural::from(0x10000u32))
            .to_debug_string(),
    "Some(995705032704)"
);

Subtracts a Natural by the product of two other Naturals, taking all three by reference and returning None if the result is negative.

$$ f(x, y, z) = \begin{cases} \operatorname{Some}(x - yz) & \text{if} \quad x \geq yz, \\ \operatorname{None} & \text{otherwise}. \end{cases} $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n, m) = O(m + n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{CheckedSubMul, Pow};
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(
    (&Natural::from(20u32)).checked_sub_mul(&Natural::from(3u32), &Natural::from(4u32))
            .to_debug_string(),
    "Some(8)"
);
assert_eq!(
    (&Natural::from(10u32)).checked_sub_mul(&Natural::from(3u32), &Natural::from(4u32))
            .to_debug_string(),
    "None"
);
assert_eq!(
    (&Natural::from(10u32).pow(12))
            .checked_sub_mul(&Natural::from(0x10000u32), &Natural::from(0x10000u32))
            .to_debug_string(),
    "Some(995705032704)"
);

Subtracts a Natural by the product of two other Naturals, taking the first and third by value and the second by reference and returning None if the result is negative.

$$ f(x, y, z) = \begin{cases} \operatorname{Some}(x - yz) & \text{if} \quad x \geq yz, \\ \operatorname{None} & \text{otherwise}. \end{cases} $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Panics

Panics if y * z is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{CheckedSubMul, Pow};
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(20u32).checked_sub_mul(&Natural::from(3u32), Natural::from(4u32))
            .to_debug_string(),
    "Some(8)"
);
assert_eq!(
    Natural::from(10u32).checked_sub_mul(&Natural::from(3u32), Natural::from(4u32))
            .to_debug_string(),
    "None"
);
assert_eq!(
    Natural::from(10u32).pow(12)
            .checked_sub_mul(&Natural::from(0x10000u32), Natural::from(0x10000u32))
            .to_debug_string(),
    "Some(995705032704)"
);

Subtracts a Natural by the product of two other Naturals, taking the first two by value and the third by reference and returning None if the result is negative.

$$ f(x, y, z) = \begin{cases} \operatorname{Some}(x - yz) & \text{if} \quad x \geq yz, \\ \operatorname{None} & \text{otherwise}. \end{cases} $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Panics

Panics if y * z is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{CheckedSubMul, Pow};
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(20u32).checked_sub_mul(Natural::from(3u32), &Natural::from(4u32))
            .to_debug_string(),
    "Some(8)"
);
assert_eq!(
    Natural::from(10u32).checked_sub_mul(Natural::from(3u32), &Natural::from(4u32))
            .to_debug_string(),
    "None"
);
assert_eq!(
    Natural::from(10u32).pow(12)
            .checked_sub_mul(Natural::from(0x10000u32), &Natural::from(0x10000u32))
            .to_debug_string(),
    "Some(995705032704)"
);

Subtracts a Natural by the product of two other Naturals, taking all three by value and returning None if the result is negative.

$$ f(x, y, z) = \begin{cases} \operatorname{Some}(x - yz) & \text{if} \quad x \geq yz, \\ \operatorname{None} & \text{otherwise}. \end{cases} $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Panics

Panics if y * z is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{CheckedSubMul, Pow};
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(20u32).checked_sub_mul(Natural::from(3u32), Natural::from(4u32))
            .to_debug_string(),
    "Some(8)"
);
assert_eq!(
    Natural::from(10u32).checked_sub_mul(Natural::from(3u32), Natural::from(4u32))
            .to_debug_string(),
    "None"
);
assert_eq!(
    Natural::from(10u32).pow(12)
            .checked_sub_mul(Natural::from(0x10000u32), Natural::from(0x10000u32))
            .to_debug_string(),
    "Some(995705032704)"
);

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Determines whether an Integer can be converted to a Natural (when the Integer is non-negative). Takes the Integer by reference.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::conversion::traits::ConvertibleFrom;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert_eq!(Natural::convertible_from(&Integer::from(123)), true);
assert_eq!(Natural::convertible_from(&Integer::from(-123)), false);
assert_eq!(Natural::convertible_from(&Integer::from(10u32).pow(12)), true);
assert_eq!(Natural::convertible_from(&-Integer::from(10u32).pow(12)), false);

Determines whether a Natural can be exactly converted to a primitive float.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is value.significant_bits().

Examples

See here.

Determines whether a Natural can be exactly converted to a primitive float.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is value.significant_bits().

Examples

See here.

Determines whether a Natural can be converted to a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a Natural can be converted to a SignedLimb (the signed type whose width is the same as a limb’s).

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a Natural can be converted to a value of a primitive unsigned integer type that’s larger than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a Natural can be converted to a value of a signed primitive integer type that’s larger than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a Natural can be converted to a usize.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a Natural can be converted to an isize.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a Natural can be converted to a value of a primitive unsigned integer type that’s smaller than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a Natural can be converted to a value of a signed primitive integer type that’s smaller than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a Natural can be converted to a value of a primitive unsigned integer type that’s smaller than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a Natural can be converted to a value of a signed primitive integer type that’s smaller than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a Natural can be converted to a value of a primitive unsigned integer type that’s smaller than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a Natural can be converted to a value of a signed primitive integer type that’s smaller than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether an Integer can be converted to a Natural (when the Integer is non-negative). Takes the Integer by value.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::conversion::traits::ConvertibleFrom;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert_eq!(Natural::convertible_from(Integer::from(123)), true);
assert_eq!(Natural::convertible_from(Integer::from(-123)), false);
assert_eq!(Natural::convertible_from(Integer::from(10u32).pow(12)), true);
assert_eq!(Natural::convertible_from(-Integer::from(10u32).pow(12)), false);

Determines whether a floating-point value can be exactly converted to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a floating-point value can be exactly converted to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a signed primitive integer can be converted to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a signed primitive integer can be converted to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a signed primitive integer can be converted to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a signed primitive integer can be converted to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a signed primitive integer can be converted to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Determines whether a signed primitive integer can be converted to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns whether two Naturals are coprime; that is, whether they have no common factor other than 1. The first Natural is taken by value and the second by reference.

Every Natural is coprime with 1. No Natural is coprime with 0, except 1.

$f(x, y) = (\gcd(x, y) = 1)$.

$f(x, y) = ((k,m,n \in \N \land x=km \land y=kn) \implies k=1)$.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CoprimeWith;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).coprime_with(&Natural::from(5u32)), true);
assert_eq!(Natural::from(12u32).coprime_with(&Natural::from(90u32)), false);

Returns whether two Naturals are coprime; that is, whether they have no common factor other than 1. Both Naturals are taken by reference.

Every Natural is coprime with 1. No Natural is coprime with 0, except 1.

$f(x, y) = (\gcd(x, y) = 1)$.

$f(x, y) = ((k,m,n \in \N \land x=km \land y=kn) \implies k=1)$.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CoprimeWith;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(3u32)).coprime_with(Natural::from(5u32)), true);
assert_eq!((&Natural::from(12u32)).coprime_with(Natural::from(90u32)), false);

Returns whether two Naturals are coprime; that is, whether they have no common factor other than 1. Both Naturals are taken by value.

Every Natural is coprime with 1. No Natural is coprime with 0, except 1.

$f(x, y) = (\gcd(x, y) = 1)$.

$f(x, y) = ((k,m,n \in \N \land x=km \land y=kn) \implies k=1)$.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CoprimeWith;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).coprime_with(Natural::from(5u32)), true);
assert_eq!(Natural::from(12u32).coprime_with(Natural::from(90u32)), false);

Returns whether two Naturals are coprime; that is, whether they have no common factor other than 1. The first Natural is taken by reference and the second by value.

Every Natural is coprime with 1. No Natural is coprime with 0, except 1.

$f(x, y) = (\gcd(x, y) = 1)$.

$f(x, y) = ((k,m,n \in \N \land x=km \land y=kn) \implies k=1)$.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::CoprimeWith;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(3u32)).coprime_with(Natural::from(5u32)), true);
assert_eq!((&Natural::from(12u32)).coprime_with(Natural::from(90u32)), false);

Counts the number of ones in the binary expansion of a Natural.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::logic::traits::CountOnes;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.count_ones(), 0);
// 105 = 1101001b
assert_eq!(Natural::from(105u32).count_ones(), 4);
// 10^12 = 1110100011010100101001010001000000000000b
assert_eq!(Natural::from(10u32).pow(12).count_ones(), 13);

Converts a Natural to a String.

This is the same as the Display::fmt implementation.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::ZERO.to_debug_string(), "0");
assert_eq!(Natural::from(123u32).to_debug_string(), "123");
assert_eq!(
    Natural::from_str("1000000000000").unwrap().to_debug_string(),
    "1000000000000"
);
assert_eq!(format!("{:05?}", Natural::from(123u32)), "00123");

The default value of a Natural, 0.

Returns a Vec containing the digits of a Natural in ascending order (least- to most-significant).

If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_i = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::{Two, Zero};
use malachite_base::num::conversion::traits::Digits;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.to_digits_asc(&Natural::from(6u32)).to_debug_string(), "[]");
assert_eq!(Natural::TWO.to_digits_asc(&Natural::from(6u32)).to_debug_string(), "[2]");
assert_eq!(
    Natural::from(123456u32).to_digits_asc(&Natural::from(3u32)).to_debug_string(),
    "[0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 2]"
);

Returns a Vec containing the digits of a Natural in descending order (most- to least-significant).

If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_{k-i-1} = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::{Two, Zero};
use malachite_base::num::conversion::traits::Digits;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.to_digits_desc(&Natural::from(6u32)).to_debug_string(), "[]");
assert_eq!(Natural::TWO.to_digits_desc(&Natural::from(6u32)).to_debug_string(), "[2]");
assert_eq!(
    Natural::from(123456u32).to_digits_desc(&Natural::from(3u32)).to_debug_string(),
    "[2, 0, 0, 2, 1, 1, 0, 0, 1, 1, 0]"
);

Converts an iterator of digits into a Natural.

The input digits are in ascending order (least- to most-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^id_i. $$

Worst-case complexity

$T(n, m) = O(nm (\log (nm))^2 \log\log (nm))$

$M(n, m) = O(nm \log (nm))$

where $T$ is time, $M$ is additional memory, $n$ is digits.count(), and $m$ is base.significant_bits().

Panics

Panics if base is less than 2.

Examples
extern crate malachite_base;

use malachite_base::num::conversion::traits::Digits;
use malachite_base::strings::ToDebugString;
use malachite_base::vecs::vec_from_str;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    Natural::from_digits_asc(
        &Natural::from(64u32),
        vec_from_str::<Natural>("[0, 0, 0]").unwrap().into_iter()
    ).to_debug_string(),
    "Some(0)"
);
assert_eq!(
    Natural::from_digits_asc(
        &Natural::from(3u32),
        vec_from_str::<Natural>("[0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 2]").unwrap().into_iter()
    ).to_debug_string(),
    "Some(123456)"
);
assert_eq!(
    Natural::from_digits_asc(
        &Natural::from(8u32),
        vec_from_str::<Natural>("[3, 7, 1]").unwrap().into_iter()
    ).to_debug_string(),
    "Some(123)"
);
assert_eq!(
    Natural::from_digits_asc(
        &Natural::from(8u32),
        vec_from_str::<Natural>("[1, 10, 3]").unwrap().into_iter()
    ).to_debug_string(),
    "None"
);

Converts an iterator of digits into a Natural.

The input digits are in descending order (most- to least-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^{k-i-1}d_i. $$

Worst-case complexity

$T(n, m) = O(nm (\log (nm))^2 \log\log (nm))$

$M(n, m) = O(nm \log (nm))$

where $T$ is time, $M$ is additional memory, $n$ is digits.count(), and $m$ is base.significant_bits().

Panics

Panics if base is less than 2.

Examples
extern crate malachite_base;

use malachite_base::num::conversion::traits::Digits;
use malachite_base::strings::ToDebugString;
use malachite_base::vecs::vec_from_str;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    Natural::from_digits_desc(
        &Natural::from(64u32),
        vec_from_str::<Natural>("[0, 0, 0]").unwrap().into_iter()
    ).to_debug_string(),
    "Some(0)"
);
assert_eq!(
    Natural::from_digits_desc(
        &Natural::from(3u32),
        vec_from_str::<Natural>("[2, 0, 0, 2, 1, 1, 0, 0, 1, 1, 0]").unwrap().into_iter()
    ).to_debug_string(),
    "Some(123456)"
);
assert_eq!(
    Natural::from_digits_desc(
        &Natural::from(8u32),
        vec_from_str::<Natural>("[1, 7, 3]").unwrap().into_iter()
    ).to_debug_string(),
    "Some(123)"
);
assert_eq!(
    Natural::from_digits_desc(
        &Natural::from(8u32),
        vec_from_str::<Natural>("[3, 10, 1]").unwrap().into_iter()
    ).to_debug_string(),
    "None"
);

Returns a Vec containing the digits of a Natural in ascending order (least- to most-significant).

If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_i = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples

See here.

Returns a Vec containing the digits of a Natural in descending order (most- to least-significant).

If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_{k-i-1} = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples

See here.

Converts an iterator of digits into a Natural.

The input digits are in ascending order (least- to most-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^id_i. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if base is less than 2.

Examples

See here.

Converts an iterator of digits into a Natural.

The input digits are in descending order (most- to least-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^{k-i-1}d_i. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if base is less than 2.

Examples

See here.

Returns a Vec containing the digits of a Natural in ascending order (least- to most-significant).

If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_i = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples

See here.

Returns a Vec containing the digits of a Natural in descending order (most- to least-significant).

If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_{k-i-1} = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples

See here.

Converts an iterator of digits into a Natural.

The input digits are in ascending order (least- to most-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^id_i. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if base is less than 2.

Examples

See here.

Converts an iterator of digits into a Natural.

The input digits are in descending order (most- to least-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^{k-i-1}d_i. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if base is less than 2.

Examples

See here.

Returns a Vec containing the digits of a Natural in ascending order (least- to most-significant).

If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_i = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples

See here.

Returns a Vec containing the digits of a Natural in descending order (most- to least-significant).

If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_{k-i-1} = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples

See here.

Converts an iterator of digits into a Natural.

The input digits are in ascending order (least- to most-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^id_i. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if base is less than 2.

Examples

See here.

Converts an iterator of digits into a Natural.

The input digits are in descending order (most- to least-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^{k-i-1}d_i. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if base is less than 2.

Examples

See here.

Returns a Vec containing the digits of a Natural in ascending order (least- to most-significant).

If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_i = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples

See here.

Returns a Vec containing the digits of a Natural in descending order (most- to least-significant).

If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_{k-i-1} = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples

See here.

Converts an iterator of digits into a Natural.

The input digits are in ascending order (least- to most-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^id_i. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if base is less than 2.

Examples

See here.

Converts an iterator of digits into a Natural.

The input digits are in descending order (most- to least-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^{k-i-1}d_i. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if base is less than 2.

Examples

See here.

Returns a Vec containing the digits of a Natural in ascending order (least- to most-significant).

If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_i = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples

See here.

Returns a Vec containing the digits of a Natural in descending order (most- to least-significant).

If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_{k-i-1} = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples

See here.

Converts an iterator of digits into a Natural.

The input digits are in ascending order (least- to most-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^id_i. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if base is less than 2.

Examples

See here.

Converts an iterator of digits into a Natural.

The input digits are in descending order (most- to least-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^{k-i-1}d_i. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if base is less than 2.

Examples

See here.

Returns a Vec containing the digits of a Natural in ascending order (least- to most-significant).

If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_i = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples

See here.

Returns a Vec containing the digits of a Natural in descending order (most- to least-significant).

If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, b) = (d_i)_ {i=0}^{k-1}$, where $0 \leq d_i < b$ for all $i$, $k=0$ or $d_{k-1} \neq 0$, and

$$ \sum_{i=0}^{k-1}b^i d_{k-i-1} = x. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2.

Examples

See here.

Converts an iterator of digits into a Natural.

The input digits are in ascending order (least- to most-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^id_i. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if base is less than 2.

Examples

See here.

Converts an iterator of digits into a Natural.

The input digits are in descending order (most- to least-significant). The function returns None if any of the digits are greater than or equal to the base.

$$ f((d_i)_ {i=0}^{k-1}, b) = \sum_{i=0}^{k-1}b^{k-i-1}d_i. $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if base is less than 2.

Examples

See here.

Converts a Natural to a String.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::ZERO.to_string(), "0");
assert_eq!(Natural::from(123u32).to_string(), "123");
assert_eq!(
    Natural::from_str("1000000000000").unwrap().to_string(),
    "1000000000000"
);
assert_eq!(format!("{:05}", Natural::from(123u32)), "00123");

Divides a Natural by another Natural, taking the first by value and the second by reference. The quotient is rounded towards negative infinity. The quotient and remainder (which is not computed) satisfy $x = qy + r$ and $0 \leq r < y$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(Natural::from(23u32) / &Natural::from(10u32), 2);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    Natural::from_str("1000000000000000000000000").unwrap() /
            &Natural::from_str("1234567890987").unwrap(),
    810000006723u64
);

The resulting type after applying the / operator.

Divides a Natural by another Natural, taking both by reference. The quotient is rounded towards negative infinity. The quotient and remainder (which is not computed) satisfy $x = qy + r$ and $0 \leq r < y$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(&Natural::from(23u32) / &Natural::from(10u32), 2);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    &Natural::from_str("1000000000000000000000000").unwrap() /
    &Natural::from_str("1234567890987").unwrap(),
    810000006723u64
);

The resulting type after applying the / operator.

Divides a Natural by another Natural, taking both by value. The quotient is rounded towards negative infinity. The quotient and remainder (which is not computed) satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = \left \lfloor \frac{x}{y} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(Natural::from(23u32) / Natural::from(10u32), 2);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    Natural::from_str("1000000000000000000000000").unwrap() /
            Natural::from_str("1234567890987").unwrap(),
    810000006723u64
);

The resulting type after applying the / operator.

Divides a Natural by another Natural, taking the first by reference and the second by value. The quotient is rounded towards negative infinity. The quotient and remainder (which is not computed) satisfy $x = qy + r$ and $0 \leq r < y$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(&Natural::from(23u32) / Natural::from(10u32), 2);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    &Natural::from_str("1000000000000000000000000").unwrap() /
            Natural::from_str("1234567890987").unwrap(),
    810000006723u64
);

The resulting type after applying the / operator.

Divides a Natural by another Natural in place, taking the Natural on the right-hand side by reference. The quotient is rounded towards negative infinity. The quotient and remainder (which is not computed) satisfy $x = qy + r$ and $0 \leq r < y$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
let mut x = Natural::from(23u32);
x /= &Natural::from(10u32);
assert_eq!(x, 2);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
x /= &Natural::from_str("1234567890987").unwrap();
assert_eq!(x, 810000006723u64);

Divides a Natural by another Natural in place, taking the Natural on the right-hand side by value. The quotient is rounded towards negative infinity. The quotient and remainder (which is not computed) satisfy $x = qy + r$ and $0 \leq r < y$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
let mut x = Natural::from(23u32);
x /= Natural::from(10u32);
assert_eq!(x, 2);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
x /= Natural::from_str("1234567890987").unwrap();
assert_eq!(x, 810000006723u64);

Divides a Natural by another Natural in place, taking the Natural on the right-hand side by value and returning the remainder. The quotient is rounded towards negative infinity.

The quotient and remainder satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor, $$ $$ x \gets \left \lfloor \frac{x}{y} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivAssignMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
let mut x = Natural::from(23u32);
assert_eq!(x.div_assign_mod(&Natural::from(10u32)), 3);
assert_eq!(x, 2);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
assert_eq!(
    x.div_assign_mod(&Natural::from_str("1234567890987").unwrap()),
    530068894399u64
);
assert_eq!(x, 810000006723u64);

Divides a Natural by another Natural in place, taking the Natural on the right-hand side by value and returning the remainder. The quotient is rounded towards negative infinity.

The quotient and remainder satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor, $$ $$ x \gets \left \lfloor \frac{x}{y} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivAssignMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
let mut x = Natural::from(23u32);
assert_eq!(x.div_assign_mod(Natural::from(10u32)), 3);
assert_eq!(x, 2);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
assert_eq!(x.div_assign_mod(Natural::from_str("1234567890987").unwrap()), 530068894399u64);
assert_eq!(x, 810000006723u64);

Divides a Natural by another Natural in place, taking the Natural on the right-hand side by reference and returning the remainder. The quotient is rounded towards zero.

The quotient and remainder satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor, $$ $$ x \gets \left \lfloor \frac{x}{y} \right \rfloor. $$

For Naturals, div_assign_rem is equivalent to div_assign_mod.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivAssignRem;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
let mut x = Natural::from(23u32);
assert_eq!(x.div_assign_rem(&Natural::from(10u32)), 3);
assert_eq!(x, 2);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
assert_eq!(
    x.div_assign_rem(&Natural::from_str("1234567890987").unwrap()),
    530068894399u64
);
assert_eq!(x, 810000006723u64);

Divides a Natural by another Natural in place, taking the Natural on the right-hand side by value and returning the remainder. The quotient is rounded towards zero.

The quotient and remainder satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor, $$ $$ x \gets \left \lfloor \frac{x}{y} \right \rfloor. $$

For Naturals, div_assign_rem is equivalent to div_assign_mod.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivAssignRem;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
let mut x = Natural::from(23u32);
assert_eq!(x.div_assign_rem(Natural::from(10u32)), 3);
assert_eq!(x, 2);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
assert_eq!(x.div_assign_rem(Natural::from_str("1234567890987").unwrap()), 530068894399u64);
assert_eq!(x, 810000006723u64);

Divides a Natural by another Natural, taking the first by value and the second by reference. The first Natural must be exactly divisible by the second. If it isn’t, this function may panic or return a meaningless result.

$$ f(x, y) = \frac{x}{y}. $$

If you are unsure whether the division will be exact, use self / &other instead. If you’re unsure and you want to know, use self.div_mod(&other) and check whether the remainder is zero. If you want a function that panics if the division is not exact, use self.div_round(&other, RoundingMode::Exact).

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero. May panic if self is not divisible by other.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivExact;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 123 * 456 = 56088
assert_eq!(Natural::from(56088u32).div_exact(&Natural::from(456u32)), 123);

// 123456789000 * 987654321000 = 121932631112635269000000
assert_eq!(
    Natural::from_str("121932631112635269000000").unwrap()
            .div_exact(&Natural::from_str("987654321000").unwrap()),
    123456789000u64
);

Divides a Natural by another Natural, taking both by reference. The first Natural must be exactly divisible by the second. If it isn’t, this function may panic or return a meaningless result.

$$ f(x, y) = \frac{x}{y}. $$

If you are unsure whether the division will be exact, use &self / &other instead. If you’re unsure and you want to know, use (&self).div_mod(&other) and check whether the remainder is zero. If you want a function that panics if the division is not exact, use (&self).div_round(&other, RoundingMode::Exact).

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero. May panic if self is not divisible by other.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivExact;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 123 * 456 = 56088
assert_eq!((&Natural::from(56088u32)).div_exact(&Natural::from(456u32)), 123);

// 123456789000 * 987654321000 = 121932631112635269000000
assert_eq!(
    (&Natural::from_str("121932631112635269000000").unwrap())
            .div_exact(&Natural::from_str("987654321000").unwrap()),
    123456789000u64
);

Divides a Natural by another Natural, taking both by value. The first Natural must be exactly divisible by the second. If it isn’t, this function may panic or return a meaningless result.

$$ f(x, y) = \frac{x}{y}. $$

If you are unsure whether the division will be exact, use self / other instead. If you’re unsure and you want to know, use self.div_mod(other) and check whether the remainder is zero. If you want a function that panics if the division is not exact, use self.div_round(other, RoundingMode::Exact).

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero. May panic if self is not divisible by other.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivExact;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 123 * 456 = 56088
assert_eq!(Natural::from(56088u32).div_exact(Natural::from(456u32)), 123);

// 123456789000 * 987654321000 = 121932631112635269000000
assert_eq!(
    Natural::from_str("121932631112635269000000").unwrap()
            .div_exact(Natural::from_str("987654321000").unwrap()),
    123456789000u64
);

Divides a Natural by another Natural, taking the first by reference and the second by value. The first Natural must be exactly divisible by the second. If it isn’t, this function may panic or return a meaningless result.

$$ f(x, y) = \frac{x}{y}. $$

If you are unsure whether the division will be exact, use &self / other instead. If you’re unsure and you want to know, use self.div_mod(other) and check whether the remainder is zero. If you want a function that panics if the division is not exact, use (&self).div_round(other, RoundingMode::Exact).

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero. May panic if self is not divisible by other.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivExact;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 123 * 456 = 56088
assert_eq!((&Natural::from(56088u32)).div_exact(Natural::from(456u32)), 123);

// 123456789000 * 987654321000 = 121932631112635269000000
assert_eq!(
    (&Natural::from_str("121932631112635269000000").unwrap())
            .div_exact(Natural::from_str("987654321000").unwrap()),
    123456789000u64
);

Divides a Natural by another Natural in place, taking the Natural on the right-hand side by reference. The first Natural must be exactly divisible by the second. If it isn’t, this function may panic or return a meaningless result.

$$ x \gets \frac{x}{y}. $$

If you are unsure whether the division will be exact, use self /= &other instead. If you’re unsure and you want to know, use self.div_assign_mod(&other) and check whether the remainder is zero. If you want a function that panics if the division is not exact, use self.div_round_assign(&other, RoundingMode::Exact).

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero. May panic if self is not divisible by other.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivExactAssign;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 123 * 456 = 56088
let mut x = Natural::from(56088u32);
x.div_exact_assign(&Natural::from(456u32));
assert_eq!(x, 123);

// 123456789000 * 987654321000 = 121932631112635269000000
let mut x = Natural::from_str("121932631112635269000000").unwrap();
x.div_exact_assign(&Natural::from_str("987654321000").unwrap());
assert_eq!(x, 123456789000u64);

Divides a Natural by another Natural in place, taking the Natural on the right-hand side by value. The first Natural must be exactly divisible by the second. If it isn’t, this function may panic or return a meaningless result.

$$ x \gets \frac{x}{y}. $$

If you are unsure whether the division will be exact, use self /= other instead. If you’re unsure and you want to know, use self.div_assign_mod(other) and check whether the remainder is zero. If you want a function that panics if the division is not exact, use self.div_round_assign(other, RoundingMode::Exact).

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero. May panic if self is not divisible by other.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivExactAssign;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 123 * 456 = 56088
let mut x = Natural::from(56088u32);
x.div_exact_assign(Natural::from(456u32));
assert_eq!(x, 123);

// 123456789000 * 987654321000 = 121932631112635269000000
let mut x = Natural::from_str("121932631112635269000000").unwrap();
x.div_exact_assign(Natural::from_str("987654321000").unwrap());
assert_eq!(x, 123456789000u64);

Divides a Natural by another Natural, taking the first by value and the second by reference and returning the quotient and remainder. The quotient is rounded towards negative infinity.

The quotient and remainder satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = \left ( \left \lfloor \frac{x}{y} \right \rfloor, \space x - y\left \lfloor \frac{x}{y} \right \rfloor \right ). $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(
    Natural::from(23u32).div_mod(&Natural::from(10u32)).to_debug_string(),
    "(2, 3)"
);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    Natural::from_str("1000000000000000000000000").unwrap()
            .div_mod(&Natural::from_str("1234567890987").unwrap()).to_debug_string(),
    "(810000006723, 530068894399)"
);

Divides a Natural by another Natural, taking both by reference and returning the quotient and remainder. The quotient is rounded towards negative infinity.

The quotient and remainder satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = \left ( \left \lfloor \frac{x}{y} \right \rfloor, \space x - y\left \lfloor \frac{x}{y} \right \rfloor \right ). $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(
    (&Natural::from(23u32)).div_mod(&Natural::from(10u32)).to_debug_string(),
    "(2, 3)"
);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    (&Natural::from_str("1000000000000000000000000").unwrap())
            .div_mod(&Natural::from_str("1234567890987").unwrap()).to_debug_string(),
    "(810000006723, 530068894399)"
);

Divides a Natural by another Natural, taking both by value and returning the quotient and remainder. The quotient is rounded towards negative infinity.

The quotient and remainder satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = \left ( \left \lfloor \frac{x}{y} \right \rfloor, \space x - y\left \lfloor \frac{x}{y} \right \rfloor \right ). $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(Natural::from(23u32).div_mod(Natural::from(10u32)).to_debug_string(), "(2, 3)");

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    Natural::from_str("1000000000000000000000000").unwrap()
            .div_mod(Natural::from_str("1234567890987").unwrap()).to_debug_string(),
    "(810000006723, 530068894399)"
);

Divides a Natural by another Natural, taking the first by reference and the second by value and returning the quotient and remainder. The quotient is rounded towards negative infinity.

The quotient and remainder satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = \left ( \left \lfloor \frac{x}{y} \right \rfloor, \space x - y\left \lfloor \frac{x}{y} \right \rfloor \right ). $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(
    (&Natural::from(23u32)).div_mod(Natural::from(10u32)).to_debug_string(),
    "(2, 3)"
);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    (&Natural::from_str("1000000000000000000000000").unwrap())
            .div_mod(Natural::from_str("1234567890987").unwrap()).to_debug_string(),
    "(810000006723, 530068894399)"
);

Divides a Natural by another Natural, taking the first by value and the second by reference and returning the quotient and remainder. The quotient is rounded towards zero.

The quotient and remainder satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = \left ( \left \lfloor \frac{x}{y} \right \rfloor, \space x - y\left \lfloor \frac{x}{y} \right \rfloor \right ). $$

For Naturals, div_rem is equivalent to div_mod.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivRem;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(
    Natural::from(23u32).div_rem(&Natural::from(10u32)).to_debug_string(),
    "(2, 3)"
);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    Natural::from_str("1000000000000000000000000").unwrap()
            .div_rem(&Natural::from_str("1234567890987").unwrap()).to_debug_string(),
    "(810000006723, 530068894399)"
);

Divides a Natural by another Natural, taking both by reference and returning the quotient and remainder. The quotient is rounded towards zero.

The quotient and remainder satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = \left ( \left \lfloor \frac{x}{y} \right \rfloor, \space x - y\left \lfloor \frac{x}{y} \right \rfloor \right ). $$

For Naturals, div_rem is equivalent to div_mod.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivRem;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(
    (&Natural::from(23u32)).div_rem(&Natural::from(10u32)).to_debug_string(),
    "(2, 3)"
);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    (&Natural::from_str("1000000000000000000000000").unwrap())
            .div_rem(&Natural::from_str("1234567890987").unwrap()).to_debug_string(),
    "(810000006723, 530068894399)"
);

Divides a Natural by another Natural, taking both by value and returning the quotient and remainder. The quotient is rounded towards zero.

The quotient and remainder satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = \left ( \left \lfloor \frac{x}{y} \right \rfloor, \space x - y\left \lfloor \frac{x}{y} \right \rfloor \right ). $$

For Naturals, div_rem is equivalent to div_mod.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivRem;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(Natural::from(23u32).div_rem(Natural::from(10u32)).to_debug_string(), "(2, 3)");

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    Natural::from_str("1000000000000000000000000").unwrap()
            .div_rem(Natural::from_str("1234567890987").unwrap()).to_debug_string(),
    "(810000006723, 530068894399)"
);

Divides a Natural by another Natural, taking the first by reference and the second by value and returning the quotient and remainder. The quotient is rounded towards zero.

The quotient and remainder satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = \left ( \left \lfloor \frac{x}{y} \right \rfloor, \space x - y\left \lfloor \frac{x}{y} \right \rfloor \right ). $$

For Naturals, div_rem is equivalent to div_mod.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivRem;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(
    (&Natural::from(23u32)).div_rem(Natural::from(10u32)).to_debug_string(),
    "(2, 3)"
);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    (&Natural::from_str("1000000000000000000000000").unwrap())
            .div_rem(Natural::from_str("1234567890987").unwrap()).to_debug_string(),
    "(810000006723, 530068894399)"
);

Divides a Natural by another Natural, taking the first by value and the second by reference and rounding according to a specified rounding mode.

Let $q = \frac{x}{y}$:

$$ f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero, or if rm is Exact but self is not divisible by other.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{DivRound, Pow};
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(10u32).div_round(&Natural::from(4u32), RoundingMode::Down), 2);
assert_eq!(
    Natural::from(10u32).pow(12).div_round(&Natural::from(3u32), RoundingMode::Floor),
    333333333333u64
);
assert_eq!(Natural::from(10u32).div_round(&Natural::from(4u32), RoundingMode::Up), 3);
assert_eq!(
    Natural::from(10u32).pow(12).div_round(&Natural::from(3u32), RoundingMode::Ceiling),
    333333333334u64);
assert_eq!(Natural::from(10u32).div_round(&Natural::from(5u32), RoundingMode::Exact), 2);
assert_eq!(Natural::from(10u32).div_round(&Natural::from(3u32), RoundingMode::Nearest), 3);
assert_eq!(Natural::from(20u32).div_round(&Natural::from(3u32), RoundingMode::Nearest), 7);
assert_eq!(Natural::from(10u32).div_round(&Natural::from(4u32), RoundingMode::Nearest), 2);
assert_eq!(Natural::from(14u32).div_round(&Natural::from(4u32), RoundingMode::Nearest), 4);

Divides a Natural by another Natural, taking both by reference and rounding according to a specified rounding mode.

Let $q = \frac{x}{y}$:

$$ f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero, or if rm is Exact but self is not divisible by other.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{DivRound, Pow};
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(10u32)).div_round(&Natural::from(4u32), RoundingMode::Down), 2);
assert_eq!(
    (&Natural::from(10u32).pow(12)).div_round(&Natural::from(3u32), RoundingMode::Floor),
    333333333333u64
);
assert_eq!((&Natural::from(10u32)).div_round(&Natural::from(4u32), RoundingMode::Up), 3);
assert_eq!(
    (&Natural::from(10u32).pow(12)).div_round(&Natural::from(3u32), RoundingMode::Ceiling),
    333333333334u64);
assert_eq!(
    (&Natural::from(10u32)).div_round(&Natural::from(5u32), RoundingMode::Exact),
    2
);
assert_eq!(
    (&Natural::from(10u32)).div_round(&Natural::from(3u32), RoundingMode::Nearest),
    3
);
assert_eq!(
    (&Natural::from(20u32)).div_round(&Natural::from(3u32), RoundingMode::Nearest),
    7
);
assert_eq!(
    (&Natural::from(10u32)).div_round(&Natural::from(4u32), RoundingMode::Nearest),
    2
);
assert_eq!(
    (&Natural::from(14u32)).div_round(&Natural::from(4u32), RoundingMode::Nearest),
    4
);

Divides a Natural by another Natural, taking both by value and rounding according to a specified rounding mode.

Let $q = \frac{x}{y}$:

$$ f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero, or if rm is Exact but self is not divisible by other.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{DivRound, Pow};
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(10u32).div_round(Natural::from(4u32), RoundingMode::Down), 2);
assert_eq!(
    Natural::from(10u32).pow(12).div_round(Natural::from(3u32), RoundingMode::Floor),
    333333333333u64
);
assert_eq!(Natural::from(10u32).div_round(Natural::from(4u32), RoundingMode::Up), 3);
assert_eq!(
    Natural::from(10u32).pow(12).div_round(Natural::from(3u32), RoundingMode::Ceiling),
    333333333334u64);
assert_eq!(Natural::from(10u32).div_round(Natural::from(5u32), RoundingMode::Exact), 2);
assert_eq!(Natural::from(10u32).div_round(Natural::from(3u32), RoundingMode::Nearest), 3);
assert_eq!(Natural::from(20u32).div_round(Natural::from(3u32), RoundingMode::Nearest), 7);
assert_eq!(Natural::from(10u32).div_round(Natural::from(4u32), RoundingMode::Nearest), 2);
assert_eq!(Natural::from(14u32).div_round(Natural::from(4u32), RoundingMode::Nearest), 4);

Divides a Natural by another Natural, taking the first by reference and the second by value and rounding according to a specified rounding mode.

Let $q = \frac{x}{y}$:

$$ f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero, or if rm is Exact but self is not divisible by other.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{DivRound, Pow};
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(10u32)).div_round(Natural::from(4u32), RoundingMode::Down), 2);
assert_eq!(
    (&Natural::from(10u32).pow(12)).div_round(Natural::from(3u32), RoundingMode::Floor),
    333333333333u64
);
assert_eq!((&Natural::from(10u32)).div_round(Natural::from(4u32), RoundingMode::Up), 3);
assert_eq!(
    (&Natural::from(10u32).pow(12)).div_round(Natural::from(3u32), RoundingMode::Ceiling),
    333333333334u64);
assert_eq!((&Natural::from(10u32)).div_round(Natural::from(5u32), RoundingMode::Exact), 2);
assert_eq!(
    (&Natural::from(10u32)).div_round(Natural::from(3u32), RoundingMode::Nearest),
    3
);
assert_eq!(
    (&Natural::from(20u32)).div_round(Natural::from(3u32), RoundingMode::Nearest),
    7
);
assert_eq!(
    (&Natural::from(10u32)).div_round(Natural::from(4u32), RoundingMode::Nearest),
    2
);
assert_eq!(
    (&Natural::from(14u32)).div_round(Natural::from(4u32), RoundingMode::Nearest),
    4
);

Divides a Natural by another Natural in place, taking the Natural on the right-hand side by reference and rounding according to a specified rounding mode.

See the DivRound documentation for details.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero, or if rm is Exact but self is not divisible by other.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{DivRoundAssign, Pow};
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

let mut n = Natural::from(10u32);
n.div_round_assign(&Natural::from(4u32), RoundingMode::Down);
assert_eq!(n, 2);

let mut n = Natural::from(10u32).pow(12);
n.div_round_assign(&Natural::from(3u32), RoundingMode::Floor);
assert_eq!(n, 333333333333u64);

let mut n = Natural::from(10u32);
n.div_round_assign(&Natural::from(4u32), RoundingMode::Up);
assert_eq!(n, 3);

let mut n = Natural::from(10u32).pow(12);
n.div_round_assign(&Natural::from(3u32), RoundingMode::Ceiling);
assert_eq!(n, 333333333334u64);

let mut n = Natural::from(10u32);
n.div_round_assign(&Natural::from(5u32), RoundingMode::Exact);
assert_eq!(n, 2);

let mut n = Natural::from(10u32);
n.div_round_assign(&Natural::from(3u32), RoundingMode::Nearest);
assert_eq!(n, 3);

let mut n = Natural::from(20u32);
n.div_round_assign(&Natural::from(3u32), RoundingMode::Nearest);
assert_eq!(n, 7);

let mut n = Natural::from(10u32);
n.div_round_assign(&Natural::from(4u32), RoundingMode::Nearest);
assert_eq!(n, 2);

let mut n = Natural::from(14u32);
n.div_round_assign(&Natural::from(4u32), RoundingMode::Nearest);
assert_eq!(n, 4);

Divides a Natural by another Natural in place, taking the Natural on the right-hand side by value and rounding according to a specified rounding mode.

See the DivRound documentation for details.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero, or if rm is Exact but self is not divisible by other.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{DivRoundAssign, Pow};
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

let mut n = Natural::from(10u32);
n.div_round_assign(Natural::from(4u32), RoundingMode::Down);
assert_eq!(n, 2);

let mut n = Natural::from(10u32).pow(12);
n.div_round_assign(Natural::from(3u32), RoundingMode::Floor);
assert_eq!(n, 333333333333u64);

let mut n = Natural::from(10u32);
n.div_round_assign(Natural::from(4u32), RoundingMode::Up);
assert_eq!(n, 3);

let mut n = Natural::from(10u32).pow(12);
n.div_round_assign(Natural::from(3u32), RoundingMode::Ceiling);
assert_eq!(n, 333333333334u64);

let mut n = Natural::from(10u32);
n.div_round_assign(Natural::from(5u32), RoundingMode::Exact);
assert_eq!(n, 2);

let mut n = Natural::from(10u32);
n.div_round_assign(Natural::from(3u32), RoundingMode::Nearest);
assert_eq!(n, 3);

let mut n = Natural::from(20u32);
n.div_round_assign(Natural::from(3u32), RoundingMode::Nearest);
assert_eq!(n, 7);

let mut n = Natural::from(10u32);
n.div_round_assign(Natural::from(4u32), RoundingMode::Nearest);
assert_eq!(n, 2);

let mut n = Natural::from(14u32);
n.div_round_assign(Natural::from(4u32), RoundingMode::Nearest);
assert_eq!(n, 4);

Returns whether a Natural is divisible by another Natural; in other words, whether the first is a multiple of the second. The first Naturals is taken by reference and the second by value.

This means that zero is divisible by any Natural, including zero; but a nonzero Natural is never divisible by zero.

It’s more efficient to use this function than to compute the remainder and check whether it’s zero.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivisibleBy;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::ZERO.divisible_by(&Natural::ZERO), true);
assert_eq!(Natural::from(100u32).divisible_by(&Natural::from(3u32)), false);
assert_eq!(Natural::from(102u32).divisible_by(&Natural::from(3u32)), true);
assert_eq!(
    Natural::from_str("1000000000000000000000000").unwrap()
            .divisible_by(&Natural::from_str("1000000000000").unwrap()),
    true
);

Returns whether a Natural is divisible by another Natural; in other words, whether the first is a multiple of the second. Both Naturals are taken by reference.

This means that zero is divisible by any Natural, including zero; but a nonzero Natural is never divisible by zero.

It’s more efficient to use this function than to compute the remainder and check whether it’s zero.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivisibleBy;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!((&Natural::ZERO).divisible_by(&Natural::ZERO), true);
assert_eq!((&Natural::from(100u32)).divisible_by(&Natural::from(3u32)), false);
assert_eq!((&Natural::from(102u32)).divisible_by(&Natural::from(3u32)), true);
assert_eq!(
    (&Natural::from_str("1000000000000000000000000").unwrap())
            .divisible_by(&Natural::from_str("1000000000000").unwrap()),
    true
);

Returns whether a Natural is divisible by another Natural; in other words, whether the first is a multiple of the second. Both Naturals are taken by value.

This means that zero is divisible by any Natural, including zero; but a nonzero Natural is never divisible by zero.

It’s more efficient to use this function than to compute the remainder and check whether it’s zero.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivisibleBy;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::ZERO.divisible_by(Natural::ZERO), true);
assert_eq!(Natural::from(100u32).divisible_by(Natural::from(3u32)), false);
assert_eq!(Natural::from(102u32).divisible_by(Natural::from(3u32)), true);
assert_eq!(
    Natural::from_str("1000000000000000000000000").unwrap()
            .divisible_by(Natural::from_str("1000000000000").unwrap()),
    true
);

Returns whether a Natural is divisible by another Natural; in other words, whether the first is a multiple of the second. The first Naturals are taken by reference and the second by value.

This means that zero is divisible by any Natural, including zero; but a nonzero Natural is never divisible by zero.

It’s more efficient to use this function than to compute the remainder and check whether it’s zero.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::DivisibleBy;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!((&Natural::ZERO).divisible_by(Natural::ZERO), true);
assert_eq!((&Natural::from(100u32)).divisible_by(Natural::from(3u32)), false);
assert_eq!((&Natural::from(102u32)).divisible_by(Natural::from(3u32)), true);
assert_eq!(
    (&Natural::from_str("1000000000000000000000000").unwrap())
            .divisible_by(Natural::from_str("1000000000000").unwrap()),
    true
);

Returns whether a Natural is divisible by $2^k$.

$f(x, k) = (2^k|x)$.

$f(x, k) = (\exists n \in \N : \ x = n2^k)$.

If self is 0, the result is always true; otherwise, it is equivalent to self.trailing_zeros().unwrap() <= pow, but more efficient.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(pow, self.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{DivisibleByPowerOf2, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.divisible_by_power_of_2(100), true);
assert_eq!(Natural::from(100u32).divisible_by_power_of_2(2), true);
assert_eq!(Natural::from(100u32).divisible_by_power_of_2(3), false);
assert_eq!(Natural::from(10u32).pow(12).divisible_by_power_of_2(12), true);
assert_eq!(Natural::from(10u32).pow(12).divisible_by_power_of_2(13), false);

Returns whether an Integer is equivalent to another Integer modulo a Natural; that is, whether the difference between the two Integers is a multiple of the Natural. The first number is taken by value and the second and third by reference.

Two Integers are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    Integer::from(123).eq_mod(&Integer::from(223), &Natural::from(100u32)),
    true
);
assert_eq!(
    Integer::from_str("1000000987654").unwrap().eq_mod(
        &Integer::from_str("-999999012346").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    Integer::from_str("1000000987654").unwrap().eq_mod(
        &Integer::from_str("2000000987655").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether an Integer is equivalent to another Integer modulo a Natural; that is, whether the difference between the two Integers is a multiple of the Natural. The first and third numbers are taken by value and the second by reference.

Two Integers are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    Integer::from(123).eq_mod(&Integer::from(223), Natural::from(100u32)),
    true
);
assert_eq!(
    Integer::from_str("1000000987654").unwrap().eq_mod(
        &Integer::from_str("-999999012346").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    Integer::from_str("1000000987654").unwrap().eq_mod(
        &Integer::from_str("2000000987655").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether a Natural is equivalent to another Natural modulo a third; that is, whether the difference between the first two is a multiple of the third. The first is taken by value and the second and third by reference.

Two Naturals are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    Natural::from(123u32).eq_mod(&Natural::from(223u32), &Natural::from(100u32)),
    true
);
assert_eq!(
    Natural::from_str("1000000987654").unwrap().eq_mod(
        &Natural::from_str("2000000987654").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    Natural::from_str("1000000987654").unwrap().eq_mod(
        &Natural::from_str("2000000987655").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether a Natural is equivalent to another Natural modulo a third; that is, whether the difference between the first two is a multiple of the third. The first and third are taken by value and the second by reference.

Two Naturals are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    Natural::from(123u32).eq_mod(&Natural::from(223u32), Natural::from(100u32)),
    true
);
assert_eq!(
    Natural::from_str("1000000987654").unwrap().eq_mod(
        &Natural::from_str("2000000987654").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    Natural::from_str("1000000987654").unwrap().eq_mod(
        &Natural::from_str("2000000987655").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether an Integer is equivalent to another Integer modulo a Natural; that is, whether the difference between the two Integers is a multiple of the Natural. All three numbers are taken by reference.

Two Integers are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    (&Integer::from(123)).eq_mod(&Integer::from(223), &Natural::from(100u32)),
    true
);
assert_eq!(
    (&Integer::from_str("1000000987654").unwrap()).eq_mod(
        &Integer::from_str("-999999012346").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    (&Integer::from_str("1000000987654").unwrap()).eq_mod(
        &Integer::from_str("2000000987655").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether an Integer is equivalent to another Integer modulo a Natural; that is, whether the difference between the two Integers is a multiple of the Natural. The first two numbers are taken by reference and the third by value.

Two Integers are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    (&Integer::from(123)).eq_mod(&Integer::from(223), Natural::from(100u32)),
    true
);
assert_eq!(
    (&Integer::from_str("1000000987654").unwrap()).eq_mod(
        &Integer::from_str("-999999012346").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    (&Integer::from_str("1000000987654").unwrap()).eq_mod(
        &Integer::from_str("2000000987655").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether a Natural is equivalent to another Natural modulo a third; that is, whether the difference between the first two is a multiple of the third. All three are taken by reference.

Two Naturals are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    (&Natural::from(123u32)).eq_mod(&Natural::from(223u32), &Natural::from(100u32)),
    true
);
assert_eq!(
    (&Natural::from_str("1000000987654").unwrap()).eq_mod(
        &Natural::from_str("2000000987654").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    (&Natural::from_str("1000000987654").unwrap()).eq_mod(
        &Natural::from_str("2000000987655").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether a Natural is equivalent to another Natural modulo a third; that is, whether the difference between the first two is a multiple of the third. The first and second are taken by reference and the third by value.

Two Naturals are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    (&Natural::from(123u32)).eq_mod(&Natural::from(223u32), Natural::from(100u32)),
    true
);
assert_eq!(
    (&Natural::from_str("1000000987654").unwrap()).eq_mod(
        &Natural::from_str("2000000987654").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    (&Natural::from_str("1000000987654").unwrap()).eq_mod(
        &Natural::from_str("2000000987655").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether an Integer is equivalent to another Integer modulo a Natural; that is, whether the difference between the two Integers is a multiple of the Natural. The first two numbers are taken by value and the third by reference.

Two Integers are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    Integer::from(123).eq_mod(Integer::from(223), &Natural::from(100u32)),
    true
);
assert_eq!(
    Integer::from_str("1000000987654").unwrap().eq_mod(
        Integer::from_str("-999999012346").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    Integer::from_str("1000000987654").unwrap().eq_mod(
        Integer::from_str("2000000987655").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether an Integer is equivalent to another Integer modulo a Natural; that is, whether the difference between the two Integers is a multiple of the Natural. The first and third numbers are taken by reference and the third by value.

Two Integers are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    (&Integer::from(123)).eq_mod(Integer::from(223), &Natural::from(100u32)),
    true
);
assert_eq!(
    (&Integer::from_str("1000000987654").unwrap()).eq_mod(
        Integer::from_str("-999999012346").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    (&Integer::from_str("1000000987654").unwrap()).eq_mod(
        Integer::from_str("2000000987655").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether an Integer is equivalent to another Integer modulo a Natural; that is, whether the difference between the two Integers is a multiple of the Natural. All three numbers are taken by value.

Two Integers are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    Integer::from(123).eq_mod(Integer::from(223), Natural::from(100u32)),
    true
);
assert_eq!(
    Integer::from_str("1000000987654").unwrap().eq_mod(
        Integer::from_str("-999999012346").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    Integer::from_str("1000000987654").unwrap().eq_mod(
        Integer::from_str("2000000987655").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether an Integer is equivalent to another Integer modulo a Natural; that is, whether the difference between the two Integers is a multiple of the Natural. The first number is taken by reference and the second and third by value.

Two Integers are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    (&Integer::from(123)).eq_mod(Integer::from(223), Natural::from(100u32)),
    true
);
assert_eq!(
    (&Integer::from_str("1000000987654").unwrap()).eq_mod(
        Integer::from_str("-999999012346").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    (&Integer::from_str("1000000987654").unwrap()).eq_mod(
        Integer::from_str("2000000987655").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether a Natural is equivalent to another Natural modulo a third; that is, whether the difference between the first two is a multiple of the third. The first two are taken by value and the third by reference.

Two Naturals are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    Natural::from(123u32).eq_mod(Natural::from(223u32), &Natural::from(100u32)),
    true
);
assert_eq!(
    Natural::from_str("1000000987654").unwrap().eq_mod(
        Natural::from_str("2000000987654").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    Natural::from_str("1000000987654").unwrap().eq_mod(
        Natural::from_str("2000000987655").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether a Natural is equivalent to another Natural modulo a third; that is, whether the difference between the first two is a multiple of the third. The first and third are taken by reference and the second by value.

Two Naturals are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    (&Natural::from(123u32)).eq_mod(Natural::from(223u32), &Natural::from(100u32)),
    true
);
assert_eq!(
    (&Natural::from_str("1000000987654").unwrap()).eq_mod(
        Natural::from_str("2000000987654").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    (&Natural::from_str("1000000987654").unwrap()).eq_mod(
        Natural::from_str("2000000987655").unwrap(),
        &Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether a Natural is equivalent to another Natural modulo a third; that is, whether the difference between the first two is a multiple of the third. All three are taken by value.

Two Naturals are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    Natural::from(123u32).eq_mod(Natural::from(223u32), Natural::from(100u32)),
    true
);
assert_eq!(
    Natural::from_str("1000000987654").unwrap().eq_mod(
        Natural::from_str("2000000987654").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    Natural::from_str("1000000987654").unwrap().eq_mod(
        Natural::from_str("2000000987655").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether a Natural is equivalent to another Natural modulo a third; that is, whether the difference between the first two is a multiple of the third. The first is taken by reference and the second and third by value.

Two Naturals are equal to each other modulo 0 iff they are equal.

$f(x, y, m) = (x \equiv y \mod m)$.

$f(x, y, m) = (\exists k \in \Z : x - y = km)$.

Worst-case complexity

$T(n) = O(n \log n \log \log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    (&Natural::from(123u32)).eq_mod(Natural::from(223u32), Natural::from(100u32)),
    true
);
assert_eq!(
    (&Natural::from_str("1000000987654").unwrap()).eq_mod(
        Natural::from_str("2000000987654").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    true
);
assert_eq!(
    (&Natural::from_str("1000000987654").unwrap()).eq_mod(
        Natural::from_str("2000000987655").unwrap(),
        Natural::from_str("1000000000000").unwrap()
    ),
    false
);

Returns whether one Natural is equal to another modulo $2^k$; that is, whether their $k$ least-significant bits are equal.

$f(x, y, k) = (x \equiv y \mod 2^k)$.

$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(pow, self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::EqModPowerOf2;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).eq_mod_power_of_2(&Natural::from(256u32), 8), true);
assert_eq!(
    (&Natural::from(0b1101u32)).eq_mod_power_of_2(&Natural::from(0b10101u32), 3),
    true
);
assert_eq!(
    (&Natural::from(0b1101u32)).eq_mod_power_of_2(&Natural::from(0b10101u32), 4),
    false
);

Returns the floor of the base-$b$ logarithm of a positive Natural.

$f(x, b) = \lfloor\log_b x\rfloor$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is x.significant_bits().

Panics

Panics if self is 0 or base is less than 2.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::FloorLogBase;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(80u32).floor_log_base(&Natural::from(3u32)), 3);
assert_eq!(Natural::from(81u32).floor_log_base(&Natural::from(3u32)), 4);
assert_eq!(Natural::from(82u32).floor_log_base(&Natural::from(3u32)), 4);
assert_eq!(Natural::from(4294967296u64).floor_log_base(&Natural::from(10u32)), 9);

This is equivalent to fmpz_flog from fmpz/flog.c, FLINT 2.7.1.

Returns the floor of the base-2 logarithm of a positive Natural.

$f(x) = \lfloor\log_2 x\rfloor$.

Worst-case complexity

Constant time and additional memory.

Panics

Panics if self is 0.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::FloorLogBase2;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).floor_log_base_2(), 1);
assert_eq!(Natural::from(100u32).floor_log_base_2(), 6);

Returns the floor of the base-$2^k$ logarithm of a positive Natural.

$f(x, k) = \lfloor\log_{2^k} x\rfloor$.

Worst-case complexity

Constant time and additional memory.

Panics

Panics if self is 0 or pow is 0.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::FloorLogBasePowerOf2;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(100u32).floor_log_base_power_of_2(2), 3);
assert_eq!(Natural::from(4294967296u64).floor_log_base_power_of_2(8), 4);

Returns the floor of the $n$th root of a Natural, taking the Natural by value.

$f(x, n) = \lfloor\sqrt[n]{x}\rfloor$.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if exp is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::FloorRoot;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(999u16).floor_root(3), 9);
assert_eq!(Natural::from(1000u16).floor_root(3), 10);
assert_eq!(Natural::from(1001u16).floor_root(3), 10);
assert_eq!(Natural::from(100000000000u64).floor_root(5), 158);

Returns the floor of the $n$th root of a Natural, taking the Natural by reference.

$f(x, n) = \lfloor\sqrt[n]{x}\rfloor$.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if exp is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::FloorRoot;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(999u16)).floor_root(3), 9);
assert_eq!((&Natural::from(1000u16)).floor_root(3), 10);
assert_eq!((&Natural::from(1001u16)).floor_root(3), 10);
assert_eq!((&Natural::from(100000000000u64)).floor_root(5), 158);

Replaces a Natural with the floor of its $n$th root.

$x \gets \lfloor\sqrt[n]{x}\rfloor$.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if exp is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::FloorRootAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(999u16);
x.floor_root_assign(3);
assert_eq!(x, 9);

let mut x = Natural::from(1000u16);
x.floor_root_assign(3);
assert_eq!(x, 10);

let mut x = Natural::from(1001u16);
x.floor_root_assign(3);
assert_eq!(x, 10);

let mut x = Natural::from(100000000000u64);
x.floor_root_assign(5);
assert_eq!(x, 158);

Returns the floor of the square root of a Natural, taking it by value.

$f(x) = \lfloor\sqrt{x}\rfloor$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::FloorSqrt;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(99u8).floor_sqrt(), 9);
assert_eq!(Natural::from(100u8).floor_sqrt(), 10);
assert_eq!(Natural::from(101u8).floor_sqrt(), 10);
assert_eq!(Natural::from(1000000000u32).floor_sqrt(), 31622);
assert_eq!(Natural::from(10000000000u64).floor_sqrt(), 100000);

Returns the floor of the square root of a Natural, taking it by value.

$f(x) = \lfloor\sqrt{x}\rfloor$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::FloorSqrt;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(99u8)).floor_sqrt(), 9);
assert_eq!((&Natural::from(100u8)).floor_sqrt(), 10);
assert_eq!((&Natural::from(101u8)).floor_sqrt(), 10);
assert_eq!((&Natural::from(1000000000u32)).floor_sqrt(), 31622);
assert_eq!((&Natural::from(10000000000u64)).floor_sqrt(), 100000);

Replaces a Natural with the floor of its square root.

$x \gets \lfloor\sqrt{x}\rfloor$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::FloorSqrtAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(99u8);
x.floor_sqrt_assign();
assert_eq!(x, 9);

let mut x = Natural::from(100u8);
x.floor_sqrt_assign();
assert_eq!(x, 10);

let mut x = Natural::from(101u8);
x.floor_sqrt_assign();
assert_eq!(x, 10);

let mut x = Natural::from(1000000000u32);
x.floor_sqrt_assign();
assert_eq!(x, 31622);

let mut x = Natural::from(10000000000u64);
x.floor_sqrt_assign();
assert_eq!(x, 100000);

Converts a Natural to a primitive float.

If there are two nearest floats, the one whose least-significant bit is zero is chosen. If the Natural is larger than the maximum finite float, then the result is the maximum finite float.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is value.significant_bits().

Examples

See here.

Converts a Natural to a primitive float.

If there are two nearest floats, the one whose least-significant bit is zero is chosen. If the Natural is larger than the maximum finite float, then the result is the maximum finite float.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is value.significant_bits().

Examples

See here.

Converts a Natural to an Integer, taking the Natural by reference.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is value.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert_eq!(Integer::from(&Natural::from(123u32)), 123);
assert_eq!(Integer::from(&Natural::from(10u32).pow(12)), 1000000000000u64);

Converts a Natural to an Integer, taking the Natural by value.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert_eq!(Integer::from(Natural::from(123u32)), 123);
assert_eq!(Integer::from(Natural::from(10u32).pow(12)), 1000000000000u64);

Converts a floating-point value to the nearest Natural.

Floating-point values exactly between two Naturals are rounded to the even one. The floating point value cannot be NaN or infinite, and it cannot round to a negative integer (so it must be greater than or equal to -0.5).

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is value.sci_exponent().

Panics

Panics if value is NaN or infinite, or if it would round to a negative integer.

Examples

See here.

Converts a floating-point value to the nearest Natural.

Floating-point values exactly between two Naturals are rounded to the even one. The floating point value cannot be NaN or infinite, and it cannot round to a negative integer (so it must be greater than or equal to -0.5).

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is value.sci_exponent().

Panics

Panics if value is NaN or infinite, or if it would round to a negative integer.

Examples

See here.

Converts an unsigned primitive integer to a Natural, where the integer’s width is larger than a Limb’s.

This implementation is general enough to also work for usize, regardless of whether it is equal in width to Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts an unsigned primitive integer to a Natural, where the integer’s width is smaller than a Limb’s.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts an unsigned primitive integer to a Natural, where the integer’s width is smaller than a Limb’s.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Limb to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts an unsigned primitive integer to a Natural, where the integer’s width is smaller than a Limb’s.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts an unsigned primitive integer to a Natural, where the integer’s width is larger than a Limb’s.

This implementation is general enough to also work for usize, regardless of whether it is equal in width to Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a string, possibly in scientfic notation, to a Natural.

Use FromSciStringOptions to specify the base (from 2 to 36, inclusive) and the rounding mode, in case rounding is necessary because the string represents a non-integer.

If the base is greater than 10, the higher digits are represented by the letters 'a' through 'z' or 'A' through 'Z'; the case doesn’t matter and doesn’t need to be consistent.

Exponents are allowed, and are indicated using the character 'e' or 'E'. If the base is 15 or greater, an ambiguity arises where it may not be clear whether 'e' is a digit or an exponent indicator. To resolve this ambiguity, always use a '+' or '-' sign after the exponent indicator when the base is 15 or greater.

The exponent itself is always parsed using base 10.

Decimal (or other-base) points are allowed. These are most useful in conjunction with exponents, but they may be used on their own. If the string represents a non-integer, the rounding mode specified in options is used to round to an integer.

If the string is unparseable, None is returned. None is also returned if the rounding mode in options is Exact, but rounding is necessary.

Worst-case complexity

$T(n, m) = O(m^n n \log m (\log n + \log\log m))$

$M(n, m) = O(m^n n \log m)$

where $T$ is time, $M$ is additional memory, $n$ is s.len(), and $m$ is options.base.

Examples
extern crate malachite_base;

use malachite_base::num::conversion::string::options::FromSciStringOptions;
use malachite_base::num::conversion::traits::FromSciString;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from_sci_string("123").unwrap(), 123);
assert_eq!(Natural::from_sci_string("123.5").unwrap(), 124);
assert_eq!(Natural::from_sci_string("-123.5"), None);
assert_eq!(Natural::from_sci_string("1.23e10").unwrap(), 12300000000u64);

let mut options = FromSciStringOptions::default();
assert_eq!(Natural::from_sci_string_with_options("123.5", options).unwrap(), 124);

options.set_rounding_mode(RoundingMode::Floor);
assert_eq!(Natural::from_sci_string_with_options("123.5", options).unwrap(), 123);

options = FromSciStringOptions::default();
options.set_base(16);
assert_eq!(Natural::from_sci_string_with_options("ff", options).unwrap(), 255);

options = FromSciStringOptions::default();
options.set_base(36);
assert_eq!(Natural::from_sci_string_with_options("1e5", options).unwrap(), 1805);
assert_eq!(Natural::from_sci_string_with_options("1e+5", options).unwrap(), 60466176);
assert_eq!(Natural::from_sci_string_with_options("1e-5", options).unwrap(), 0);

Converts a &str, possibly in scientific notation, to a number, using the default FromSciStringOptions. Read more

Converts an string to a Natural.

If the string does not represent a valid Natural, an Err is returned. To be valid, the string must be nonempty and only contain the chars '0' through '9'. Leading zeros are allowed.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is s.len().

Examples
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::from_str("123456").unwrap(), 123456);
assert_eq!(Natural::from_str("00123456").unwrap(), 123456);
assert_eq!(Natural::from_str("0").unwrap(), 0);

assert!(Natural::from_str("").is_err());
assert!(Natural::from_str("a").is_err());
assert!(Natural::from_str("-5").is_err());

The associated error which can be returned from parsing.

Converts an string, in a specified base, to a Natural.

If the string does not represent a valid Natural, an Err is returned. To be valid, the string must be nonempty and only contain the chars '0' through '9', 'a' through 'z', and 'A' through 'Z'; and only characters that represent digits smaller than the base are allowed. Leading zeros are always allowed.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is s.len().

Panics

Panics if base is less than 2 or greater than 36.

Examples
extern crate malachite_base;

use malachite_base::num::conversion::traits::{Digits, FromStringBase};
use malachite_nz::natural::Natural;

assert_eq!(Natural::from_string_base(10, "123456").unwrap(), 123456);
assert_eq!(Natural::from_string_base(10, "00123456").unwrap(), 123456);
assert_eq!(Natural::from_string_base(16, "0").unwrap(), 0);
assert_eq!(Natural::from_string_base(16, "deadbeef").unwrap(), 3735928559u32);
assert_eq!(Natural::from_string_base(16, "deAdBeEf").unwrap(), 3735928559u32);

assert!(Natural::from_string_base(10, "").is_none());
assert!(Natural::from_string_base(10, "a").is_none());
assert!(Natural::from_string_base(10, "-5").is_none());
assert!(Natural::from_string_base(2, "2").is_none());

Computes the GCD (greatest common divisor) of two Naturals, taking the first by value and the second by reference.

The GCD of 0 and $n$, for any $n$, is 0. In particular, $\gcd(0, 0) = 0$, which makes sense if we interpret “greatest” to mean “greatest by the divisibility order”.

$$ f(x, y) = \gcd(x, y). $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Gcd;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).gcd(&Natural::from(5u32)), 1);
assert_eq!(Natural::from(12u32).gcd(&Natural::from(90u32)), 6);

Computes the GCD (greatest common divisor) of two Naturals, taking both by reference.

The GCD of 0 and $n$, for any $n$, is 0. In particular, $\gcd(0, 0) = 0$, which makes sense if we interpret “greatest” to mean “greatest by the divisibility order”.

$$ f(x, y) = \gcd(x, y). $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Gcd;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(3u32)).gcd(&Natural::from(5u32)), 1);
assert_eq!((&Natural::from(12u32)).gcd(&Natural::from(90u32)), 6);

Computes the GCD (greatest common divisor) of two Naturals, taking both by value.

The GCD of 0 and $n$, for any $n$, is 0. In particular, $\gcd(0, 0) = 0$, which makes sense if we interpret “greatest” to mean “greatest by the divisibility order”.

$$ f(x, y) = \gcd(x, y). $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Gcd;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).gcd(Natural::from(5u32)), 1);
assert_eq!(Natural::from(12u32).gcd(Natural::from(90u32)), 6);

Computes the GCD (greatest common divisor) of two Naturals, taking the first by reference and the second by value.

The GCD of 0 and $n$, for any $n$, is 0. In particular, $\gcd(0, 0) = 0$, which makes sense if we interpret “greatest” to mean “greatest by the divisibility order”.

$$ f(x, y) = \gcd(x, y). $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Gcd;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(3u32)).gcd(Natural::from(5u32)), 1);
assert_eq!((&Natural::from(12u32)).gcd(Natural::from(90u32)), 6);

Replaces a Natural by its GCD (greatest common divisor) with another Natural, taking the Natural on the right-hand side by reference.

$$ x \gets \gcd(x, y). $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::GcdAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(3u32);
x.gcd_assign(&Natural::from(5u32));
assert_eq!(x, 1);

let mut x = Natural::from(12u32);
x.gcd_assign(&Natural::from(90u32));
assert_eq!(x, 6);

Replaces a Natural by its GCD (greatest common divisor) with another Natural, taking the Natural on the right-hand side by value.

$$ x \gets \gcd(x, y). $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::GcdAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(3u32);
x.gcd_assign(Natural::from(5u32));
assert_eq!(x, 1);

let mut x = Natural::from(12u32);
x.gcd_assign(Natural::from(90u32));
assert_eq!(x, 6);

Determines the Hamming distance between two [Natural]s.

Both Naturals have infinitely many implicit leading zeros.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::One;
use malachite_base::num::logic::traits::HammingDistance;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(123u32).hamming_distance(&Natural::from(123u32)), 0);
// 105 = 1101001b, 123 = 1111011
assert_eq!(Natural::from(105u32).hamming_distance(&Natural::from(123u32)), 2);
let n = Natural::ONE << 100u32;
assert_eq!(n.hamming_distance(&(&n - Natural::ONE)), 101);

Feeds this value into the given Hasher. Read more

Feeds a slice of this type into the given Hasher. Read more

Returns a Natural’s integer mantissa and exponent.

When $x$ is nonzero, we can write $x = 2^{e_i}m_i$, where $e_i$ is an integer and $m_i$ is an odd integer. $$ f(x) = (\frac{|x|}{2^{e_i}}, e_i), $$ where $e_i$ is the unique integer such that $x/2^{e_i}$ is an odd integer.

The inverse operation is from_integer_mantissa_and_exponent.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if self is zero.

Examples
extern crate malachite_base;

use malachite_base::num::conversion::traits::IntegerMantissaAndExponent;
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(123u32).integer_mantissa_and_exponent(),
    (Natural::from(123u32), 0)
);
assert_eq!(
    Natural::from(100u32).integer_mantissa_and_exponent(),
    (Natural::from(25u32), 2)
);

Returns a Natural’s integer mantissa.

When $x$ is nonzero, we can write $x = 2^{e_i}m_i$, where $e_i$ is an integer and $m_i$ is an odd integer. $$ f(x) = \frac{|x|}{2^{e_i}}, $$ where $e_i$ is the unique integer such that $x/2^{e_i}$ is an odd integer.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if self is zero.

Examples
extern crate malachite_base;

use malachite_base::num::conversion::traits::IntegerMantissaAndExponent;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(123u32).integer_mantissa(), 123);
assert_eq!(Natural::from(100u32).integer_mantissa(), 25);

Returns a Natural’s integer exponent.

When $x$ is nonzero, we can write $x = 2^{e_i}m_i$, where $e_i$ is an integer and $m_i$ is an odd integer. $$ f(x) = e_i, $$ where $e_i$ is the unique integer such that $x/2^{e_i}$ is an odd integer.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if self is zero.

Examples
extern crate malachite_base;

use malachite_base::num::conversion::traits::IntegerMantissaAndExponent;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(123u32).integer_exponent(), 0);
assert_eq!(Natural::from(100u32).integer_exponent(), 2);

Constructs a Natural from its integer mantissa and exponent.

When $x$ is nonzero, we can write $x = 2^{e_i}m_i$, where $e_i$ is an integer and $m_i$ is an odd integer.

$$ f(x) = 2^{e_i}m_i. $$

The input does not have to be reduced; that is, the mantissa does not have to be odd.

The result is an Option, but for this trait implementation the result is always Some.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is integer_mantissa.significant_bits() + integer_exponent.

Examples
extern crate malachite_base;

use malachite_base::num::conversion::traits::IntegerMantissaAndExponent;
use malachite_nz::natural::Natural;

let n = <&Natural as IntegerMantissaAndExponent<_, _, _>>
    ::from_integer_mantissa_and_exponent(Natural::from(123u32), 0).unwrap();
assert_eq!(n, 123);
let n = <&Natural as IntegerMantissaAndExponent<_, _, _>>
    ::from_integer_mantissa_and_exponent(Natural::from(25u32), 2).unwrap();
assert_eq!(n, 100);

Determines whether a Natural is an integer. It always returns true.

$f(x) = \textrm{true}$.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::{One, Zero};
use malachite_base::num::conversion::traits::IsInteger;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.is_integer(), true);
assert_eq!(Natural::ONE.is_integer(), true);
assert_eq!(Natural::from(100u32).is_integer(), true);

Determines whether a Natural is an integer power of 2.

$f(x) = (\exists n \in \Z : 2^n = x)$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{IsPowerOf2, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::ZERO.is_power_of_2(), false);
assert_eq!(Natural::from(123u32).is_power_of_2(), false);
assert_eq!(Natural::from(0x80u32).is_power_of_2(), true);
assert_eq!(Natural::from(10u32).pow(12).is_power_of_2(), false);
assert_eq!(Natural::from_str("1099511627776").unwrap().is_power_of_2(), true);

Computes the LCM (least common multiple) of two Naturals, taking the first by value and the second by reference.

$$ f(x, y) = \operatorname{lcm}(x, y). $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Lcm;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).lcm(&Natural::from(5u32)), 15);
assert_eq!(Natural::from(12u32).lcm(&Natural::from(90u32)), 180);

Computes the LCM (least common multiple) of two Naturals, taking both by reference.

$$ f(x, y) = \operatorname{lcm}(x, y). $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Lcm;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(3u32)).lcm(&Natural::from(5u32)), 15);
assert_eq!((&Natural::from(12u32)).lcm(&Natural::from(90u32)), 180);

Computes the LCM (least common multiple) of two Naturals, taking both by value.

$$ f(x, y) = \operatorname{lcm}(x, y). $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Lcm;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).lcm(Natural::from(5u32)), 15);
assert_eq!(Natural::from(12u32).lcm(Natural::from(90u32)), 180);

Computes the LCM (least common multiple) of two Naturals, taking the first by reference and the second by value.

$$ f(x, y) = \operatorname{lcm}(x, y). $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Lcm;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(3u32)).lcm(Natural::from(5u32)), 15);
assert_eq!((&Natural::from(12u32)).lcm(Natural::from(90u32)), 180);

Replaces a Natural by its LCM (least common multiple) with another Natural, taking the Natural on the right-hand side by reference.

$$ x \gets \operatorname{lcm}(x, y). $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::LcmAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(3u32);
x.lcm_assign(&Natural::from(5u32));
assert_eq!(x, 15);

let mut x = Natural::from(12u32);
x.lcm_assign(&Natural::from(90u32));
assert_eq!(x, 180);

Replaces a Natural by its LCM (least common multiple) with another Natural, taking the Natural on the right-hand side by value.

$$ x \gets \operatorname{lcm}(x, y). $$

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::LcmAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(3u32);
x.lcm_assign(Natural::from(5u32));
assert_eq!(x, 15);

let mut x = Natural::from(12u32);
x.lcm_assign(Natural::from(90u32));
assert_eq!(x, 180);

Returns a Natural whose least significant $b$ bits are true and whose other bits are false.

$f(b) = 2^b - 1$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is bits.

Examples
extern crate malachite_base;

use malachite_base::num::logic::traits::LowMask;
use malachite_nz::natural::Natural;

assert_eq!(Natural::low_mask(0), 0);
assert_eq!(Natural::low_mask(3), 7);
assert_eq!(Natural::low_mask(100).to_string(), "1267650600228229401496703205375");

Converts a Natural to a hexadecimal String using lowercase characters.

Using the # format flag prepends "0x" to the string.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_base::strings::ToLowerHexString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::ZERO.to_lower_hex_string(), "0");
assert_eq!(Natural::from(123u32).to_lower_hex_string(), "7b");
assert_eq!(
    Natural::from_str("1000000000000").unwrap().to_lower_hex_string(),
    "e8d4a51000"
);
assert_eq!(format!("{:07x}", Natural::from(123u32)), "000007b");

assert_eq!(format!("{:#x}", Natural::ZERO), "0x0");
assert_eq!(format!("{:#x}", Natural::from(123u32)), "0x7b");
assert_eq!(
    format!("{:#x}", Natural::from_str("1000000000000").unwrap()),
    "0xe8d4a51000"
);
assert_eq!(format!("{:#07x}", Natural::from(123u32)), "0x0007b");

The minimum value of a Natural, 0.

The minimum value of Self.

Divides a Natural by another Natural, taking the first by value and the second by reference and returning just the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Mod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(Natural::from(23u32).mod_op(&Natural::from(10u32)), 3);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
     Natural::from_str("1000000000000000000000000").unwrap()
            .mod_op(&Natural::from_str("1234567890987").unwrap()),
     530068894399u64
);

Divides a Natural by another Natural, taking both by reference and returning just the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Mod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!((&Natural::from(23u32)).mod_op(&Natural::from(10u32)), 3);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
     (&Natural::from_str("1000000000000000000000000").unwrap())
         .mod_op(&Natural::from_str("1234567890987").unwrap()),
     530068894399u64
);

Divides a Natural by another Natural, taking both by value and returning just the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor. $$

This function is called mod_op rather than mod because mod is a Rust keyword.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Mod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(Natural::from(23u32).mod_op(Natural::from(10u32)), 3);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
     Natural::from_str("1000000000000000000000000").unwrap()
            .mod_op(Natural::from_str("1234567890987").unwrap()),
     530068894399u64
);

Divides a Natural by another Natural, taking the first by reference and the second by value and returning just the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Mod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!((&Natural::from(23u32)).mod_op(Natural::from(10u32)), 3);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
     (&Natural::from_str("1000000000000000000000000").unwrap())
         .mod_op(Natural::from_str("1234567890987").unwrap()),
     530068894399u64
);

Adds two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first Natural is taken by value and the second and third by reference.

$f(x, y, m) = z$, where $x, y, z < m$ and $x + y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAdd;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.mod_add(&Natural::from(3u32), &Natural::from(5u32)), 3);
assert_eq!(Natural::from(7u32).mod_add(&Natural::from(5u32), &Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_addN from fmpz_mod/add.c, FLINT 2.7.1, where b is taken by value and c and m are taken by reference.

Adds two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first and third Naturals are taken by value and the second by reference.

$f(x, y, m) = z$, where $x, y, z < m$ and $x + y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAdd;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.mod_add(&Natural::from(3u32), Natural::from(5u32)), 3);
assert_eq!(Natural::from(7u32).mod_add(&Natural::from(5u32), Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_addN from fmpz_mod/add.c, FLINT 2.7.1, where b and m are taken by value and c is taken by reference.

Adds two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. All three Naturals are taken by reference.

$f(x, y, m) = z$, where $x, y, z < m$ and $x + y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAdd;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).mod_add(&Natural::from(3u32), &Natural::from(5u32)), 3);
assert_eq!((&Natural::from(7u32)).mod_add(&Natural::from(5u32), &Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_addN from fmpz_mod/add.c, FLINT 2.7.1, where b, c, and m are taken by reference.

Adds two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first two Naturals are taken by reference and the third by value.

$f(x, y, m) = z$, where $x, y, z < m$ and $x + y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAdd;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).mod_add(&Natural::from(3u32), Natural::from(5u32)), 3);
assert_eq!((&Natural::from(7u32)).mod_add(&Natural::from(5u32), Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_addN from fmpz_mod/add.c, FLINT 2.7.1, where b and c are taken by reference and m is taken by value.

Adds two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first two Naturals are taken by value and the third by reference.

$f(x, y, m) = z$, where $x, y, z < m$ and $x + y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAdd;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.mod_add(Natural::from(3u32), &Natural::from(5u32)), 3);
assert_eq!(Natural::from(7u32).mod_add(Natural::from(5u32), &Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_addN from fmpz_mod/add.c, FLINT 2.7.1, where b and c are taken by value and m is taken by reference.

Adds two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first and third Naturals are taken by reference and the second by value.

$f(x, y, m) = z$, where $x, y, z < m$ and $x + y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAdd;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).mod_add(Natural::from(3u32), &Natural::from(5u32)), 3);
assert_eq!((&Natural::from(7u32)).mod_add(Natural::from(5u32), &Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_addN from fmpz_mod/add.c, FLINT 2.7.1, where b and m are taken by reference and c is taken by value.

Adds two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. All three Naturals are taken by value.

$f(x, y, m) = z$, where $x, y, z < m$ and $x + y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAdd;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.mod_add(Natural::from(3u32), Natural::from(5u32)), 3);
assert_eq!(Natural::from(7u32).mod_add(Natural::from(5u32), Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_addN from fmpz_mod/add.c, FLINT 2.7.1, where b, c, and m are taken by value.

Adds two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first Natural is taken by reference and the second and third by value.

$f(x, y, m) = z$, where $x, y, z < m$ and $x + y \equiv z \mod m$.

assert_eq!((&Natural::ZERO).mod_add(Natural::from(3u32), Natural::from(5u32)), 3); assert_eq!((&Natural::from(7u32)).mod_add(Natural::from(5u32), Natural::from(10u32)), 2);

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAdd;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(
    (&Natural::ZERO).mod_add(Natural::from(3u32), Natural::from(5u32)).to_string(),
    "3"
);
assert_eq!(
    (&Natural::from(7u32)).mod_add(Natural::from(5u32), Natural::from(10u32)).to_string(),
    "2"
);

This is equivalent to _fmpz_mod_addN from fmpz_mod/add.c, FLINT 2.7.1, where b is taken by reference and c and m are taken by value.

Adds two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. Both Naturals on the right-hand side are taken by reference.

$x \gets z$, where $x, y, z < m$ and $x + y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAddAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x.mod_add_assign(&Natural::from(3u32), &Natural::from(5u32));
assert_eq!(x, 3);

let mut x = Natural::from(7u32);
x.mod_add_assign(&Natural::from(5u32), &Natural::from(10u32));
assert_eq!(x, 2);

This is equivalent to _fmpz_mod_addN from fmpz_mod/add.c, FLINT 2.7.1, where b is taken by value, c and m are taken by reference, and a == b.

Adds two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. The first Natural on the right-hand side is taken by reference and the second by value.

$x \gets z$, where $x, y, z < m$ and $x + y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAddAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x.mod_add_assign(&Natural::from(3u32), Natural::from(5u32));
assert_eq!(x, 3);

let mut x = Natural::from(7u32);
x.mod_add_assign(&Natural::from(5u32), Natural::from(10u32));
assert_eq!(x, 2);

This is equivalent to _fmpz_mod_addN from fmpz_mod/add.c, FLINT 2.7.1, where b and m are taken by value, c is taken by reference, and a == b.

Adds two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. The first Natural on the right-hand side is taken by value and the second by reference.

$x \gets z$, where $x, y, z < m$ and $x + y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAddAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x.mod_add_assign(Natural::from(3u32), &Natural::from(5u32));
assert_eq!(x, 3);

let mut x = Natural::from(7u32);
x.mod_add_assign(Natural::from(5u32), &Natural::from(10u32));
assert_eq!(x, 2);

This is equivalent to _fmpz_mod_addN from fmpz_mod/add.c, FLINT 2.7.1, where b and c are taken by value, m is taken by reference, and a == b.

Adds two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. Both Naturals on the right-hand side are taken by value.

$x \gets z$, where $x, y, z < m$ and $x + y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAddAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x.mod_add_assign(Natural::from(3u32), Natural::from(5u32));
assert_eq!(x, 3);

let mut x = Natural::from(7u32);
x.mod_add_assign(Natural::from(5u32), Natural::from(10u32));
assert_eq!(x, 2);

This is equivalent to _fmpz_mod_addN from fmpz_mod/add.c, FLINT 2.7.1, where b, c, and m are taken by value and a == b.

Divides a Natural by another Natural, taking the second Natural by reference and replacing the first by the remainder.

If the quotient were computed, he quotient and remainder would satisfy $x = qy + r$ and $0 \leq r < y$.

$$ x \gets x - y\left \lfloor \frac{x}{y} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAssign;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
let mut x = Natural::from(23u32);
x.mod_assign(&Natural::from(10u32));
assert_eq!(x, 3);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
x.mod_assign(&Natural::from_str("1234567890987").unwrap());
assert_eq!(x, 530068894399u64);

Divides a Natural by another Natural, taking the second Natural by value and replacing the first by the remainder.

If the quotient were computed, he quotient and remainder would satisfy $x = qy + r$ and $0 \leq r < y$.

$$ x \gets x - y\left \lfloor \frac{x}{y} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModAssign;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
let mut x = Natural::from(23u32);
x.mod_assign(Natural::from(10u32));
assert_eq!(x, 3);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
x.mod_assign(Natural::from_str("1234567890987").unwrap());
assert_eq!(x, 530068894399u64);

Returns whether a Natural is reduced modulo another Natural $m$; in other words, whether it is less than $m$.

$m$ cannot be zero.

$f(x, m) = (x < m)$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if m is 0.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{ModIsReduced, Pow};
use malachite_base::num::basic::traits::{One, Zero};
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.mod_is_reduced(&Natural::from(5u32)), true);
assert_eq!(
    Natural::from(10u32).pow(12).mod_is_reduced(&Natural::from(10u32).pow(12)),
    false
);
assert_eq!(
    Natural::from(10u32).pow(12)
        .mod_is_reduced(&(Natural::from(10u32).pow(12) + Natural::ONE)),
    true
);

Multiplies two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first Natural is taken by value and the second and third by reference.

$f(x, y, m) = z$, where $x, y, z < m$ and $xy \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMul;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).mod_mul(&Natural::from(4u32), &Natural::from(15u32)), 12);
assert_eq!(Natural::from(7u32).mod_mul(&Natural::from(6u32), &Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b is taken by value and c and m are taken by reference.

Multiplies two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first and third Naturals are taken by value and the second by reference.

$f(x, y, m) = z$, where $x, y, z < m$ and $xy \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMul;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).mod_mul(&Natural::from(4u32), Natural::from(15u32)), 12);
assert_eq!(Natural::from(7u32).mod_mul(&Natural::from(6u32), Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b and m are taken by value and c is taken by reference.

Multiplies two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. All three Naturals are taken by reference.

$f(x, y, m) = z$, where $x, y, z < m$ and $xy \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMul;
use malachite_nz::natural::Natural;

assert_eq!(
    (&Natural::from(3u32)).mod_mul(&Natural::from(4u32), &Natural::from(15u32)),
    12
);
assert_eq!((&Natural::from(7u32)).mod_mul(&Natural::from(6u32), &Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b, c, and m are taken by reference.

Multiplies two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first two Naturals are taken by reference and the third by value.

$f(x, y, m) = z$, where $x, y, z < m$ and $xy \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMul;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(3u32)).mod_mul(&Natural::from(4u32), Natural::from(15u32)), 12);
assert_eq!((&Natural::from(7u32)).mod_mul(&Natural::from(6u32), Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b and c are taken by reference and m is taken by value.

Multiplies two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first two Naturals are taken by value and the third by reference.

$f(x, y, m) = z$, where $x, y, z < m$ and $xy \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMul;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).mod_mul(Natural::from(4u32), &Natural::from(15u32)), 12);
assert_eq!(Natural::from(7u32).mod_mul(Natural::from(6u32), &Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b and c are taken by value and m is taken by reference.

Multiplies two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first and third Naturals are taken by reference and the second by value.

$f(x, y, m) = z$, where $x, y, z < m$ and $xy \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMul;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(3u32)).mod_mul(Natural::from(4u32), &Natural::from(15u32)), 12);
assert_eq!((&Natural::from(7u32)).mod_mul(Natural::from(6u32), &Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b and m are taken by reference and c is taken by value.

Multiplies two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. All three Naturals are taken by value.

$f(x, y, m) = z$, where $x, y, z < m$ and $xy \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMul;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).mod_mul(Natural::from(4u32), Natural::from(15u32)), 12);
assert_eq!(Natural::from(7u32).mod_mul(Natural::from(6u32), Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b, c, and m are taken by value.

Multiplies two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first Natural is taken by reference and the second and third by value.

$f(x, y, m) = z$, where $x, y, z < m$ and $xy \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMul;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(3u32)).mod_mul(Natural::from(4u32), Natural::from(15u32)), 12);
assert_eq!((&Natural::from(7u32)).mod_mul(Natural::from(6u32), Natural::from(10u32)), 2);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b is taken by reference and c and m are taken by value.

Multiplies two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. Both Naturals on the right-hand side are taken by reference.

$x \gets z$, where $x, y, z < m$ and $xy \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMulAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(3u32);
x.mod_mul_assign(&Natural::from(4u32), &Natural::from(15u32));
assert_eq!(x, 12);

let mut x = Natural::from(7u32);
x.mod_mul_assign(&Natural::from(6u32), &Natural::from(10u32));
assert_eq!(x, 2);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b is taken by value, c and m are taken by reference, and a == b.

Multiplies two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. The first Natural on the right-hand side is taken by reference and the second by value.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMulAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(3u32);
x.mod_mul_assign(&Natural::from(4u32), Natural::from(15u32));
assert_eq!(x, 12);

let mut x = Natural::from(7u32);
x.mod_mul_assign(&Natural::from(6u32), Natural::from(10u32));
assert_eq!(x, 2);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b and m are taken by value, c is taken by reference, and a == b.

Multiplies two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. The first Natural on the right-hand side is taken by value and the second by reference.

$x \gets z$, where $x, y, z < m$ and $xy \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMulAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(3u32);
x.mod_mul_assign(Natural::from(4u32), &Natural::from(15u32));
assert_eq!(x, 12);

let mut x = Natural::from(7u32);
x.mod_mul_assign(Natural::from(6u32), &Natural::from(10u32));
assert_eq!(x, 2);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b and c are taken by value, m is taken by reference, and a == b.

Multiplies two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. Both Naturals on the right-hand side are taken by value.

$x \gets z$, where $x, y, z < m$ and $xy \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMulAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(3u32);
x.mod_mul_assign(Natural::from(4u32), Natural::from(15u32));
assert_eq!(x, 12);

let mut x = Natural::from(7u32);
x.mod_mul_assign(Natural::from(6u32), Natural::from(10u32));
assert_eq!(x, 2);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b, c, and m are taken by value and a == b.

Precomputes data for modular multiplication. See mod_mul_precomputed and mod_mul_precomputed_assign.

Worst-case complexity

Constant time and additional memory.

This is equivalent to part of fmpz_mod_ctx_init from fmpz_mod/ctx_init.c, FLINT 2.7.1.

Multiplies two Natural modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first Natural is taken by value and the second and third by reference.

Some precomputed data is provided; this speeds up computations involving several modular multiplications with the same modulus. The precomputed data should be obtained using precompute_mod_mul_data.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMulPrecomputed;
use malachite_nz::natural::Natural;

let data = ModMulPrecomputed::<Natural>::precompute_mod_mul_data(&Natural::from(10u32));
assert_eq!(
    Natural::from(6u8).mod_mul_precomputed(
        &Natural::from(7u32),
        &Natural::from(10u32),
        &data
    ),
    2
);
assert_eq!(
    Natural::from(9u8).mod_mul_precomputed(
        &Natural::from(9u32),
        &Natural::from(10u32),
        &data
    ),
    1
);
assert_eq!(
    Natural::from(4u8).mod_mul_precomputed(
        &Natural::from(7u32),
        &Natural::from(10u32),
        &data
    ),
    8
);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b is taken by value and c and m are taken by reference.

Precomputes data for modular multiplication. See mod_mul_precomputed and mod_mul_precomputed_assign.

Worst-case complexity

Constant time and additional memory.

This is equivalent to part of fmpz_mod_ctx_init from fmpz_mod/ctx_init.c, FLINT 2.7.1.

Multiplies two Natural modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first and third Naturals are taken by value and the second by reference.

Some precomputed data is provided; this speeds up computations involving several modular multiplications with the same modulus. The precomputed data should be obtained using precompute_mod_mul_data.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMulPrecomputed;
use malachite_nz::natural::Natural;

let data = ModMulPrecomputed::<Natural>::precompute_mod_mul_data(&Natural::from(10u32));
assert_eq!(
    Natural::from(6u8).mod_mul_precomputed(
        &Natural::from(7u32),
        Natural::from(10u32),
        &data
    ),
    2
);
assert_eq!(
    Natural::from(9u8).mod_mul_precomputed(
        &Natural::from(9u32),
        Natural::from(10u32),
        &data
    ),
    1
);
assert_eq!(
    Natural::from(4u8).mod_mul_precomputed(
        &Natural::from(7u32),
        Natural::from(10u32),
        &data
    ),
    8
);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b and m are taken by value and c is taken by reference.

Precomputes data for modular multiplication. See mod_mul_precomputed and mod_mul_precomputed_assign.

Worst-case complexity

Constant time and additional memory.

This is equivalent to part of fmpz_mod_ctx_init from fmpz_mod/ctx_init.c, FLINT 2.7.1.

Multiplies two Natural modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. All three Naturals are taken by reference.

Some precomputed data is provided; this speeds up computations involving several modular multiplications with the same modulus. The precomputed data should be obtained using precompute_mod_mul_data.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMulPrecomputed;
use malachite_nz::natural::Natural;

let data = ModMulPrecomputed::<Natural>::precompute_mod_mul_data(&Natural::from(10u32));
assert_eq!(
    (&Natural::from(6u8)).mod_mul_precomputed(
        &Natural::from(7u32),
        &Natural::from(10u32),
        &data
    ),
    2
);
assert_eq!(
    (&Natural::from(9u8)).mod_mul_precomputed(
        &Natural::from(9u32),
        &Natural::from(10u32),
        &data
    ),
    1
);
assert_eq!(
    (&Natural::from(4u8)).mod_mul_precomputed(
        &Natural::from(7u32),
        &Natural::from(10u32),
        &data
    ),
    8
);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b, c, and m are taken by reference.

Precomputes data for modular multiplication. See mod_mul_precomputed and mod_mul_precomputed_assign.

Worst-case complexity

Constant time and additional memory.

This is equivalent to part of fmpz_mod_ctx_init from fmpz_mod/ctx_init.c, FLINT 2.7.1.

Multiplies two Natural modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first two Naturals are taken by reference and the third by value.

Some precomputed data is provided; this speeds up computations involving several modular multiplications with the same modulus. The precomputed data should be obtained using precompute_mod_mul_data.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMulPrecomputed;
use malachite_nz::natural::Natural;

let data = ModMulPrecomputed::<Natural>::precompute_mod_mul_data(&Natural::from(10u32));
assert_eq!(
    (&Natural::from(6u8)).mod_mul_precomputed(
        &Natural::from(7u32),
        Natural::from(10u32),
        &data
    ),
    2
);
assert_eq!(
    (&Natural::from(9u8)).mod_mul_precomputed(
        &Natural::from(9u32),
        Natural::from(10u32),
        &data
    ),
    1
);
assert_eq!(
    (&Natural::from(4u8)).mod_mul_precomputed(
        &Natural::from(7u32),
        Natural::from(10u32),
        &data
    ),
    8
);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b and c are taken by reference and m is taken by value.

Precomputes data for modular multiplication. See mod_mul_precomputed and mod_mul_precomputed_assign.

Worst-case complexity

Constant time and additional memory.

This is equivalent to part of fmpz_mod_ctx_init from fmpz_mod/ctx_init.c, FLINT 2.7.1.

Multiplies two Natural modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first two Naturals are taken by value and the third by reference.

Some precomputed data is provided; this speeds up computations involving several modular multiplications with the same modulus. The precomputed data should be obtained using precompute_mod_mul_data.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMulPrecomputed;
use malachite_nz::natural::Natural;

let data = ModMulPrecomputed::<Natural>::precompute_mod_mul_data(&Natural::from(10u32));
assert_eq!(
    Natural::from(6u8).mod_mul_precomputed(
        Natural::from(7u32),
        &Natural::from(10u32),
        &data
    ),
    2
);
assert_eq!(
    Natural::from(9u8).mod_mul_precomputed(
        Natural::from(9u32),
        &Natural::from(10u32),
        &data
    ),
    1
);
assert_eq!(
    Natural::from(4u8).mod_mul_precomputed(
        Natural::from(7u32),
        &Natural::from(10u32),
        &data
    ),
    8
);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b and c are taken by value and m is taken by reference.

Precomputes data for modular multiplication. See mod_mul_precomputed and mod_mul_precomputed_assign.

Worst-case complexity

Constant time and additional memory.

This is equivalent to part of fmpz_mod_ctx_init from fmpz_mod/ctx_init.c, FLINT 2.7.1.

Multiplies two Natural modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first and third Naturals are taken by reference and the second by value.

Some precomputed data is provided; this speeds up computations involving several modular multiplications with the same modulus. The precomputed data should be obtained using precompute_mod_mul_data.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMulPrecomputed;
use malachite_nz::natural::Natural;

let data = ModMulPrecomputed::<Natural>::precompute_mod_mul_data(&Natural::from(10u32));
assert_eq!(
    (&Natural::from(6u8)).mod_mul_precomputed(
        Natural::from(7u32),
        &Natural::from(10u32),
        &data
    ),
    2
);
assert_eq!(
    (&Natural::from(9u8)).mod_mul_precomputed(
        Natural::from(9u32),
        &Natural::from(10u32),
        &data
    ),
    1
);
assert_eq!(
    (&Natural::from(4u8)).mod_mul_precomputed(
        Natural::from(7u32),
        &Natural::from(10u32),
        &data
    ),
    8
);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b and m are taken by reference and c is taken by value.

Precomputes data for modular multiplication. See mod_mul_precomputed and mod_mul_precomputed_assign.

Worst-case complexity

Constant time and additional memory.

This is equivalent to part of fmpz_mod_ctx_init from fmpz_mod/ctx_init.c, FLINT 2.7.1.

Multiplies two Natural modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. All three Naturals are taken by value.

Some precomputed data is provided; this speeds up computations involving several modular multiplications with the same modulus. The precomputed data should be obtained using precompute_mod_mul_data.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMulPrecomputed;
use malachite_nz::natural::Natural;

let data = ModMulPrecomputed::<Natural>::precompute_mod_mul_data(&Natural::from(10u32));
assert_eq!(
    Natural::from(6u8).mod_mul_precomputed(
        Natural::from(7u32),
        Natural::from(10u32),
        &data
    ),
    2
);
assert_eq!(
    Natural::from(9u8).mod_mul_precomputed(
        Natural::from(9u32),
        Natural::from(10u32),
        &data
    ),
    1
);
assert_eq!(
    Natural::from(4u8).mod_mul_precomputed(
        Natural::from(7u32),
        Natural::from(10u32),
        &data
    ),
    8
);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b, c, and m are taken by value.

Precomputes data for modular multiplication. See mod_mul_precomputed and mod_mul_precomputed_assign.

Worst-case complexity

Constant time and additional memory.

This is equivalent to part of fmpz_mod_ctx_init from fmpz_mod/ctx_init.c, FLINT 2.7.1.

Multiplies two Natural modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first Natural is taken by reference and the second and third by value.

Some precomputed data is provided; this speeds up computations involving several modular multiplications with the same modulus. The precomputed data should be obtained using precompute_mod_mul_data.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModMulPrecomputed;
use malachite_nz::natural::Natural;

let data = ModMulPrecomputed::<Natural>::precompute_mod_mul_data(&Natural::from(10u32));
assert_eq!(
    (&Natural::from(6u8)).mod_mul_precomputed(
        Natural::from(7u32),
        Natural::from(10u32),
        &data
    ),
    2
);
assert_eq!(
    (&Natural::from(9u8)).mod_mul_precomputed(
        Natural::from(9u32),
        Natural::from(10u32),
        &data
    ),
    1
);
assert_eq!(
    (&Natural::from(4u8)).mod_mul_precomputed(
        Natural::from(7u32),
        Natural::from(10u32),
        &data
    ),
    8
);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b is taken by reference and c and m are taken by value.

Multiplies two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. Both Naturals on the right-hand side are taken by reference.

Some precomputed data is provided; this speeds up computations involving several modular multiplications with the same modulus. The precomputed data should be obtained using precompute_mod_mul_data.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{ModMulPrecomputed, ModMulPrecomputedAssign};
use malachite_nz::natural::Natural;

let data = ModMulPrecomputed::<Natural>::precompute_mod_mul_data(&Natural::from(10u32));

let mut x = Natural::from(6u8);
x.mod_mul_precomputed_assign(&Natural::from(7u32), &Natural::from(10u32), &data);
assert_eq!(x, 2);

let mut x = Natural::from(9u8);
x.mod_mul_precomputed_assign(&Natural::from(9u32), &Natural::from(10u32), &data);
assert_eq!(x, 1);

let mut x = Natural::from(4u8);
x.mod_mul_precomputed_assign(&Natural::from(7u32), &Natural::from(10u32), &data);
assert_eq!(x, 8);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b is taken by value, c and m are taken by reference, and a == b.

Multiplies two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. The first Natural on the right-hand side is taken by reference and the second by value.

Some precomputed data is provided; this speeds up computations involving several modular multiplications with the same modulus. The precomputed data should be obtained using precompute_mod_mul_data.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{ModMulPrecomputed, ModMulPrecomputedAssign};
use malachite_nz::natural::Natural;

let data = ModMulPrecomputed::<Natural>::precompute_mod_mul_data(&Natural::from(10u32));

let mut x = Natural::from(6u8);
x.mod_mul_precomputed_assign(&Natural::from(7u32), Natural::from(10u32), &data);
assert_eq!(x, 2);

let mut x = Natural::from(9u8);
x.mod_mul_precomputed_assign(&Natural::from(9u32), Natural::from(10u32), &data);
assert_eq!(x, 1);

let mut x = Natural::from(4u8);
x.mod_mul_precomputed_assign(&Natural::from(7u32), Natural::from(10u32), &data);
assert_eq!(x, 8);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b and m are taken by value, c is taken by reference, and a == b.

Multiplies two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. The first Natural on the right-hand side is taken by value and the second by reference.

Some precomputed data is provided; this speeds up computations involving several modular multiplications with the same modulus. The precomputed data should be obtained using precompute_mod_mul_data.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{ModMulPrecomputed, ModMulPrecomputedAssign};
use malachite_nz::natural::Natural;

let data = ModMulPrecomputed::<Natural>::precompute_mod_mul_data(&Natural::from(10u32));

let mut x = Natural::from(6u8);
x.mod_mul_precomputed_assign(Natural::from(7u32), &Natural::from(10u32), &data);
assert_eq!(x, 2);

let mut x = Natural::from(9u8);
x.mod_mul_precomputed_assign(Natural::from(9u32), &Natural::from(10u32), &data);
assert_eq!(x, 1);

let mut x = Natural::from(4u8);
x.mod_mul_precomputed_assign(Natural::from(7u32), &Natural::from(10u32), &data);
assert_eq!(x, 8);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b and c are taken by value, m is taken by reference, and a == b.

Multiplies two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. Both Naturals on the right-hand side are taken by value.

Some precomputed data is provided; this speeds up computations involving several modular multiplications with the same modulus. The precomputed data should be obtained using precompute_mod_mul_data.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{ModMulPrecomputed, ModMulPrecomputedAssign};
use malachite_nz::natural::Natural;

let data = ModMulPrecomputed::<Natural>::precompute_mod_mul_data(&Natural::from(10u32));

let mut x = Natural::from(6u8);
x.mod_mul_precomputed_assign(Natural::from(7u32), Natural::from(10u32), &data);
assert_eq!(x, 2);

let mut x = Natural::from(9u8);
x.mod_mul_precomputed_assign(Natural::from(9u32), Natural::from(10u32), &data);
assert_eq!(x, 1);

let mut x = Natural::from(4u8);
x.mod_mul_precomputed_assign(Natural::from(7u32), Natural::from(10u32), &data);
assert_eq!(x, 8);

This is equivalent to _fmpz_mod_mulN from fmpz_mod/mul.c, FLINT 2.7.1, where b, c, and m are taken by value and a == b.

Negates a Natural modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{ModNeg, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.mod_neg(&Natural::from(5u32)), 0);
assert_eq!(Natural::from(7u32).mod_neg(&Natural::from(10u32)), 3);
assert_eq!(Natural::from(7u32).mod_neg(&Natural::from(10u32).pow(12)), 999999999993u64);

Negates a Natural modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{ModNeg, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).mod_neg(&Natural::from(5u32)), 0);
assert_eq!((&Natural::from(7u32)).mod_neg(&Natural::from(10u32)), 3);
assert_eq!(
    (&Natural::from(7u32)).mod_neg(&Natural::from(10u32).pow(12)),
    999999999993u64
);

Negates a Natural modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, m) = y$, where $x, y < m$ and $-x \equiv y \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{ModNeg, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.mod_neg(Natural::from(5u32)), 0);
assert_eq!(Natural::from(7u32).mod_neg(Natural::from(10u32)), 3);
assert_eq!(Natural::from(7u32).mod_neg(Natural::from(10u32).pow(12)), 999999999993u64);

Negates a Natural modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{ModNeg, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).mod_neg(Natural::from(5u32)), 0);
assert_eq!((&Natural::from(7u32)).mod_neg(Natural::from(10u32)), 3);
assert_eq!((&Natural::from(7u32)).mod_neg(Natural::from(10u32).pow(12)), 999999999993u64);

Negates a Natural modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $-x \equiv y \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{ModNegAssign, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut n = Natural::ZERO;
n.mod_neg_assign(&Natural::from(5u32));
assert_eq!(n, 0);

let mut n = Natural::from(7u32);
n.mod_neg_assign(&Natural::from(10u32));
assert_eq!(n, 3);

let mut n = Natural::from(7u32);
n.mod_neg_assign(&Natural::from(10u32).pow(12));
assert_eq!(n, 999999999993u64);

Negates a Natural modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $-x \equiv y \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{ModNegAssign, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut n = Natural::ZERO;
n.mod_neg_assign(Natural::from(5u32));
assert_eq!(n, 0);

let mut n = Natural::from(7u32);
n.mod_neg_assign(Natural::from(10u32));
assert_eq!(n, 3);

let mut n = Natural::from(7u32);
n.mod_neg_assign(Natural::from(10u32).pow(12));
assert_eq!(n, 999999999993u64);

Raises a Natural to a Natural power modulo a third Natural $m$. Assumes the input is already reduced mod $m$. The first Natural is taken by value and the second and third by reference.

$f(x, n, m) = y$, where $x, y < m$ and $x^n \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPow;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(4u32).mod_pow(&Natural::from(13u32), &Natural::from(497u32)), 445);
assert_eq!(
    Natural::from(10u32).mod_pow(&Natural::from(1000u32), &Natural::from(30u32)),
    10
);

Raises a Natural to a Natural power modulo a third Natural $m$. Assumes the input is already reduced mod $m$. The first and third Naturals are taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $x^n \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPow;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(4u32).mod_pow(&Natural::from(13u32), Natural::from(497u32)), 445);
assert_eq!(Natural::from(10u32).mod_pow(&Natural::from(1000u32), Natural::from(30u32)), 10);

Raises a Natural to a Natural power modulo a third Natural $m$. Assumes the input is already reduced mod $m$. All three Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $x^n \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPow;
use malachite_nz::natural::Natural;

assert_eq!(
    (&Natural::from(4u32)).mod_pow(&Natural::from(13u32), &Natural::from(497u32)),
    445
);
assert_eq!(
    (&Natural::from(10u32)).mod_pow(&Natural::from(1000u32), &Natural::from(30u32)),
    10
);

Raises a Natural to a Natural power modulo a third Natural $m$. Assumes the input is already reduced mod $m$. The first two Naturals are taken by reference and the third by value.

$f(x, n, m) = y$, where $x, y < m$ and $x^n \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPow;
use malachite_nz::natural::Natural;

assert_eq!(
    (&Natural::from(4u32)).mod_pow(&Natural::from(13u32), Natural::from(497u32)),
    445
);
assert_eq!(
    (&Natural::from(10u32)).mod_pow(&Natural::from(1000u32), Natural::from(30u32)),
    10
);

Raises a Natural to a Natural power modulo a third Natural $m$. Assumes the input is already reduced mod $m$. The first two Naturals are taken by value and the third by reference.

$f(x, n, m) = y$, where $x, y < m$ and $x^n \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPow;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(4u32).mod_pow(Natural::from(13u32), &Natural::from(497u32)), 445);
assert_eq!(Natural::from(10u32).mod_pow(Natural::from(1000u32), &Natural::from(30u32)), 10);

Raises a Natural to a Natural power modulo a third Natural $m$. Assumes the input is already reduced mod $m$. The first and third Naturals are taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $x^n \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPow;
use malachite_nz::natural::Natural;

assert_eq!(
    (&Natural::from(4u32)).mod_pow(Natural::from(13u32), &Natural::from(497u32)),
    445
);
assert_eq!(
    (&Natural::from(10u32)).mod_pow(Natural::from(1000u32), &Natural::from(30u32)),
    10
);

Raises a Natural to a Natural power modulo a third Natural $m$. Assumes the input is already reduced mod $m$. All three Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $x^n \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPow;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(4u32).mod_pow(Natural::from(13u32), Natural::from(497u32)), 445);
assert_eq!(Natural::from(10u32).mod_pow(Natural::from(1000u32), Natural::from(30u32)), 10);

Raises a Natural to a Natural power modulo a third Natural$m$. Assumes the input is already reduced mod $m$. The first Natural is taken by reference and the second and third by value.

$f(x, n, m) = y$, where $x, y < m$ and $x^n \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPow;
use malachite_nz::natural::Natural;

assert_eq!(
    (&Natural::from(4u32)).mod_pow(Natural::from(13u32), Natural::from(497u32)),
    445
);
assert_eq!(
    (&Natural::from(10u32)).mod_pow(Natural::from(1000u32), Natural::from(30u32)),
    10
);

Raises a Natural to a Natural power modulo a third Natural $m$, in place. Assumes the input is already reduced mod $m$. Both Naturals on the right-hand side are taken by reference.

$x \gets y$, where $x, y < m$ and $x^n \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(4u32);
x.mod_pow_assign(&Natural::from(13u32), &Natural::from(497u32));
assert_eq!(x, 445);

let mut x = Natural::from(10u32);
x.mod_pow_assign(&Natural::from(1000u32), &Natural::from(30u32));
assert_eq!(x, 10);

Raises a Natural to a Natural power modulo a third Natural $m$, in place. Assumes the input is already reduced mod $m$. The first Natural on the right-hand side is taken by reference and the second by value.

$x \gets y$, where $x, y < m$ and $x^n \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(4u32);
x.mod_pow_assign(&Natural::from(13u32), Natural::from(497u32));
assert_eq!(x, 445);

let mut x = Natural::from(10u32);
x.mod_pow_assign(&Natural::from(1000u32), Natural::from(30u32));
assert_eq!(x, 10);

Raises a Natural to a Natural power modulo a third Natural $m$, in place. Assumes the input is already reduced mod $m$. The first Natural on the right-hand side is taken by value and the second by reference.

$x \gets y$, where $x, y < m$ and $x^n \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(4u32);
x.mod_pow_assign(Natural::from(13u32), &Natural::from(497u32));
assert_eq!(x, 445);

let mut x = Natural::from(10u32);
x.mod_pow_assign(Natural::from(1000u32), &Natural::from(30u32));
assert_eq!(x, 10);

Raises a Natural to a Natural power modulo a third Natural $m$, in place. Assumes the input is already reduced mod $m$. Both Naturals on the right-hand side are taken by value.

$x \gets y$, where $x, y < m$ and $x^n \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(4u32);
x.mod_pow_assign(Natural::from(13u32), Natural::from(497u32));
assert_eq!(x, 445);

let mut x = Natural::from(10u32);
x.mod_pow_assign(Natural::from(1000u32), Natural::from(30u32));
assert_eq!(x, 10);

Divides a Natural by $2^k$, returning just the remainder. The Natural is taken by value.

If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0 \leq r < 2^k$.

$$ f(x, k) = x - 2^k\left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2;
use malachite_nz::natural::Natural;

// 1 * 2^8 + 4 = 260
assert_eq!(Natural::from(260u32).mod_power_of_2(8), 4);

// 100 * 2^4 + 11 = 1611
assert_eq!(Natural::from(1611u32).mod_power_of_2(4), 11);

Divides a Natural by $2^k$, returning just the remainder. The Natural is taken by reference.

If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0 \leq r < 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2;
use malachite_nz::natural::Natural;

// 1 * 2^8 + 4 = 260
assert_eq!((&Natural::from(260u32)).mod_power_of_2(8), 4);
// 100 * 2^4 + 11 = 1611
assert_eq!((&Natural::from(1611u32)).mod_power_of_2(4), 11);

Adds two Naturals modulo $2^k$. Assumes the inputs are already reduced modulo $2^k$. The first Natural is taken by value and the second by reference.

$f(x, y, k) = z$, where $x, y, z < 2^k$ and $x + y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Add;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.mod_power_of_2_add(&Natural::from(2u32), 5), 2);
assert_eq!(Natural::from(10u32).mod_power_of_2_add(&Natural::from(14u32), 4), 8);

Adds two Naturals modulo $2^k$. Assumes the inputs are already reduced modulo $2^k$. Both Naturals are taken by reference.

$f(x, y, k) = z$, where $x, y, z < 2^k$ and $x + y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Add;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).mod_power_of_2_add(&Natural::from(2u32), 5), 2);
assert_eq!((&Natural::from(10u32)).mod_power_of_2_add(&Natural::from(14u32), 4), 8);

Adds two Naturals modulo $2^k$. Assumes the inputs are already reduced modulo $2^k$. Both Naturals are taken by value.

$f(x, y, k) = z$, where $x, y, z < 2^k$ and $x + y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Add;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.mod_power_of_2_add(Natural::from(2u32), 5), 2);
assert_eq!(Natural::from(10u32).mod_power_of_2_add(Natural::from(14u32), 4), 8);

Adds two Naturals modulo $2^k$. Assumes the inputs are already reduced modulo $2^k$. The first Natural is taken by reference and the second by value.

$f(x, y, k) = z$, where $x, y, z < 2^k$ and $x + y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Add;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).mod_power_of_2_add(Natural::from(2u32), 5), 2);
assert_eq!((&Natural::from(10u32)).mod_power_of_2_add(Natural::from(14u32), 4), 8);

Adds two Naturals modulo $2^k$, in place. Assumes the inputs are already reduced modulo $2^k$. The Natural on the right-hand side is taken by reference.

$x \gets z$, where $x, y, z < 2^k$ and $x + y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2AddAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x.mod_power_of_2_add_assign(&Natural::from(2u32), 5);
assert_eq!(x, 2);

let mut x = Natural::from(10u32);
x.mod_power_of_2_add_assign(&Natural::from(14u32), 4);
assert_eq!(x, 8);

Adds two Naturals modulo $2^k$, in place. Assumes the inputs are already reduced modulo $2^k$. The Natural on the right-hand side is taken by value.

$x \gets z$, where $x, y, z < 2^k$ and $x + y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2AddAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x.mod_power_of_2_add_assign(Natural::from(2u32), 5);
assert_eq!(x, 2);

let mut x = Natural::from(10u32);
x.mod_power_of_2_add_assign(Natural::from(14u32), 4);
assert_eq!(x, 8);

Divides a Naturalby $2^k$, replacing the Natural by the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0 \leq r < 2^k$.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Assign;
use malachite_nz::natural::Natural;

// 1 * 2^8 + 4 = 260
let mut x = Natural::from(260u32);
x.mod_power_of_2_assign(8);
assert_eq!(x, 4);

// 100 * 2^4 + 11 = 1611
let mut x = Natural::from(1611u32);
x.mod_power_of_2_assign(4);
assert_eq!(x, 11);

Returns whether a Natural is reduced modulo 2^k$; in other words, whether it has no more than $k$ significant bits.

$f(x, k) = (x < 2^k)$.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{ModPowerOf2IsReduced, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.mod_power_of_2_is_reduced(5), true);
assert_eq!(Natural::from(10u32).pow(12).mod_power_of_2_is_reduced(39), false);
assert_eq!(Natural::from(10u32).pow(12).mod_power_of_2_is_reduced(40), true);

Multiplies two Naturals modulo $2^k$. Assumes the inputs are already reduced modulo $2^k$. The first Natural is taken by value and the second by reference.

$f(x, y, k) = z$, where $x, y, z < 2^k$ and $xy \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Mul;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).mod_power_of_2_mul(&Natural::from(2u32), 5), 6);
assert_eq!(Natural::from(10u32).mod_power_of_2_mul(&Natural::from(14u32), 4), 12);

Multiplies two Naturals modulo $2^k$. Assumes the inputs are already reduced modulo $2^k$. Both Naturals are taken by reference.

$f(x, y, k) = z$, where $x, y, z < 2^k$ and $xy \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Mul;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(3u32)).mod_power_of_2_mul(&Natural::from(2u32), 5), 6);
assert_eq!((&Natural::from(10u32)).mod_power_of_2_mul(&Natural::from(14u32), 4), 12);

Multiplies two Naturals modulo $2^k$. Assumes the inputs are already reduced modulo $2^k$. Both Naturals are taken by value.

$f(x, y, k) = z$, where $x, y, z < 2^k$ and $xy \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Mul;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).mod_power_of_2_mul(Natural::from(2u32), 5), 6);
assert_eq!(Natural::from(10u32).mod_power_of_2_mul(Natural::from(14u32), 4), 12);

Multiplies two Naturals modulo $2^k$. Assumes the inputs are already reduced modulo $2^k$. The first Natural is taken by reference and the second by value.

$f(x, y, k) = z$, where $x, y, z < 2^k$ and $xy \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Mul;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(3u32)).mod_power_of_2_mul(Natural::from(2u32), 5), 6);
assert_eq!((&Natural::from(10u32)).mod_power_of_2_mul(Natural::from(14u32), 4), 12);

Multiplies two Naturals modulo $2^k$, in place. Assumes the inputs are already reduced modulo $2^k$. The Natural on the right-hand side is taken by reference.

$x \gets z$, where $x, y, z < 2^k$ and $x + y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2MulAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(3u32);
x.mod_power_of_2_mul_assign(&Natural::from(2u32), 5);
assert_eq!(x, 6);

let mut x = Natural::from(10u32);
x.mod_power_of_2_mul_assign(&Natural::from(14u32), 4);
assert_eq!(x, 12);

Multiplies two Naturals modulo $2^k$, in place. Assumes the inputs are already reduced modulo $2^k$. The Natural on the right-hand side is taken by value.

$x \gets z$, where $x, y, z < 2^k$ and $x + y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2MulAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(3u32);
x.mod_power_of_2_mul_assign(Natural::from(2u32), 5);
assert_eq!(x, 6);

let mut x = Natural::from(10u32);
x.mod_power_of_2_mul_assign(Natural::from(14u32), 4);
assert_eq!(x, 12);

Negates a Natural modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, k) = y$, where $x, y < 2^k$ and $-x \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Neg;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.mod_power_of_2_neg(5), 0);
assert_eq!(Natural::ZERO.mod_power_of_2_neg(100), 0);
assert_eq!(Natural::from(100u32).mod_power_of_2_neg(8), 156);
assert_eq!(
    Natural::from(100u32).mod_power_of_2_neg(100).to_string(),
    "1267650600228229401496703205276"
);

Negates a Natural modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, k) = y$, where $x, y < 2^k$ and $-x \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Neg;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).mod_power_of_2_neg(5), 0);
assert_eq!((&Natural::ZERO).mod_power_of_2_neg(100), 0);
assert_eq!((&Natural::from(100u32)).mod_power_of_2_neg(8), 156);
assert_eq!(
    (&Natural::from(100u32)).mod_power_of_2_neg(100).to_string(),
    "1267650600228229401496703205276"
);

Negates a Natural modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^p$ and $-x \equiv y \mod 2^p$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2NegAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut n = Natural::ZERO;
n.mod_power_of_2_neg_assign(5);
assert_eq!(n, 0);

let mut n = Natural::ZERO;
n.mod_power_of_2_neg_assign(100);
assert_eq!(n, 0);

let mut n = Natural::from(100u32);
n.mod_power_of_2_neg_assign(8);
assert_eq!(n, 156);

let mut n = Natural::from(100u32);
n.mod_power_of_2_neg_assign(100);
assert_eq!(n.to_string(), "1267650600228229401496703205276");

Raises a Natural to a Natural power modulo $2^k$. Assumes the input is already reduced mod $2^k$. The first Natural is taken by value and the second by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is pow, and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Pow;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).mod_power_of_2_pow(&Natural::from(10u32), 8), 169);
assert_eq!(
    Natural::from(11u32).mod_power_of_2_pow(&Natural::from(1000u32), 30),
    289109473
);

Raises a Natural to a Natural power modulo $2^k$. Assumes the input is already reduced mod $2^k$. Both Naturals are taken by reference.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is pow, and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Pow;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(3u32)).mod_power_of_2_pow(&Natural::from(10u32), 8), 169);
assert_eq!(
    (&Natural::from(11u32)).mod_power_of_2_pow(&Natural::from(1000u32), 30),
    289109473
);

Raises a Natural to a Natural power modulo $2^k$. Assumes the input is already reduced mod $2^k$. Both Naturals are taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is pow, and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Pow;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(3u32).mod_power_of_2_pow(Natural::from(10u32), 8), 169);
assert_eq!(
    Natural::from(11u32).mod_power_of_2_pow(Natural::from(1000u32), 30),
    289109473
);

Raises a Natural to a Natural power modulo $2^k$. Assumes the input is already reduced mod $2^k$. The first Natural is taken by reference and the second by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is pow, and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Pow;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(3u32)).mod_power_of_2_pow(Natural::from(10u32), 8), 169);
assert_eq!(
    (&Natural::from(11u32)).mod_power_of_2_pow(Natural::from(1000u32), 30),
    289109473
);

Raises a Natural to a Natural power modulo $2^k$, in place. Assumes the input is already reduced mod $2^k$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is pow, and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2PowAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(3u32);
x.mod_power_of_2_pow_assign(&Natural::from(10u32), 8);
assert_eq!(x, 169);

let mut x = Natural::from(11u32);
x.mod_power_of_2_pow_assign(&Natural::from(1000u32), 30);
assert_eq!(x, 289109473);

Raises a Natural to a Natural power modulo $2^k$, in place. Assumes the input is already reduced mod $2^k$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is pow, and $m$ is exp.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2PowAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(3u32);
x.mod_power_of_2_pow_assign(Natural::from(10u32), 8);
assert_eq!(x, 169);

let mut x = Natural::from(11u32);
x.mod_power_of_2_pow_assign(Natural::from(1000u32), 30);
assert_eq!(x, 289109473);

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples

See here.

Squares a Natural modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by value.

$f(x, k) = y$, where $x, y < 2^k$ and $x^2 \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Square;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::ZERO.mod_power_of_2_square(2), 0);
assert_eq!(Natural::from(5u32).mod_power_of_2_square(3), 1);
assert_eq!(
    Natural::from_str("12345678987654321").unwrap().mod_power_of_2_square(64).to_string(),
    "16556040056090124897"
);

Squares a Natural modulo $2^k$. Assumes the input is already reduced modulo $2^k$. The Natural is taken by reference.

$f(x, k) = y$, where $x, y < 2^k$ and $x^2 \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Square;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!((&Natural::ZERO).mod_power_of_2_square(2), 0);
assert_eq!((&Natural::from(5u32)).mod_power_of_2_square(3), 1);
assert_eq!(
    (&Natural::from_str("12345678987654321").unwrap())
        .mod_power_of_2_square(64).to_string(),
    "16556040056090124897"
);

Squares a Natural modulo $2^k$, in place. Assumes the input is already reduced modulo $2^k$.

$x \gets y$, where $x, y < 2^k$ and $x^2 \equiv y \mod 2^k$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2SquareAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use std::str::FromStr;

let mut n = Natural::ZERO;
n.mod_power_of_2_square_assign(2);
assert_eq!(n, 0);

let mut n = Natural::from(5u32);
n.mod_power_of_2_square_assign(3);
assert_eq!(n, 1);

let mut n = Natural::from_str("12345678987654321").unwrap();
n.mod_power_of_2_square_assign(64);
assert_eq!(n.to_string(), "16556040056090124897");

Subtracts two Naturals modulo $2^k$. Assumes the inputs are already reduced modulo $2^k$. The first Natural is taken by value and the second by reference.

$f(x, y, k) = z$, where $x, y, z < 2^k$ and $x - y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Sub;
use malachite_base::num::basic::traits::Two;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(10u32).mod_power_of_2_sub(&Natural::TWO, 4), 8);
assert_eq!(Natural::from(56u32).mod_power_of_2_sub(&Natural::from(123u32), 9), 445);

Subtracts two Natural modulo $2^k$. Assumes the inputs are already reduced modulo $2^k$. Both Naturals are taken by reference.

$f(x, y, k) = z$, where $x, y, z < 2^k$ and $x - y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Sub;
use malachite_base::num::basic::traits::Two;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(10u32)).mod_power_of_2_sub(&Natural::TWO, 4), 8);
assert_eq!((&Natural::from(56u32)).mod_power_of_2_sub(&Natural::from(123u32), 9), 445);

Subtracts two Naturals modulo $2^k$. Assumes the inputs are already reduced modulo $2^k$. Both Naturals are taken by value.

$f(x, y, k) = z$, where $x, y, z < 2^k$ and $x - y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Sub;
use malachite_base::num::basic::traits::Two;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(10u32).mod_power_of_2_sub(Natural::TWO, 4), 8);
assert_eq!(Natural::from(56u32).mod_power_of_2_sub(Natural::from(123u32), 9), 445);

Subtracts two Naturals modulo $2^k$. Assumes the inputs are already reduced modulo $2^k$. The first Natural is taken by reference and the second by value.

$f(x, y, k) = z$, where $x, y, z < 2^k$ and $x - y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2Sub;
use malachite_base::num::basic::traits::Two;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(10u32)).mod_power_of_2_sub(Natural::TWO, 4), 8);
assert_eq!((&Natural::from(56u32)).mod_power_of_2_sub(Natural::from(123u32), 9), 445);

Subtracts two Natural modulo $2^k$, in place. Assumes the inputs are already reduced modulo $2^k$. The Natural on the right-hand side is taken by reference.

$x \gets z$, where $x, y, z < 2^k$ and $x - y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2SubAssign;
use malachite_base::num::basic::traits::Two;
use malachite_nz::natural::Natural;

let mut x = Natural::from(10u32);
x.mod_power_of_2_sub_assign(&Natural::TWO, 4);
assert_eq!(x, 8);

let mut x = Natural::from(56u32);
x.mod_power_of_2_sub_assign(&Natural::from(123u32), 9);
assert_eq!(x, 445);

Subtracts two Natural modulo $2^k$, in place. Assumes the inputs are already reduced modulo $2^k$. The Natural on the right-hand side is taken by value.

$x \gets z$, where $x, y, z < 2^k$ and $x - y \equiv z \mod 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModPowerOf2SubAssign;
use malachite_base::num::basic::traits::Two;
use malachite_nz::natural::Natural;

let mut x = Natural::from(10u32);
x.mod_power_of_2_sub_assign(Natural::TWO, 4);
assert_eq!(x, 8);

let mut x = Natural::from(56u32);
x.mod_power_of_2_sub_assign(Natural::from(123u32), 9);
assert_eq!(x, 445);

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $\lfloor 2^nx \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $2^nx \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, n, m) = y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2) modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $\lfloor 2^{-n}x \rfloor \equiv y \mod m$.

Worst-case complexity

$T(n, m) = O(mn \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is m.significant_bits(), and $m$ is bits.

Examples

See here.

Squares a Natural modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by value and the second by reference.

$f(x, m) = y$, where $x, y < m$ and $x^2 \equiv y \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSquare;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(2u32).mod_square(&Natural::from(10u32)), 4);
assert_eq!(Natural::from(100u32).mod_square(&Natural::from(497u32)), 60);

Squares a Natural modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by reference.

$f(x, m) = y$, where $x, y < m$ and $x^2 \equiv y \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSquare;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(2u32)).mod_square(&Natural::from(10u32)), 4);
assert_eq!((&Natural::from(100u32)).mod_square(&Natural::from(497u32)), 60);

Squares a Natural modulo another Natural $m$. Assumes the input is already reduced modulo $m$. Both Naturals are taken by value.

$f(x, m) = y$, where $x, y < m$ and $x^2 \equiv y \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSquare;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(2u32).mod_square(Natural::from(10u32)), 4);
assert_eq!(Natural::from(100u32).mod_square(Natural::from(497u32)), 60);

Squares a Natural modulo another Natural $m$. Assumes the input is already reduced modulo $m$. The first Natural is taken by reference and the second by value.

$f(x, m) = y$, where $x, y < m$ and $x^2 \equiv y \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSquare;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(2u32)).mod_square(Natural::from(10u32)), 4);
assert_eq!((&Natural::from(100u32)).mod_square(Natural::from(497u32)), 60);

Squares a Natural modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by reference.

$x \gets y$, where $x, y < m$ and $x^2 \equiv y \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSquareAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(2u32);
x.mod_square_assign(&Natural::from(10u32));
assert_eq!(x, 4);

let mut x = Natural::from(100u32);
x.mod_square_assign(&Natural::from(497u32));
assert_eq!(x, 60);

Squares a Natural modulo another Natural $m$, in place. Assumes the input is already reduced modulo $m$. The Natural on the right-hand side is taken by value.

$x \gets y$, where $x, y < m$ and $x^2 \equiv y \mod m$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSquareAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(2u32);
x.mod_square_assign(Natural::from(10u32));
assert_eq!(x, 4);

let mut x = Natural::from(100u32);
x.mod_square_assign(Natural::from(497u32));
assert_eq!(x, 60);

Subtracts two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first Natural is taken by value and the second and third by reference.

$f(x, y, m) = z$, where $x, y, z < m$ and $x - y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSub;
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(4u32).mod_sub(&Natural::from(3u32), &Natural::from(5u32)).to_string(),
    "1"
);
assert_eq!(
    Natural::from(7u32).mod_sub(&Natural::from(9u32), &Natural::from(10u32)).to_string(),
    "8"
);

This is equivalent to _fmpz_mod_subN from fmpz_mod/sub.c, FLINT 2.7.1, where b is taken by value and c and m are taken by reference.

Subtracts two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first and third Naturals are taken by value and the second by reference.

$f(x, y, m) = z$, where $x, y, z < m$ and $x - y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSub;
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(4u32).mod_sub(&Natural::from(3u32), Natural::from(5u32)).to_string(),
    "1"
);
assert_eq!(
    Natural::from(7u32).mod_sub(&Natural::from(9u32), Natural::from(10u32)).to_string(),
    "8"
);

This isequivalent to _fmpz_mod_subN from fmpz_mod/sub.c, FLINT 2.7.1, where b and m are taken by value and c is taken by reference.

Subtracts two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. All three Naturals are taken by reference.

$f(x, y, m) = z$, where $x, y, z < m$ and $x - y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSub;
use malachite_nz::natural::Natural;

assert_eq!(
    (&Natural::from(4u32)).mod_sub(&Natural::from(3u32), &Natural::from(5u32)).to_string(),
    "1"
);
assert_eq!(
    (&Natural::from(7u32)).mod_sub(&Natural::from(9u32), &Natural::from(10u32)).to_string(),
    "8"
);

This is equivalent to _fmpz_mod_subN from fmpz_mod/sub.c, FLINT 2.7.1, where b, c, and m are taken by reference.

Subtracts two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first two Naturals are taken by reference and the third by value.

$f(x, y, m) = z$, where $x, y, z < m$ and $x - y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSub;
use malachite_nz::natural::Natural;

assert_eq!(
    (&Natural::from(4u32)).mod_sub(&Natural::from(3u32), Natural::from(5u32)).to_string(),
    "1"
);
assert_eq!(
    (&Natural::from(7u32)).mod_sub(&Natural::from(9u32), Natural::from(10u32)).to_string(),
    "8"
);

This is equivalent to _fmpz_mod_subN from fmpz_mod/sub.c, FLINT 2.7.1, where b and c are taken by reference and m is taken by value.

Subtracts two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first two Naturals are taken by value and the third by reference.

$f(x, y, m) = z$, where $x, y, z < m$ and $x - y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSub;
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(4u32).mod_sub(Natural::from(3u32), &Natural::from(5u32)).to_string(),
    "1"
);
assert_eq!(
    Natural::from(7u32).mod_sub(Natural::from(9u32), &Natural::from(10u32)).to_string(),
    "8"
);

This is equivalent to _fmpz_mod_subN from fmpz_mod/sub.c, FLINT 2.7.1, where b and c are taken by value and m is taken by reference.

Subtracts two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first and third Naturals are taken by reference and the second by value.

$f(x, y, m) = z$, where $x, y, z < m$ and $x - y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSub;
use malachite_nz::natural::Natural;

assert_eq!(
    (&Natural::from(4u32)).mod_sub(Natural::from(3u32), &Natural::from(5u32)).to_string(),
    "1"
);
assert_eq!(
    (&Natural::from(7u32)).mod_sub(Natural::from(9u32), &Natural::from(10u32)).to_string(),
    "8"
);

This is equivalent to _fmpz_mod_subN from fmpz_mod/sub.c, FLINT 2.7.1, where b and m are taken by reference and c is taken by value.

Subtracts two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. All three Naturals are taken by value.

$f(x, y, m) = z$, where $x, y, z < m$ and $x - y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSub;
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(4u32).mod_sub(Natural::from(3u32), Natural::from(5u32)).to_string(),
    "1"
);
assert_eq!(
    Natural::from(7u32).mod_sub(Natural::from(9u32), Natural::from(10u32)).to_string(),
    "8"
);

This is equivalent to _fmpz_mod_subN from fmpz_mod/sub.c, FLINT 2.7.1, where b, c, and m are taken by value.

Subtracts two Naturals modulo a third Natural $m$. Assumes the inputs are already reduced modulo $m$. The first Natural is taken by reference and the second and third by value.

$f(x, y, m) = z$, where $x, y, z < m$ and $x - y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSub;
use malachite_nz::natural::Natural;

assert_eq!(
    (&Natural::from(4u32)).mod_sub(Natural::from(3u32), Natural::from(5u32)).to_string(),
    "1"
);
assert_eq!(
    (&Natural::from(7u32)).mod_sub(Natural::from(9u32), Natural::from(10u32)).to_string(),
    "8"
);

This is equivalent to _fmpz_mod_subN from fmpz_mod/sub.c, FLINT 2.7.1, where b is taken by reference and c and m are taken by value.

Subtracts two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. Both Naturals on the right-hand side are taken by reference.

$x \gets z$, where $x, y, z < m$ and $x - y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSubAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(4u32);
x.mod_sub_assign(&Natural::from(3u32), &Natural::from(5u32));
assert_eq!(x.to_string(), "1");

let mut x = Natural::from(7u32);
x.mod_sub_assign(&Natural::from(9u32), &Natural::from(10u32));
assert_eq!(x.to_string(), "8");

This is equivalent to _fmpz_mod_subN from fmpz_mod/sub.c, FLINT 2.7.1, where b is taken by value, c and m are taken by reference, and a == b.

Subtracts two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. The first Natural on the right-hand side is taken by reference and the second by value.

$x \gets z$, where $x, y, z < m$ and $x - y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSubAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(4u32);
x.mod_sub_assign(&Natural::from(3u32), Natural::from(5u32));
assert_eq!(x.to_string(), "1");

let mut x = Natural::from(7u32);
x.mod_sub_assign(&Natural::from(9u32), Natural::from(10u32));
assert_eq!(x.to_string(), "8");

This is equivalent to _fmpz_mod_subN from fmpz_mod/sub.c, FLINT 2.7.1, where b and m are taken by value, c is taken by reference, and a == b.

Subtracts two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. The first Natural on the right-hand side is taken by value and the second by reference.

$x \gets z$, where $x, y, z < m$ and $x - y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSubAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(4u32);
x.mod_sub_assign(Natural::from(3u32), &Natural::from(5u32));
assert_eq!(x.to_string(), "1");

let mut x = Natural::from(7u32);
x.mod_sub_assign(Natural::from(9u32), &Natural::from(10u32));
assert_eq!(x.to_string(), "8");

This is equivalent to _fmpz_mod_subN from fmpz_mod/sub.c, FLINT 2.7.1, where b and c are taken by value, m is taken by reference, and a == b.

Subtracts two Naturals modulo a third Natural $m$, in place. Assumes the inputs are already reduced modulo $m$. Both Naturals on the right-hand side are taken by value.

$x \gets z$, where $x, y, z < m$ and $x - y \equiv z \mod m$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is m.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::ModSubAssign;
use malachite_nz::natural::Natural;

let mut x = Natural::from(4u32);
x.mod_sub_assign(Natural::from(3u32), Natural::from(5u32));
assert_eq!(x.to_string(), "1");

let mut x = Natural::from(7u32);
x.mod_sub_assign(Natural::from(9u32), Natural::from(10u32));
assert_eq!(x.to_string(), "8");

This is equivalent to _fmpz_mod_subN from fmpz_mod/sub.c, FLINT 2.7.1, where b, c, and m are taken by value and a == b.

Multiplies two Naturals, taking the first by value and the second by reference.

$$ f(x, y) = xy. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::{One, Zero};
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::ONE * &Natural::from(123u32), 123);
assert_eq!(Natural::from(123u32) * &Natural::ZERO, 0);
assert_eq!(Natural::from(123u32) * &Natural::from(456u32), 56088);
assert_eq!(
    (Natural::from_str("123456789000").unwrap() * &Natural::from_str("987654321000")
           .unwrap()).to_string(),
    "121932631112635269000000"
);

The resulting type after applying the * operator.

Multiplies two Naturals, taking both by reference.

$$ f(x, y) = xy. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::{One, Zero};
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(&Natural::ONE * &Natural::from(123u32), 123);
assert_eq!(&Natural::from(123u32) * &Natural::ZERO, 0);
assert_eq!(&Natural::from(123u32) * &Natural::from(456u32), 56088);
assert_eq!(
    (&Natural::from_str("123456789000").unwrap() * &Natural::from_str("987654321000")
           .unwrap()).to_string(),
    "121932631112635269000000"
);

The resulting type after applying the * operator.

Multiplies two Naturals, taking both by value.

$$ f(x, y) = xy. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::{One, Zero};
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::ONE * Natural::from(123u32), 123);
assert_eq!(Natural::from(123u32) * Natural::ZERO, 0);
assert_eq!(Natural::from(123u32) * Natural::from(456u32), 56088);
assert_eq!(
    (Natural::from_str("123456789000").unwrap() * Natural::from_str("987654321000")
           .unwrap()).to_string(),
    "121932631112635269000000"
);

The resulting type after applying the * operator.

Multiplies two Naturals, taking the first by reference and the second by value.

$$ f(x, y) = xy. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::{One, Zero};
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(&Natural::ONE * Natural::from(123u32), 123);
assert_eq!(&Natural::from(123u32) * Natural::ZERO, 0);
assert_eq!(&Natural::from(123u32) * Natural::from(456u32), 56088);
assert_eq!(
    (&Natural::from_str("123456789000").unwrap() * Natural::from_str("987654321000")
           .unwrap()).to_string(),
    "121932631112635269000000"
);

The resulting type after applying the * operator.

Multiplies a Natural by a Natural in place, taking the Natural on the right-hand side by reference.

$$ x \gets = xy. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;
use std::str::FromStr;

let mut x = Natural::ONE;
x *= &Natural::from_str("1000").unwrap();
x *= &Natural::from_str("2000").unwrap();
x *= &Natural::from_str("3000").unwrap();
x *= &Natural::from_str("4000").unwrap();
assert_eq!(x.to_string(), "24000000000000");

Multiplies a Natural by a Natural in place, taking the Natural on the right-hand side by value.

$$ x \gets = xy. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::One;
use malachite_nz::natural::Natural;
use std::str::FromStr;

let mut x = Natural::ONE;
x *= Natural::from_str("1000").unwrap();
x *= Natural::from_str("2000").unwrap();
x *= Natural::from_str("3000").unwrap();
x *= Natural::from_str("4000").unwrap();
assert_eq!(x.to_string(), "24000000000000");

The name of this type, as given by the stringify macro.

See the documentation for impl_named for more details.

Negates a Natural, taking it by value and returning an Integer.

$$ f(x) = -x. $$

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(-Natural::ZERO, 0);
assert_eq!(-Natural::from(123u32), -123);

The resulting type after applying the - operator.

Negates a Natural, taking it by reference and returning an Integer.

$$ f(x) = -x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(-&Natural::ZERO, 0);
assert_eq!(-&Natural::from(123u32), -123);

The resulting type after applying the - operator.

Divides the negative of a Natural by another Natural, taking the first by value and the second by reference and returning just the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy - r$ and $0 \leq r < y$.

$$ f(x, y) = y\left \lceil \frac{x}{y} \right \rceil - x. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::NegMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 3 * 10 - 7 = 23
assert_eq!(Natural::from(23u32).neg_mod(&Natural::from(10u32)), 7);

// 810000006724 * 1234567890987 - 704498996588 = 1000000000000000000000000
assert_eq!(
     Natural::from_str("1000000000000000000000000").unwrap()
            .neg_mod(&Natural::from_str("1234567890987").unwrap()),
     704498996588u64
);

Divides the negative of a Natural by another Natural, taking both by reference and returning just the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy - r$ and $0 \leq r < y$.

$$ f(x, y) = y\left \lceil \frac{x}{y} \right \rceil - x. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::NegMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 3 * 10 - 7 = 23
assert_eq!((&Natural::from(23u32)).neg_mod(&Natural::from(10u32)), 7);

// 810000006724 * 1234567890987 - 704498996588 = 1000000000000000000000000
assert_eq!(
     (&Natural::from_str("1000000000000000000000000").unwrap())
            .neg_mod(&Natural::from_str("1234567890987").unwrap()),
     704498996588u64
);

Divides the negative of a Natural by another Natural, taking both by value and returning just the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy - r$ and $0 \leq r < y$.

$$ f(x, y) = y\left \lceil \frac{x}{y} \right \rceil - x. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::NegMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 3 * 10 - 7 = 23
assert_eq!(Natural::from(23u32).neg_mod(Natural::from(10u32)), 7);

// 810000006724 * 1234567890987 - 704498996588 = 1000000000000000000000000
assert_eq!(
     Natural::from_str("1000000000000000000000000").unwrap()
            .neg_mod(Natural::from_str("1234567890987").unwrap()),
     704498996588u64
);

Divides the negative of a Natural by another Natural, taking the first by reference and the second by value and returning just the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy - r$ and $0 \leq r < y$.

$$ f(x, y) = y\left \lceil \frac{x}{y} \right \rceil - x. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::NegMod;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 3 * 10 - 7 = 23
assert_eq!((&Natural::from(23u32)).neg_mod(Natural::from(10u32)), 7);

// 810000006724 * 1234567890987 - 704498996588 = 1000000000000000000000000
assert_eq!(
     (&Natural::from_str("1000000000000000000000000").unwrap())
            .neg_mod(Natural::from_str("1234567890987").unwrap()),
     704498996588u64
);

Divides the negative of a Natural by another Natural, taking the second Naturals by reference and replacing the first by the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy - r$ and $0 \leq r < y$.

$$ x \gets y\left \lceil \frac{x}{y} \right \rceil - x. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::NegModAssign;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 3 * 10 - 7 = 23
let mut x = Natural::from(23u32);
x.neg_mod_assign(&Natural::from(10u32));
assert_eq!(x, 7);

// 810000006724 * 1234567890987 - 704498996588 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
x.neg_mod_assign(&Natural::from_str("1234567890987").unwrap());
assert_eq!(x, 704498996588u64);

Divides the negative of a Natural by another Natural, taking the second Naturals by value and replacing the first by the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy - r$ and $0 \leq r < y$.

$$ x \gets y\left \lceil \frac{x}{y} \right \rceil - x. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::NegModAssign;
use malachite_nz::natural::Natural;
use std::str::FromStr;

// 3 * 10 - 7 = 23
let mut x = Natural::from(23u32);
x.neg_mod_assign(Natural::from(10u32));
assert_eq!(x, 7);

// 810000006724 * 1234567890987 - 704498996588 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
x.neg_mod_assign(Natural::from_str("1234567890987").unwrap());
assert_eq!(x, 704498996588u64);

Divides the negative of a Natural by a $2^k$, returning just the remainder. The Natural is taken by value.

If the quotient were computed, the quotient and remainder would satisfy $x = q2^k - r$ and $0 \leq r < 2^k$.

$$ f(x, k) = 2^k\left \lceil \frac{x}{2^k} \right \rceil - x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::NegModPowerOf2;
use malachite_nz::natural::Natural;

// 2 * 2^8 - 252 = 260
assert_eq!(Natural::from(260u32).neg_mod_power_of_2(8), 252);

// 101 * 2^4 - 5 = 1611
assert_eq!(Natural::from(1611u32).neg_mod_power_of_2(4), 5);

Divides the negative of a Natural by a $2^k$, returning just the remainder. The Natural is taken by reference.

If the quotient were computed, the quotient and remainder would satisfy $x = q2^k - r$ and $0 \leq r < 2^k$.

$$ f(x, k) = 2^k\left \lceil \frac{x}{2^k} \right \rceil - x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::NegModPowerOf2;
use malachite_nz::natural::Natural;

// 2 * 2^8 - 252 = 260
assert_eq!((&Natural::from(260u32)).neg_mod_power_of_2(8), 252);
// 101 * 2^4 - 5 = 1611
assert_eq!((&Natural::from(1611u32)).neg_mod_power_of_2(4), 5);

Divides the negative of a Natural by $2^k$, returning just the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = q2^k - r$ and $0 \leq r < 2^k$.

$$ x \gets 2^k\left \lceil \frac{x}{2^k} \right \rceil - x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::NegModPowerOf2Assign;
use malachite_nz::natural::Natural;

// 2 * 2^8 - 252 = 260
let mut x = Natural::from(260u32);
x.neg_mod_power_of_2_assign(8);
assert_eq!(x, 252);

// 101 * 2^4 - 5 = 1611
let mut x = Natural::from(1611u32);
x.neg_mod_power_of_2_assign(4);
assert_eq!(x, 5);

Finds the smallest power of 2 greater than or equal to a Natural. The Natural is taken by value.

$f(x) = 2^{\lceil \log_2 x \rceil}$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$ (only if the underlying Vec needs to reallocate)

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{NextPowerOf2, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.next_power_of_2(), 1);
assert_eq!(Natural::from(123u32).next_power_of_2(), 128);
assert_eq!(Natural::from(10u32).pow(12).next_power_of_2(), 1099511627776u64);

Finds the smallest power of 2 greater than or equal to a Natural. The Natural is taken by reference.

$f(x) = 2^{\lceil \log_2 x \rceil}$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{NextPowerOf2, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).next_power_of_2(), 1);
assert_eq!((&Natural::from(123u32)).next_power_of_2(), 128);
assert_eq!((&Natural::from(10u32).pow(12)).next_power_of_2(), 1099511627776u64);

Replaces a Natural with the smallest power of 2 greater than or equal to it.

$x \gets 2^{\lceil \log_2 x \rceil}$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$ (only if the underlying Vec needs to reallocate)

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{NextPowerOf2Assign, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x.next_power_of_2_assign();
assert_eq!(x, 1);

let mut x = Natural::from(123u32);
x.next_power_of_2_assign();
assert_eq!(x, 128);

let mut x = Natural::from(10u32).pow(12);
x.next_power_of_2_assign();
assert_eq!(x, 1099511627776u64);

Returns the bitwise negation of a Natural, taking it by value and returning an Integer.

The Natural is bitwise-negated as if it were represented in two’s complement.

$$ f(n) = -n - 1. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(!Natural::ZERO, -1);
assert_eq!(!Natural::from(123u32), -124);

The resulting type after applying the ! operator.

Returns the bitwise negation of a Natural, taking it by reference and returning an Integer.

The Natural is bitwise-negated as if it were represented in two’s complement.

$$ f(n) = -n - 1. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(!&Natural::ZERO, -1);
assert_eq!(!&Natural::from(123u32), -124);

The resulting type after applying the ! operator.

Converts a Natural to an octal String.

Using the # format flag prepends "0o" to the string.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_base::strings::ToOctalString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::ZERO.to_octal_string(), "0");
assert_eq!(Natural::from(123u32).to_octal_string(), "173");
assert_eq!(
    Natural::from_str("1000000000000").unwrap().to_octal_string(),
    "16432451210000"
);
assert_eq!(format!("{:07o}", Natural::from(123u32)), "0000173");

assert_eq!(format!("{:#o}", Natural::ZERO), "0o0");
assert_eq!(format!("{:#o}", Natural::from(123u32)), "0o173");
assert_eq!(
    format!("{:#o}", Natural::from_str("1000000000000").unwrap()),
    "0o16432451210000"
);
assert_eq!(format!("{:#07o}", Natural::from(123u32)), "0o00173");

The constant 1.

Compares two Naturals.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
use malachite_nz::natural::Natural;

assert!(Natural::from(123u32) > Natural::from(122u32));
assert!(Natural::from(123u32) >= Natural::from(122u32));
assert!(Natural::from(123u32) < Natural::from(124u32));
assert!(Natural::from(123u32) <= Natural::from(124u32));

Compares and returns the maximum of two values. Read more

Compares and returns the minimum of two values. Read more

Restrict a value to a certain interval. Read more

Converts a Natural to a usize, wrapping modulo $2^W$, where $W$ is the width of a limb.

The returned boolean value indicates whether wrapping occurred.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

The returned boolean value indicates whether wrapping occurred.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s larger than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

The returned boolean value indicates whether wrapping occurred.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to an isize or a value of a signed primitive integer type that’s larger than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

The returned boolean value indicates whether wrapping occurred.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of a signed primitive integer type that’s smaller than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

The returned boolean value indicates whether wrapping occurred.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

The returned boolean value indicates whether wrapping occurred.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of a signed primitive integer type that’s smaller than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

The returned boolean value indicates whether wrapping occurred.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

The returned boolean value indicates whether wrapping occurred.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of a signed primitive integer type that’s smaller than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

The returned boolean value indicates whether wrapping occurred.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

The returned boolean value indicates whether wrapping occurred.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a SignedLimb (the signed type whose width is the same as a limb’s), wrapping modulo $2^W$, where $W$ is the width of a limb.

The returned boolean value indicates whether wrapping occurred.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to an isize or a value of a signed primitive integer type that’s larger than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

The returned boolean value indicates whether wrapping occurred.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Tests whether a Natural is even.

$f(x) = (2|x)$.

$f(x) = (\exists k \in \N : x = 2k)$.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Parity, Pow};
use malachite_base::num::basic::traits::{One, Zero};
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.even(), true);
assert_eq!(Natural::from(123u32).even(), false);
assert_eq!(Natural::from(0x80u32).even(), true);
assert_eq!(Natural::from(10u32).pow(12).even(), true);
assert_eq!((Natural::from(10u32).pow(12) + Natural::ONE).even(), false);

Tests whether a Natural is odd.

$f(x) = (2\nmid x)$.

$f(x) = (\exists k \in \N : x = 2k+1)$.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Parity, Pow};
use malachite_base::num::basic::traits::{One, Zero};
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.odd(), false);
assert_eq!(Natural::from(123u32).odd(), true);
assert_eq!(Natural::from(0x80u32).odd(), false);
assert_eq!(Natural::from(10u32).pow(12).odd(), false);
assert_eq!((Natural::from(10u32).pow(12) + Natural::ONE).odd(), true);

Determines whether a Natural is equal to an Integer.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where n = min(self.significant_bits(), other.significant_bits())

Examples
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert!(Natural::from(123u32) == Integer::from(123));
assert!(Natural::from(123u32) != Integer::from(5));

This method tests for !=.

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

Determines whether a primitive float is equal to a Natural.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

Examples

See here.

This method tests for !=.

Determines whether a signed primitive integer is equal to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a signed primitive integer is equal to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a signed primitive integer is equal to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a signed primitive integer is equal to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a signed primitive integer is equal to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether an Integer is equal to a Natural.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where n = min(self.significant_bits(), other.significant_bits())

Examples
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert!(Integer::from(123) == Natural::from(123u32));
assert!(Integer::from(123) != Natural::from(5u32));

This method tests for !=.

Determines whether a primitive float is equal to a Natural.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

Examples

See here.

This method tests for !=.

Determines whether a value of an unsigned primitive integer type that’s smaller than a Limb is equal to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a value of an unsigned primitive integer type that’s smaller than a Limb is equal to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a value of an unsigned primitive integer type that’s smaller than a Limb is equal to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a Limb is equal to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a value of an unsigned primitive integer type that’s larger than a Limb is equal to a Natural.

This implementation is general enough to also work for usize, regardless of whether it is equal in width to Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a value of an unsigned primitive integer type that’s larger than a Limb is equal to a Natural.

This implementation is general enough to also work for usize, regardless of whether it is equal in width to Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a signed primitive integer is equal to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a primitive float.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a primitive float.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a value of an unsigned primitive integer type that’s larger than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a value of an unsigned primitive integer type that’s smaller than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a value of an unsigned primitive integer type that’s smaller than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a value of an unsigned primitive integer type that’s smaller than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests for !=.

Determines whether a Natural is equal to a usize.

Worst-case complexity

Constant time and additional memory.

See here.

This method tests for !=.

Compares a Natural to an Integer.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where n = min(self.significant_bits(), other.significant_bits()).

Examples
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert!(Natural::from(123u32) > Integer::from(122));
assert!(Natural::from(123u32) >= Integer::from(122));
assert!(Natural::from(123u32) < Integer::from(124));
assert!(Natural::from(123u32) <= Integer::from(124));
assert!(Natural::from(123u32) > Integer::from(-123));
assert!(Natural::from(123u32) >= Integer::from(-123));

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares two Naturals.

See the documentation for the Ord implementation.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a primitive float to a Natural.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a signed primitive integer to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a signed primitive integer to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a signed primitive integer to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a signed primitive integer to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a signed primitive integer to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares an Integer to a Natural.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where n = min(self.significant_bits(), other.significant_bits()).

Examples
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert!(Integer::from(123) > Natural::from(122u32));
assert!(Integer::from(123) >= Natural::from(122u32));
assert!(Integer::from(123) < Natural::from(124u32));
assert!(Integer::from(123) <= Natural::from(124u32));
assert!(Integer::from(-123) < Natural::from(123u32));
assert!(Integer::from(-123) <= Natural::from(123u32));

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a primitive float to a Natural.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a value of an unsigned primitive integer type that’s smaller than a Limb to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a value of an unsigned primitive integer type that’s smaller than a Limb to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a value of an unsigned primitive integer type that’s smaller than a Limb to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Limb to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a value of an unsigned primitive integer type that’s larger than a Limb to a Natural. This implementation is general enough to also work for usize, regardless of whether it is equal in width to Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a value of an unsigned primitive integer type that’s larger than a Limb to a Natural. This implementation is general enough to also work for usize, regardless of whether it is equal in width to Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a signed primitive integer to a Natural.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a primitive float.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a primitive float.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a value of an unsigned primitive integer type that’s larger than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares a Natural to a usize.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Compares the absolute values of a Natural and an Integer.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert!(Natural::from(123u32).gt_abs(&Integer::from(122)));
assert!(Natural::from(123u32).ge_abs(&Integer::from(122)));
assert!(Natural::from(123u32).lt_abs(&Integer::from(124)));
assert!(Natural::from(123u32).le_abs(&Integer::from(124)));
assert!(Natural::from(123u32).lt_abs(&Integer::from(-124)));
assert!(Natural::from(123u32).le_abs(&Integer::from(-124)));

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares the absolute value of a primitive float to a Natural.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares the absolute value of a primitive float to a Natural.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is other.significant_bits().

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares the absolute value of a signed primitive integer to a Natural.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares the absolute value of a signed primitive integer to a Natural.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares the absolute value of a signed primitive integer to a Natural.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares the absolute value of a signed primitive integer to a Natural.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares the absolute values of an Integer and a Natural.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits()).

Examples
extern crate malachite_base;

use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert!(Integer::from(123).gt_abs(&Natural::from(122u32)));
assert!(Integer::from(123).ge_abs(&Natural::from(122u32)));
assert!(Integer::from(123).lt_abs(&Natural::from(124u32)));
assert!(Integer::from(123).le_abs(&Natural::from(124u32)));
assert!(Integer::from(-124).gt_abs(&Natural::from(123u32)));
assert!(Integer::from(-124).ge_abs(&Natural::from(123u32)));

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a value of unsigned primitive integer type to a Natural.

Since both values are non-negative, this is the same as ordinary partial_cmp.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a value of unsigned primitive integer type to a Natural.

Since both values are non-negative, this is the same as ordinary partial_cmp.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a value of unsigned primitive integer type to a Natural.

Since both values are non-negative, this is the same as ordinary partial_cmp.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a value of unsigned primitive integer type to a Natural.

Since both values are non-negative, this is the same as ordinary partial_cmp.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a value of unsigned primitive integer type to a Natural.

Since both values are non-negative, this is the same as ordinary partial_cmp.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a value of unsigned primitive integer type to a Natural.

Since both values are non-negative, this is the same as ordinary partial_cmp.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares the absolute value of a signed primitive integer to a Natural.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares the absolute value of a signed primitive integer to a Natural.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to the absolute value of a primitive float.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to the absolute value of a primitive float.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to the absolute value of a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to the absolute value of a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to the absolute value of a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to the absolute value of a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to the absolute value of a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to the absolute value of a signed primitive integer.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to an unsigned primitive integer.

Since both values are non-negative, this is the same as ordinary partial_cmp.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to an unsigned primitive integer.

Since both values are non-negative, this is the same as ordinary partial_cmp.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to an unsigned primitive integer.

Since both values are non-negative, this is the same as ordinary partial_cmp.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to an unsigned primitive integer.

Since both values are non-negative, this is the same as ordinary partial_cmp.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to an unsigned primitive integer.

Since both values are non-negative, this is the same as ordinary partial_cmp.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Compares a Natural to an unsigned primitive integer.

Since both values are non-negative, this is the same as ordinary partial_cmp.

Worst-case complexity

Constant time and additional memory.

See here.

Determines whether the absolute value of one number is less than the absolute value of another. Read more

Determines whether the absolute value of one number is less than or equal to the absolute value of another. Read more

Determines whether the absolute value of one number is greater than the absolute value of another. Read more

Determines whether the absolute value of one number is greater than or equal to the absolute value of another. Read more

Raises a Natural to a power, taking the Natural by value.

$f(x, n) = x^n$.

Worst-case complexity

$T(n, m) = O(nm \log (nm) \log\log (nm))$

$M(n, m) = O(nm \log (nm))$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is exp.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    Natural::from(3u32).pow(100).to_string(),
    "515377520732011331036461129765621272702107522001"
);
assert_eq!(
    Natural::from_str("12345678987654321").unwrap().pow(3).to_string(),
    "1881676411868862234942354805142998028003108518161"
);

Raises a Natural to a power, taking the Natural by reference.

$f(x, n) = x^n$.

Worst-case complexity

$T(n, m) = O(nm \log (nm) \log\log (nm))$

$M(n, m) = O(nm \log (nm))$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is exp.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(
    (&Natural::from(3u32)).pow(100).to_string(),
    "515377520732011331036461129765621272702107522001"
);
assert_eq!(
    (&Natural::from_str("12345678987654321").unwrap()).pow(3).to_string(),
    "1881676411868862234942354805142998028003108518161"
);

Raises a Natural to a power in place.

$x \gets x^n$.

Worst-case complexity

$T(n, m) = O(nm \log (nm) \log\log (nm))$

$M(n, m) = O(nm \log (nm))$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is exp.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::PowAssign;
use malachite_nz::natural::Natural;
use std::str::FromStr;

let mut x = Natural::from(3u32);
x.pow_assign(100);
assert_eq!(x.to_string(), "515377520732011331036461129765621272702107522001");

let mut x = Natural::from_str("12345678987654321").unwrap();
x.pow_assign(3);
assert_eq!(x.to_string(), "1881676411868862234942354805142998028003108518161");

Raises 2 to an integer power.

$f(k) = 2^k$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_nz::natural::Natural;

assert_eq!(Natural::power_of_2(0), 1);
assert_eq!(Natural::power_of_2(3), 8);
assert_eq!(Natural::power_of_2(100).to_string(), "1267650600228229401496703205376");

Returns a double-ended iterator over the base-$2^k$ digits of a Natural.

The base-2 logarithm of the base is specified. The type of each digit is Natural. The forward order is ascending, so that less significant digits appear first. There are no trailing zero digits going forward, or leading zero digits going backward.

If it’s necessary to get a Vec of all the digits, consider using to_power_of_2_digits_asc or to_power_of_2_digits_desc instead.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate itertools;
extern crate malachite_base;

use itertools::Itertools;
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::conversion::traits::PowerOf2DigitIterable;
use malachite_nz::natural::Natural;

let n = Natural::ZERO;
assert!(PowerOf2DigitIterable::<Natural>::power_of_2_digits(&n, 2).next().is_none());

// 107 = 1223_4
let n = Natural::from(107u32);
assert_eq!(
    PowerOf2DigitIterable::<Natural>::power_of_2_digits(&n, 2).collect_vec(),
    vec![
        Natural::from(3u32),
        Natural::from(2u32),
        Natural::from(2u32),
        Natural::from(1u32)
    ]
);

let n = Natural::ZERO;
assert!(PowerOf2DigitIterable::<Natural>::power_of_2_digits(&n, 2)
    .next_back()
    .is_none());

// 107 = 1223_4
let n = Natural::from(107u32);
assert_eq!(
    PowerOf2DigitIterable::<Natural>::power_of_2_digits(&n, 2)
        .rev()
        .collect_vec(),
    vec![
        Natural::from(1u32),
        Natural::from(2u32),
        Natural::from(2u32),
        Natural::from(3u32)
    ]
);

Returns a double-ended iterator over the base-$2^k$ digits of a Natural.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. The forward order is ascending, so that less significant digits appear first. There are no trailing zero digits going forward, or leading zero digits going backward.

If it’s necessary to get a Vec of all the digits, consider using to_power_of_2_digits_asc or to_power_of_2_digits_desc instead.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns a double-ended iterator over the base-$2^k$ digits of a Natural.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. The forward order is ascending, so that less significant digits appear first. There are no trailing zero digits going forward, or leading zero digits going backward.

If it’s necessary to get a Vec of all the digits, consider using to_power_of_2_digits_asc or to_power_of_2_digits_desc instead.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns a double-ended iterator over the base-$2^k$ digits of a Natural.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. The forward order is ascending, so that less significant digits appear first. There are no trailing zero digits going forward, or leading zero digits going backward.

If it’s necessary to get a Vec of all the digits, consider using to_power_of_2_digits_asc or to_power_of_2_digits_desc instead.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns a double-ended iterator over the base-$2^k$ digits of a Natural.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. The forward order is ascending, so that less significant digits appear first. There are no trailing zero digits going forward, or leading zero digits going backward.

If it’s necessary to get a Vec of all the digits, consider using to_power_of_2_digits_asc or to_power_of_2_digits_desc instead.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns a double-ended iterator over the base-$2^k$ digits of a Natural.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. The forward order is ascending, so that less significant digits appear first. There are no trailing zero digits going forward, or leading zero digits going backward.

If it’s necessary to get a Vec of all the digits, consider using to_power_of_2_digits_asc or to_power_of_2_digits_desc instead.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns a double-ended iterator over the base-$2^k$ digits of a Natural.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. The forward order is ascending, so that less significant digits appear first. There are no trailing zero digits going forward, or leading zero digits going backward.

If it’s necessary to get a Vec of all the digits, consider using to_power_of_2_digits_asc or to_power_of_2_digits_desc instead.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Retrieves the base-$2^k$ digits of a Natural by index.

$f(x, k, i) = d_i$, where $0 \leq d_i < 2^k$ for all $i$ and $$ \sum_{i=0}^\infty2^{ki}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is log_base.

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_base::num::conversion::traits::{PowerOf2DigitIterable, PowerOf2DigitIterator};
use malachite_nz::natural::Natural;

let n = Natural::ZERO;
assert_eq!(PowerOf2DigitIterable::<Natural>::power_of_2_digits(&n, 2).get(0), 0);

// 107 = 1223_4
let n = Natural::from(107u32);
let digits = PowerOf2DigitIterable::<Natural>::power_of_2_digits(&n, 2);
assert_eq!(digits.get(0), 3);
assert_eq!(digits.get(1), 2);
assert_eq!(digits.get(2), 2);
assert_eq!(digits.get(3), 1);
assert_eq!(digits.get(4), 0);
assert_eq!(digits.get(100), 0);

Returns a Vec containing the base-$2^k$ digits of a Natural in ascending order: least- to most-significant.

The base-2 logarithm of the base is specified. The type of each digit is Natural. If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_{n-1} \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{ki}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is zero.

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::{Two, Zero};
use malachite_base::num::conversion::traits::PowerOf2Digits;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(
    PowerOf2Digits::<Natural>::to_power_of_2_digits_asc(&Natural::ZERO, 6)
            .to_debug_string(),
    "[]"
);
assert_eq!(
    PowerOf2Digits::<Natural>::to_power_of_2_digits_asc(&Natural::TWO, 6)
            .to_debug_string(),
    "[2]"
);

// 123_10 = 173_8
assert_eq!(
    PowerOf2Digits::<Natural>::to_power_of_2_digits_asc(&Natural::from(123u32), 3)
            .to_debug_string(),
    "[3, 7, 1]"
);

Returns a Vec containing the base-$2^k$ digits of a Natural in descending order: most- to least-significant.

The base-2 logarithm of the base is specified. The type of each digit is Natural. If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_0 \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is zero.

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::{Two, Zero};
use malachite_base::num::conversion::traits::PowerOf2Digits;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(
    PowerOf2Digits::<Natural>::to_power_of_2_digits_desc(&Natural::ZERO, 6)
            .to_debug_string(),
    "[]"
);
assert_eq!(
    PowerOf2Digits::<Natural>::to_power_of_2_digits_desc(&Natural::TWO, 6)
            .to_debug_string(),
    "[2]"
);

// 123_10 = 173_8
assert_eq!(
    PowerOf2Digits::<Natural>::to_power_of_2_digits_desc(&Natural::from(123u32), 3)
            .to_debug_string(),
    "[1, 7, 3]"
);

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in ascending order: least- to most-significant. The type of each digit is Natural.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{ki}d_i. $$

Worst-case complexity

$T(n, m) = O(nm)$

$M(n, m) = O(nm)$

where $T$ is time, $M$ is additional memory, $n$ is digits.count(), and $m$ is log_base.

Panics

Panics if log_base is zero.

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::{One, Two, Zero};
use malachite_base::num::conversion::traits::PowerOf2Digits;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

let digits = &[Natural::ZERO, Natural::ZERO, Natural::ZERO];
assert_eq!(
    Natural::from_power_of_2_digits_asc(6, digits.iter().cloned()).to_debug_string(),
    "Some(0)"
);

let digits = &[Natural::TWO, Natural::ZERO];
assert_eq!(
    Natural::from_power_of_2_digits_asc(6, digits.iter().cloned()).to_debug_string(),
    "Some(2)"
);

let digits = &[Natural::from(3u32), Natural::from(7u32), Natural::ONE];
assert_eq!(
    Natural::from_power_of_2_digits_asc(3, digits.iter().cloned()).to_debug_string(),
    "Some(123)"
);

let digits = &[Natural::from(100u32)];
assert_eq!(
    Natural::from_power_of_2_digits_asc(3, digits.iter().cloned()).to_debug_string(),
    "None"
);

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in descending order: most- to least-significant. The type of each digit is Natural.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i. $$

Worst-case complexity

$T(n, m) = O(nm)$

$M(n, m) = O(nm)$

where $T$ is time, $M$ is additional memory, $n$ is digits.count(), and $m$ is log_base.

Panics

Panics if log_base is zero.

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::{One, Two, Zero};
use malachite_base::num::conversion::traits::PowerOf2Digits;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

let digits = &[Natural::ZERO, Natural::ZERO, Natural::ZERO];
assert_eq!(
    Natural::from_power_of_2_digits_desc(6, digits.iter().cloned()).to_debug_string(),
    "Some(0)"
);

let digits = &[Natural::ZERO, Natural::TWO];
assert_eq!(
    Natural::from_power_of_2_digits_desc(6, digits.iter().cloned()).to_debug_string(),
    "Some(2)"
);

let digits = &[Natural::ONE, Natural::from(7u32), Natural::from(3u32)];
assert_eq!(
    Natural::from_power_of_2_digits_desc(3, digits.iter().cloned()).to_debug_string(),
    "Some(123)"
);

let digits = &[Natural::from(100u32)];
assert_eq!(
    Natural::from_power_of_2_digits_desc(3, digits.iter().cloned()).to_debug_string(),
    "None"
);

Returns a Vec containing the base-$2^k$ digits of a Natural in ascending order: least- to most-significant.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_{n-1} \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{ki}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is greater than the width of the digit type, or if log_base is zero.

Examples

See here.

Returns a Vec containing the base-$2^k$ digits of a Natural in descending order: most- to least-significant.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_0 \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is greater than the width of the digit type, or if log_base is zero.

Examples

See here.

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in ascending order: least- to most-significant. Each digit has primitive integer type, and log_base must be no larger than the width of that type.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{ki}d_i. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if log_base is zero or greater than the width of the digit type.

Examples

See here.

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in descending order: most- to least-significant. Each digit has primitive integer type, and log_base must be no larger than the width of that type.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if log_base is zero or greater than the width of the digit type.

Examples

See here.

Returns a Vec containing the base-$2^k$ digits of a Natural in ascending order: least- to most-significant.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_{n-1} \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{ki}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is greater than the width of the digit type, or if log_base is zero.

Examples

See here.

Returns a Vec containing the base-$2^k$ digits of a Natural in descending order: most- to least-significant.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_0 \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is greater than the width of the digit type, or if log_base is zero.

Examples

See here.

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in ascending order: least- to most-significant. Each digit has primitive integer type, and log_base must be no larger than the width of that type.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{ki}d_i. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if log_base is zero or greater than the width of the digit type.

Examples

See here.

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in descending order: most- to least-significant. Each digit has primitive integer type, and log_base must be no larger than the width of that type.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if log_base is zero or greater than the width of the digit type.

Examples

See here.

Returns a Vec containing the base-$2^k$ digits of a Natural in ascending order: least- to most-significant.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_{n-1} \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{ki}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is greater than the width of the digit type, or if log_base is zero.

Examples

See here.

Returns a Vec containing the base-$2^k$ digits of a Natural in descending order: most- to least-significant.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_0 \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is greater than the width of the digit type, or if log_base is zero.

Examples

See here.

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in ascending order: least- to most-significant. Each digit has primitive integer type, and log_base must be no larger than the width of that type.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{ki}d_i. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if log_base is zero or greater than the width of the digit type.

Examples

See here.

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in descending order: most- to least-significant. Each digit has primitive integer type, and log_base must be no larger than the width of that type.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if log_base is zero or greater than the width of the digit type.

Examples

See here.

Returns a Vec containing the base-$2^k$ digits of a Natural in ascending order: least- to most-significant.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_{n-1} \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{ki}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is greater than the width of the digit type, or if log_base is zero.

Examples

See here.

Returns a Vec containing the base-$2^k$ digits of a Natural in descending order: most- to least-significant.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_0 \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is greater than the width of the digit type, or if log_base is zero.

Examples

See here.

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in ascending order: least- to most-significant. Each digit has primitive integer type, and log_base must be no larger than the width of that type.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{ki}d_i. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if log_base is zero or greater than the width of the digit type.

Examples

See here.

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in descending order: most- to least-significant. Each digit has primitive integer type, and log_base must be no larger than the width of that type.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if log_base is zero or greater than the width of the digit type.

Examples

See here.

Returns a Vec containing the base-$2^k$ digits of a Natural in ascending order: least- to most-significant.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_{n-1} \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{ki}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is greater than the width of the digit type, or if log_base is zero.

Examples

See here.

Returns a Vec containing the base-$2^k$ digits of a Natural in descending order: most- to least-significant.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_0 \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is greater than the width of the digit type, or if log_base is zero.

Examples

See here.

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in ascending order: least- to most-significant. Each digit has primitive integer type, and log_base must be no larger than the width of that type.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{ki}d_i. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if log_base is zero or greater than the width of the digit type.

Examples

See here.

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in descending order: most- to least-significant. Each digit has primitive integer type, and log_base must be no larger than the width of that type.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if log_base is zero or greater than the width of the digit type.

Examples

See here.

Returns a Vec containing the base-$2^k$ digits of a Natural in ascending order: least- to most-significant.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. If the Natural is 0, the Vec is empty; otherwise, it ends with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_{n-1} \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{ki}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is greater than the width of the digit type, or if log_base is zero.

Examples

See here.

Returns a Vec containing the base-$2^k$ digits of a Natural in descending order: most- to least-significant.

The base-2 logarithm of the base is specified. Each digit has primitive integer type, and log_base must be no larger than the width of that type. If the Natural is 0, the Vec is empty; otherwise, it begins with a nonzero digit.

$f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$ or $d_0 \neq 0$, and

$$ \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i = x. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if log_base is greater than the width of the digit type, or if log_base is zero.

Examples

See here.

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in ascending order: least- to most-significant. Each digit has primitive integer type, and log_base must be no larger than the width of that type.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{ki}d_i. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if log_base is zero or greater than the width of the digit type.

Examples

See here.

Converts an iterator of base-$2^k$ digits into a Natural.

The base-2 logarithm of the base is specified. The input digits are in descending order: most- to least-significant. Each digit has primitive integer type, and log_base must be no larger than the width of that type.

If some digit is greater than $2^k$, None is returned.

$$ f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is digits.count().

Panics

Panics if log_base is zero or greater than the width of the digit type.

Examples

See here.

Divides a Natural by another Natural, taking the first by value and the second by reference and returning just the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor. $$

For Naturals, rem is equivalent to mod_op.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(Natural::from(23u32) % &Natural::from(10u32), 3);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    Natural::from_str("1000000000000000000000000").unwrap() %
            &Natural::from_str("1234567890987").unwrap(),
    530068894399u64
);

The resulting type after applying the % operator.

Divides a Natural by another Natural, taking both by reference and returning just the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor. $$

For Naturals, rem is equivalent to mod_op.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(&Natural::from(23u32) % &Natural::from(10u32), 3);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    &Natural::from_str("1000000000000000000000000").unwrap() %
            &Natural::from_str("1234567890987").unwrap(),
    530068894399u64
);

The resulting type after applying the % operator.

Divides a Natural by another Natural, taking both by value and returning just the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor. $$

For Naturals, rem is equivalent to mod_op.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(Natural::from(23u32) % Natural::from(10u32), 3);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    Natural::from_str("1000000000000000000000000").unwrap() %
            Natural::from_str("1234567890987").unwrap(),
    530068894399u64
);

The resulting type after applying the % operator.

Divides a Natural by another Natural, taking the first by reference and the second by value and returning just the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq r < y$.

$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor. $$

For Naturals, rem is equivalent to mod_op.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
assert_eq!(&Natural::from(23u32) % Natural::from(10u32), 3);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
assert_eq!(
    &Natural::from_str("1000000000000000000000000").unwrap() %
            Natural::from_str("1234567890987").unwrap(),
    530068894399u64
);

The resulting type after applying the % operator.

Divides a Natural by another Natural, taking the second Natural by reference and replacing the first by the remainder.

If the quotient were computed, he quotient and remainder would satisfy $x = qy + r$ and $0 \leq r < y$.

$$ x \gets x - y\left \lfloor \frac{x}{y} \right \rfloor. $$

For Naturals, rem_assign is equivalent to mod_assign.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
let mut x = Natural::from(23u32);
x %= &Natural::from(10u32);
assert_eq!(x, 3);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
x %= &Natural::from_str("1234567890987").unwrap();
assert_eq!(x, 530068894399u64);

Divides a Natural by another Natural, taking the second Natural by value and replacing the first by the remainder.

If the quotient were computed, he quotient and remainder would satisfy $x = qy + r$ and $0 \leq r < y$.

$$ x \gets x - y\left \lfloor \frac{x}{y} \right \rfloor. $$

For Naturals, rem_assign is equivalent to mod_assign.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is zero.

Examples
extern crate malachite_base;

use malachite_nz::natural::Natural;
use std::str::FromStr;

// 2 * 10 + 3 = 23
let mut x = Natural::from(23u32);
x %= Natural::from(10u32);
assert_eq!(x, 3);

// 810000006723 * 1234567890987 + 530068894399 = 1000000000000000000000000
let mut x = Natural::from_str("1000000000000000000000000").unwrap();
x %= Natural::from_str("1234567890987").unwrap();
assert_eq!(x, 530068894399u64);

Divides a Natural by $2^k$, returning just the remainder. The Natural is taken by value.

If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0 \leq r < 2^k$.

$$ f(x, k) = x - 2^k\left \lfloor \frac{x}{2^k} \right \rfloor. $$

For Naturals, rem_power_of_2 is equivalent to mod_power_of_2.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RemPowerOf2;
use malachite_nz::natural::Natural;

// 1 * 2^8 + 4 = 260
assert_eq!(Natural::from(260u32).rem_power_of_2(8), 4);

// 100 * 2^4 + 11 = 1611
assert_eq!(Natural::from(1611u32).rem_power_of_2(4), 11);

Divides a Natural by $2^k$, returning just the remainder. The Natural is taken by reference.

If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0 \leq r < 2^k$.

$$ f(x, k) = x - 2^k\left \lfloor \frac{x}{2^k} \right \rfloor. $$

For Naturals, rem_power_of_2 is equivalent to mod_power_of_2.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is pow.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RemPowerOf2;
use malachite_nz::natural::Natural;

// 1 * 2^8 + 4 = 260
assert_eq!((&Natural::from(260u32)).rem_power_of_2(8), 4);
// 100 * 2^4 + 11 = 1611
assert_eq!((&Natural::from(1611u32)).rem_power_of_2(4), 11);

Divides a Natural by $2^k$, replacing the first Natural by the remainder.

If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0 \leq r < 2^k$.

$$ x \gets x - 2^k\left \lfloor \frac{x}{2^k} \right \rfloor. $$

For Naturals, rem_power_of_2_assign is equivalent to mod_power_of_2_assign.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RemPowerOf2Assign;
use malachite_nz::natural::Natural;

// 1 * 2^8 + 4 = 260
let mut x = Natural::from(260u32);
x.rem_power_of_2_assign(8);
assert_eq!(x, 4);

// 100 * 2^4 + 11 = 1611
let mut x = Natural::from(1611u32);
x.rem_power_of_2_assign(4);
assert_eq!(x, 11);

Replaces a Natural with the floor of its $n$th root, and returns the remainder (the difference between the original Natural and the $n$th power of the floor).

$f(x, n) = x - \lfloor\sqrt[n]{x}\rfloor^n$,

$x \gets \lfloor\sqrt[n]{x}\rfloor$.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RootAssignRem;
use malachite_nz::natural::Natural;

let mut x = Natural::from(999u16);
assert_eq!(x.root_assign_rem(3), 270);
assert_eq!(x, 9);

let mut x = Natural::from(1000u16);
assert_eq!(x.root_assign_rem(3), 0);
assert_eq!(x, 10);

let mut x = Natural::from(1001u16);
assert_eq!(x.root_assign_rem(3), 1);
assert_eq!(x, 10);

let mut x = Natural::from(100000000000u64);
assert_eq!(x.root_assign_rem(5), 1534195232);
assert_eq!(x, 158);

Returns the floor of the $n$th root of a Natural, and the remainder (the difference between the Natural and the $n$th power of the floor). The Natural is taken by value.

$f(x, n) = (\lfloor\sqrt[n]{x}\rfloor, x - \lfloor\sqrt[n]{x}\rfloor^n)$.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RootRem;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(999u16).root_rem(3).to_debug_string(), "(9, 270)");
assert_eq!(Natural::from(1000u16).root_rem(3).to_debug_string(), "(10, 0)");
assert_eq!(Natural::from(1001u16).root_rem(3).to_debug_string(), "(10, 1)");
assert_eq!(
    Natural::from(100000000000u64).root_rem(5).to_debug_string(),
    "(158, 1534195232)"
);

Returns the floor of the $n$th root of a Natural, and the remainder (the difference between the Natural and the $n$th power of the floor). The Natural is taken by reference.

$f(x, n) = (\lfloor\sqrt[n]{x}\rfloor, x - \lfloor\sqrt[n]{x}\rfloor^n)$.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RootRem;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(999u16)).root_rem(3).to_debug_string(), "(9, 270)");
assert_eq!((&Natural::from(1000u16)).root_rem(3).to_debug_string(), "(10, 0)");
assert_eq!((&Natural::from(1001u16)).root_rem(3).to_debug_string(), "(10, 1)");
assert_eq!(
    (&Natural::from(100000000000u64)).root_rem(5).to_debug_string(),
    "(158, 1534195232)"
);

Rounds a Natural to a multiple of another Natural, according to a specified rounding mode. The first Natural is taken by value and the second by reference.

Let $q = \frac{x}{y}$:

$f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = y \lfloor q \rfloor.$

$f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = y \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = x$, but panics if $q \notin \N$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, RoundingMode::Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics
  • If rm is Exact, but self is not a multiple of other.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RoundToMultiple;
use malachite_base::num::basic::traits::Zero;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(5u32).round_to_multiple(&Natural::ZERO, RoundingMode::Down), 0);

assert_eq!(
    Natural::from(10u32).round_to_multiple(&Natural::from(4u32), RoundingMode::Down),
    8
);
assert_eq!(
    Natural::from(10u32).round_to_multiple(&Natural::from(4u32), RoundingMode::Up),
    12
);
assert_eq!(
    Natural::from(10u32).round_to_multiple(&Natural::from(5u32), RoundingMode::Exact),
    10
);
assert_eq!(
    Natural::from(10u32).round_to_multiple(&Natural::from(3u32), RoundingMode::Nearest),
    9
);
assert_eq!(
    Natural::from(20u32).round_to_multiple(&Natural::from(3u32), RoundingMode::Nearest),
    21
);
assert_eq!(
    Natural::from(10u32).round_to_multiple(&Natural::from(4u32), RoundingMode::Nearest),
    8
);
assert_eq!(
    Natural::from(14u32).round_to_multiple(&Natural::from(4u32), RoundingMode::Nearest),
    16
);

Rounds a Natural to a multiple of another Natural, according to a specified rounding mode. Both Naturals are taken by reference.

Let $q = \frac{x}{y}$:

$f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = y \lfloor q \rfloor.$

$f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = y \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = x$, but panics if $q \notin \N$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, RoundingMode::Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics
  • If rm is Exact, but self is not a multiple of other.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RoundToMultiple;
use malachite_base::num::basic::traits::Zero;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(5u32)).round_to_multiple(&Natural::ZERO, RoundingMode::Down), 0);

assert_eq!(
    (&Natural::from(10u32)).round_to_multiple(&Natural::from(4u32), RoundingMode::Down),
    8
);
assert_eq!(
    (&Natural::from(10u32)).round_to_multiple(&Natural::from(4u32), RoundingMode::Up),
    12
);
assert_eq!(
    (&Natural::from(10u32)).round_to_multiple(&Natural::from(5u32), RoundingMode::Exact),
    10
);
assert_eq!(
    (&Natural::from(10u32)).round_to_multiple(&Natural::from(3u32), RoundingMode::Nearest),
    9
);
assert_eq!(
    (&Natural::from(20u32)).round_to_multiple(&Natural::from(3u32), RoundingMode::Nearest),
    21
);
assert_eq!(
    (&Natural::from(10u32)).round_to_multiple(&Natural::from(4u32), RoundingMode::Nearest),
    8
);
assert_eq!(
    (&Natural::from(14u32)).round_to_multiple(&Natural::from(4u32), RoundingMode::Nearest),
    16
);

Rounds a Natural to a multiple of another Natural, according to a specified rounding mode. Both Naturals are taken by value.

Let $q = \frac{x}{y}$:

$f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = y \lfloor q \rfloor.$

$f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = y \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = x$, but panics if $q \notin \N$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, RoundingMode::Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics
  • If rm is Exact, but self is not a multiple of other.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RoundToMultiple;
use malachite_base::num::basic::traits::Zero;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(5u32).round_to_multiple(Natural::ZERO, RoundingMode::Down), 0);

assert_eq!(
    Natural::from(10u32).round_to_multiple(Natural::from(4u32), RoundingMode::Down),
    8
);
assert_eq!(
    Natural::from(10u32).round_to_multiple(Natural::from(4u32), RoundingMode::Up),
    12
);
assert_eq!(
    Natural::from(10u32).round_to_multiple(Natural::from(5u32), RoundingMode::Exact),
    10
);
assert_eq!(
    Natural::from(10u32).round_to_multiple(Natural::from(3u32), RoundingMode::Nearest),
    9
);
assert_eq!(
    Natural::from(20u32).round_to_multiple(Natural::from(3u32), RoundingMode::Nearest),
    21
);
assert_eq!(
    Natural::from(10u32).round_to_multiple(Natural::from(4u32), RoundingMode::Nearest),
    8
);
assert_eq!(
    Natural::from(14u32).round_to_multiple(Natural::from(4u32), RoundingMode::Nearest),
    16
);

Rounds a Natural to a multiple of another Natural, according to a specified rounding mode. The first Natural is taken by reference and the second by value.

Let $q = \frac{x}{y}$:

$f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = y \lfloor q \rfloor.$

$f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = y \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = x$, but panics if $q \notin \N$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, RoundingMode::Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics
  • If rm is Exact, but self is not a multiple of other.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RoundToMultiple;
use malachite_base::num::basic::traits::Zero;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(5u32)).round_to_multiple(Natural::ZERO, RoundingMode::Down), 0);

assert_eq!(
    (&Natural::from(10u32)).round_to_multiple(Natural::from(4u32), RoundingMode::Down),
    8
);
assert_eq!(
    (&Natural::from(10u32)).round_to_multiple(Natural::from(4u32), RoundingMode::Up),
    12
);
assert_eq!(
    (&Natural::from(10u32)).round_to_multiple(Natural::from(5u32), RoundingMode::Exact),
    10
);
assert_eq!(
    (&Natural::from(10u32)).round_to_multiple(Natural::from(3u32), RoundingMode::Nearest),
    9
);
assert_eq!(
    (&Natural::from(20u32)).round_to_multiple(Natural::from(3u32), RoundingMode::Nearest),
    21
);
assert_eq!(
    (&Natural::from(10u32)).round_to_multiple(Natural::from(4u32), RoundingMode::Nearest),
    8
);
assert_eq!(
    (&Natural::from(14u32)).round_to_multiple(Natural::from(4u32), RoundingMode::Nearest),
    16
);

Rounds a Natural to a multiple of another Natural in place, according to a specified rounding mode. The Natural on the right-hand side is taken by reference.

See the RoundToMultiple documentation for details.

The following two expressions are equivalent:

  • x.round_to_multiple_assign(other, RoundingMode::Exact);
  • assert!(x.divisible_by(other));

but the latter should be used as it is clearer and more efficient.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics
  • If rm is Exact, but self is not a multiple of other.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RoundToMultipleAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

let mut x = Natural::from(5u32);
x.round_to_multiple_assign(&Natural::ZERO, RoundingMode::Down);
assert_eq!(x, 0);

let mut x = Natural::from(10u32);
x.round_to_multiple_assign(&Natural::from(4u32), RoundingMode::Down);
assert_eq!(x, 8);

let mut x = Natural::from(10u32);
x.round_to_multiple_assign(&Natural::from(4u32), RoundingMode::Up);
assert_eq!(x, 12);

let mut x = Natural::from(10u32);
x.round_to_multiple_assign(&Natural::from(5u32), RoundingMode::Exact);
assert_eq!(x, 10);

let mut x = Natural::from(10u32);
x.round_to_multiple_assign(&Natural::from(3u32), RoundingMode::Nearest);
assert_eq!(x, 9);

let mut x = Natural::from(20u32);
x.round_to_multiple_assign(&Natural::from(3u32), RoundingMode::Nearest);
assert_eq!(x, 21);

let mut x = Natural::from(10u32);
x.round_to_multiple_assign(&Natural::from(4u32), RoundingMode::Nearest);
assert_eq!(x, 8);

let mut x = Natural::from(14u32);
x.round_to_multiple_assign(&Natural::from(4u32), RoundingMode::Nearest);
assert_eq!(x, 16);

Rounds a Natural to a multiple of another Natural in place, according to a specified rounding mode. The Natural on the right-hand side is taken by value.

See the RoundToMultiple documentation for details.

The following two expressions are equivalent:

  • x.round_to_multiple_assign(other, RoundingMode::Exact);
  • assert!(x.divisible_by(other));

but the latter should be used as it is clearer and more efficient.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics
  • If rm is Exact, but self is not a multiple of other.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RoundToMultipleAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

let mut x = Natural::from(5u32);
x.round_to_multiple_assign(Natural::ZERO, RoundingMode::Down);
assert_eq!(x, 0);

let mut x = Natural::from(10u32);
x.round_to_multiple_assign(Natural::from(4u32), RoundingMode::Down);
assert_eq!(x, 8);

let mut x = Natural::from(10u32);
x.round_to_multiple_assign(Natural::from(4u32), RoundingMode::Up);
assert_eq!(x, 12);

let mut x = Natural::from(10u32);
x.round_to_multiple_assign(Natural::from(5u32), RoundingMode::Exact);
assert_eq!(x, 10);

let mut x = Natural::from(10u32);
x.round_to_multiple_assign(Natural::from(3u32), RoundingMode::Nearest);
assert_eq!(x, 9);

let mut x = Natural::from(20u32);
x.round_to_multiple_assign(Natural::from(3u32), RoundingMode::Nearest);
assert_eq!(x, 21);

let mut x = Natural::from(10u32);
x.round_to_multiple_assign(Natural::from(4u32), RoundingMode::Nearest);
assert_eq!(x, 8);

let mut x = Natural::from(14u32);
x.round_to_multiple_assign(Natural::from(4u32), RoundingMode::Nearest);
assert_eq!(x, 16);

Rounds a Natural to a multiple of $2^k$ according to a specified rounding mode. The Natural is taken by value.

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, k, \mathrm{Floor}) = 2^k \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, k, \mathrm{Ceiling}) = 2^k \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} 2^k \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ 2^k \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ 2^k \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ 2^k \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, k, \mathrm{Exact}) = 2^k q$, but panics if $q \notin \Z$.

The following two expressions are equivalent:

  • x.round_to_multiple_of_power_of_2(pow, RoundingMode::Exact)
  • { assert!(x.divisible_by_power_of_2(pow)); x }

but the latter should be used as it is clearer and more efficient.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), pow / Limb::WIDTH).

Panics

Panics if rm is Exact, but self is not a multiple of the power of 2.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RoundToMultipleOfPowerOf2;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(10u32).round_to_multiple_of_power_of_2(2, RoundingMode::Floor),
    8
);
assert_eq!(
    Natural::from(10u32).round_to_multiple_of_power_of_2(2, RoundingMode::Ceiling),
    12
);
assert_eq!(
    Natural::from(10u32).round_to_multiple_of_power_of_2(2, RoundingMode::Down),
    8
);
assert_eq!(Natural::from(10u32).round_to_multiple_of_power_of_2(2, RoundingMode::Up), 12);
assert_eq!(
    Natural::from(10u32).round_to_multiple_of_power_of_2(2, RoundingMode::Nearest),
    8
);
assert_eq!(
    Natural::from(12u32).round_to_multiple_of_power_of_2(2, RoundingMode::Exact),
    12
);

Rounds a Natural to a multiple of $2^k$ according to a specified rounding mode. The Natural is taken by reference.

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, k, \mathrm{Floor}) = 2^k \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, k, \mathrm{Ceiling}) = 2^k \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} 2^k \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ 2^k \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ 2^k \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ 2^k \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, k, \mathrm{Exact}) = 2^k q$, but panics if $q \notin \Z$.

The following two expressions are equivalent:

  • x.round_to_multiple_of_power_of_2(pow, RoundingMode::Exact)
  • { assert!(x.divisible_by_power_of_2(pow)); x }

but the latter should be used as it is clearer and more efficient.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), pow / Limb::WIDTH).

Panics

Panics if rm is Exact, but self is not a multiple of the power of 2.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RoundToMultipleOfPowerOf2;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

assert_eq!(
    (&Natural::from(10u32)).round_to_multiple_of_power_of_2(2, RoundingMode::Floor),
    8
);
assert_eq!(
    (&Natural::from(10u32)).round_to_multiple_of_power_of_2(2, RoundingMode::Ceiling),
    12
);
assert_eq!(
    (&Natural::from(10u32)).round_to_multiple_of_power_of_2(2, RoundingMode::Down),
    8
);
assert_eq!(
    (&Natural::from(10u32)).round_to_multiple_of_power_of_2(2, RoundingMode::Up),
    12
);
assert_eq!(
    (&Natural::from(10u32)).round_to_multiple_of_power_of_2(2, RoundingMode::Nearest),
    8
);
assert_eq!(
    (&Natural::from(12u32)).round_to_multiple_of_power_of_2(2, RoundingMode::Exact),
    12
);

Rounds a Natural to a multiple of $2^k$ in place, according to a specified rounding mode.

See the RoundToMultipleOfPowerOf2 documentation for details.

The following two expressions are equivalent:

  • x.round_to_multiple_of_power_of_2_assign(pow, RoundingMode::Exact);
  • assert!(x.divisible_by_power_of_2(pow));

but the latter should be used as it is clearer and more efficient.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), pow / Limb::WIDTH).

Panics

Panics if rm is Exact, but self is not a multiple of the power of 2.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::RoundToMultipleOfPowerOf2Assign;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

let mut n = Natural::from(10u32);
n.round_to_multiple_of_power_of_2_assign(2, RoundingMode::Floor);
assert_eq!(n, 8);

let mut n = Natural::from(10u32);
n.round_to_multiple_of_power_of_2_assign(2, RoundingMode::Ceiling);
assert_eq!(n, 12);

let mut n = Natural::from(10u32);
n.round_to_multiple_of_power_of_2_assign(2, RoundingMode::Down);
assert_eq!(n, 8);

let mut n = Natural::from(10u32);
n.round_to_multiple_of_power_of_2_assign(2, RoundingMode::Up);
assert_eq!(n, 12);

let mut n = Natural::from(10u32);
n.round_to_multiple_of_power_of_2_assign(2, RoundingMode::Nearest);
assert_eq!(n, 8);

let mut n = Natural::from(12u32);
n.round_to_multiple_of_power_of_2_assign(2, RoundingMode::Exact);
assert_eq!(n, 12);

Converts a Natural to a primitive float according to a specified RoundingMode.

  • If the rounding mode is Floor or Down, the largest float less than or equal to the Natural is returned. If the Natural is greater than the maximum finite float, then the maximum finite float is returned.
  • If the rounding mode is Ceiling or Up, the smallest float greater than or equal to the Natural is returned. If the Natural is greater than the maximum finite float, then positive infinity is returned.
  • If the rounding mode is Nearest, then the nearest float is returned. If the Natural is exactly between two floats, the float with the zero least-significant bit in its representation is selected. If the Natural is greater than the maximum finite float, then the maximum finite float is returned.
Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is value.significant_bits().

Panics

Panics if the rounding mode is Exact and value cannot be represented exactly.

Examples

See here.

Converts a Natural to a primitive float according to a specified RoundingMode.

  • If the rounding mode is Floor or Down, the largest float less than or equal to the Natural is returned. If the Natural is greater than the maximum finite float, then the maximum finite float is returned.
  • If the rounding mode is Ceiling or Up, the smallest float greater than or equal to the Natural is returned. If the Natural is greater than the maximum finite float, then positive infinity is returned.
  • If the rounding mode is Nearest, then the nearest float is returned. If the Natural is exactly between two floats, the float with the zero least-significant bit in its representation is selected. If the Natural is greater than the maximum finite float, then the maximum finite float is returned.
Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is value.significant_bits().

Panics

Panics if the rounding mode is Exact and value cannot be represented exactly.

Examples

See here.

Converts a floating-point value to a Natural, using the specified rounding mode.

The floating-point value cannot be NaN or infinite, and it cannot round to a negative integer.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is value.sci_exponent().

Panics

Panics if value is NaN or infinite, if it would round to a negative integer, or if the rounding mode is Exact and value is not an integer.

Examples

See here.

Converts a floating-point value to a Natural, using the specified rounding mode.

The floating-point value cannot be NaN or infinite, and it cannot round to a negative integer.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is value.sci_exponent().

Panics

Panics if value is NaN or infinite, if it would round to a negative integer, or if the rounding mode is Exact and value is not an integer.

Examples

See here.

Converts an Integer to a Natural, taking the Natural by reference. If the Integer is negative, 0 is returned.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::conversion::traits::SaturatingFrom;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert_eq!(Natural::saturating_from(&Integer::from(123)), 123);
assert_eq!(Natural::saturating_from(&Integer::from(-123)), 0);
assert_eq!(Natural::saturating_from(&Integer::from(10u32).pow(12)), 1000000000000u64);
assert_eq!(Natural::saturating_from(&-Integer::from(10u32).pow(12)), 0);

Converts a Natural to a usize. If the Natural is too large to fit in a usize, the largest representable value is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb. If the Natural is too large to fit in the output type, the largest representable value is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s larger than a Limb. If the Natural is too large to fit in the output type, the largest representable value is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to an isize or a value of a signed primitive integer type that’s larger than a Limb, If the Natural is too large to fit in the output type, the largest representable value is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb. If the Natural is too large to fit in the output type, the largest representable value is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb. If the Natural is too large to fit in the output type, the largest representable value is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb. If the Natural is too large to fit in the output type, the largest representable value is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb. If the Natural is too large to fit in the output type, the largest representable value is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb. If the Natural is too large to fit in the output type, the largest representable value is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a Limb.

If the Natural is too large to fit in a Limb, the maximum representable value is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a SignedLimb (the signed type whose width is the same as a limb’s).

If the Natural is too large to fit in a SignedLimb, the largest representable value is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to an isize or a value of a signed primitive integer type that’s larger than a Limb, If the Natural is too large to fit in the output type, the largest representable value is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts an Integer to a Natural, taking the Natural by value. If the Integer is negative, 0 is returned.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::conversion::traits::SaturatingFrom;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

assert_eq!(Natural::saturating_from(Integer::from(123)), 123);
assert_eq!(Natural::saturating_from(Integer::from(-123)), 0);
assert_eq!(Natural::saturating_from(Integer::from(10u32).pow(12)), 1000000000000u64);
assert_eq!(Natural::saturating_from(-Integer::from(10u32).pow(12)), 0);

Converts a signed primitive primitive integer to a Natural. If the integer is negative, 0 is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a signed primitive primitive integer to a Natural. If the integer is negative, 0 is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a signed primitive primitive integer to a Natural. If the integer is negative, 0 is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a signed primitive primitive integer to a Natural. If the integer is negative, 0 is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a signed primitive primitive integer to a Natural. If the integer is negative, 0 is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a signed primitive primitive integer to a Natural. If the integer is negative, 0 is returned.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Subtracts a Natural by another Natural, taking the first by value and the second by reference and returning 0 if the result is negative.

$$ f(x, y) = \max(x - y, 0). $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SaturatingSub};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.saturating_sub(&Natural::from(123u32)), 0);
assert_eq!(Natural::from(123u32).saturating_sub(&Natural::ZERO), 123);
assert_eq!(Natural::from(456u32).saturating_sub(&Natural::from(123u32)), 333);
assert_eq!(
    (Natural::from(10u32).pow(12) * Natural::from(3u32))
            .saturating_sub(&Natural::from(10u32).pow(12)),
    2000000000000u64
);

Subtracts a Natural by another Natural, taking both by reference and returning 0 if the result is negative.

$$ f(x, y) = \max(x - y, 0). $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SaturatingSub};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).saturating_sub(&Natural::from(123u32)), 0);
assert_eq!((&Natural::from(123u32)).saturating_sub(&Natural::ZERO), 123);
assert_eq!((&Natural::from(456u32)).saturating_sub(&Natural::from(123u32)), 333);
assert_eq!(
    (&(Natural::from(10u32).pow(12) * Natural::from(3u32)))
            .saturating_sub(&Natural::from(10u32).pow(12)),
    2000000000000u64
);

Subtracts a Natural by another Natural, taking both by value and returning 0 if the result is negative.

$$ f(x, y) = \max(x - y, 0). $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SaturatingSub};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.saturating_sub(Natural::from(123u32)), 0);
assert_eq!(Natural::from(123u32).saturating_sub(Natural::ZERO), 123);
assert_eq!(Natural::from(456u32).saturating_sub(Natural::from(123u32)), 333);
assert_eq!(
    (Natural::from(10u32).pow(12) * Natural::from(3u32))
            .saturating_sub(Natural::from(10u32).pow(12)),
    2000000000000u64
);

Subtracts a Natural by another Natural, taking the first by reference and the second by value and returning 0 if the result is negative.

$$ f(x, y) = \max(x - y, 0). $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SaturatingSub};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).saturating_sub(Natural::from(123u32)), 0);
assert_eq!((&Natural::from(123u32)).saturating_sub(Natural::ZERO), 123);
assert_eq!((&Natural::from(456u32)).saturating_sub(Natural::from(123u32)), 333);
assert_eq!(
    (&(Natural::from(10u32).pow(12) * Natural::from(3u32)))
        .saturating_sub(Natural::from(10u32).pow(12)),
    2000000000000u64
);

Subtracts a Natural by another Natural in place, taking the Natural on the right-hand side by reference and setting the left-hand side to 0 if the result is negative.

$$ x \gets \max(x - y, 0). $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::SaturatingSubAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::from(123u32);
x.saturating_sub_assign(&Natural::from(123u32));
assert_eq!(x, 0);

let mut x = Natural::from(123u32);
x.saturating_sub_assign(&Natural::ZERO);
assert_eq!(x, 123);

let mut x = Natural::from(456u32);
x.saturating_sub_assign(&Natural::from(123u32));
assert_eq!(x, 333);

let mut x = Natural::from(123u32);
x.saturating_sub_assign(&Natural::from(456u32));
assert_eq!(x, 0);

Subtracts a Natural by another Natural in place, taking the Natural on the right-hand side by value and setting the left-hand side to 0 if the result is negative.

$$ x \gets \max(x - y, 0). $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::SaturatingSubAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::from(123u32);
x.saturating_sub_assign(Natural::from(123u32));
assert_eq!(x, 0);

let mut x = Natural::from(123u32);
x.saturating_sub_assign(Natural::ZERO);
assert_eq!(x, 123);

let mut x = Natural::from(456u32);
x.saturating_sub_assign(Natural::from(123u32));
assert_eq!(x, 333);

let mut x = Natural::from(123u32);
x.saturating_sub_assign(Natural::from(456u32));
assert_eq!(x, 0);

Subtracts a Natural by the product of two other Naturals, taking the first by value and the second and third by reference and returning 0 if the result is negative.

$$ f(x, y, z) = \max(x - yz, 0). $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SaturatingSubMul};
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(20u32).saturating_sub_mul(&Natural::from(3u32), &Natural::from(4u32)),
    8
);
assert_eq!(
    Natural::from(10u32).saturating_sub_mul(&Natural::from(3u32), &Natural::from(4u32)),
    0
);
assert_eq!(
    Natural::from(10u32).pow(12)
            .saturating_sub_mul(&Natural::from(0x10000u32), &Natural::from(0x10000u32)),
    995705032704u64
);

Subtracts a Natural by the product of two other Naturals, taking the first and third by value and the second by reference and returning 0 if the result is negative.

$$ f(x, y, z) = \max(x - yz, 0). $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SaturatingSubMul};
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(20u32).saturating_sub_mul(&Natural::from(3u32), Natural::from(4u32)),
    8
);
assert_eq!(
    Natural::from(10u32).saturating_sub_mul(&Natural::from(3u32), Natural::from(4u32)),
    0
);
assert_eq!(
    Natural::from(10u32).pow(12)
            .saturating_sub_mul(&Natural::from(0x10000u32), Natural::from(0x10000u32)),
    995705032704u64
);

Subtracts a Natural by the product of two other Naturals, taking all three by reference and returning 0 if the result is negative.

$$ f(x, y, z) = \max(x - yz, 0). $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SaturatingSubMul};
use malachite_nz::natural::Natural;

assert_eq!(
    (&Natural::from(20u32)).saturating_sub_mul(&Natural::from(3u32), &Natural::from(4u32)),
    8
);
assert_eq!(
    (&Natural::from(10u32)).saturating_sub_mul(&Natural::from(3u32), &Natural::from(4u32)),
    0
);
assert_eq!(
    (&Natural::from(10u32).pow(12))
            .saturating_sub_mul(&Natural::from(0x10000u32), &Natural::from(0x10000u32)),
    995705032704u64
);

Subtracts a Natural by the product of two other Naturals, taking the first two by value and the third by reference and returning 0 if the result is negative.

$$ f(x, y, z) = \max(x - yz, 0). $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SaturatingSubMul};
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(20u32).saturating_sub_mul(Natural::from(3u32), &Natural::from(4u32)),
    8
);
assert_eq!(
    Natural::from(10u32).saturating_sub_mul(Natural::from(3u32), &Natural::from(4u32)),
    0
);
assert_eq!(
    Natural::from(10u32).pow(12)
            .saturating_sub_mul(Natural::from(0x10000u32), &Natural::from(0x10000u32)),
    995705032704u64
);

Subtracts a Natural by the product of two other Naturals, taking all three by value and returning 0 if the result is negative.

$$ f(x, y, z) = \max(x - yz, 0). $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SaturatingSubMul};
use malachite_nz::natural::Natural;

assert_eq!(
    Natural::from(20u32).saturating_sub_mul(Natural::from(3u32), Natural::from(4u32)),
    8
);
assert_eq!(
    Natural::from(10u32).saturating_sub_mul(Natural::from(3u32), Natural::from(4u32)),
    0
);
assert_eq!(
    Natural::from(10u32).pow(12)
            .saturating_sub_mul(Natural::from(0x10000u32), Natural::from(0x10000u32)),
    995705032704u64
);

Subtracts a Natural by the product of two other Naturals in place, taking both Naturals on the right-hand side by reference and replacing the left-hand side Natural with 0 if the result is negative.

$$ x \gets \max(x - yz, 0). $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SaturatingSubMulAssign};
use malachite_nz::natural::Natural;

let mut x = Natural::from(20u32);
x.saturating_sub_mul_assign(&Natural::from(3u32), &Natural::from(4u32));
assert_eq!(x, 8);

let mut x = Natural::from(10u32);
x.saturating_sub_mul_assign(&Natural::from(3u32), &Natural::from(4u32));
assert_eq!(x, 0);

let mut x = Natural::from(10u32).pow(12);
x.saturating_sub_mul_assign(&Natural::from(0x10000u32), &Natural::from(0x10000u32));
assert_eq!(x, 995705032704u64);

Subtracts a Natural by the product of two other Naturals in place, taking the first Natural on the right-hand side by reference and the second by value and replacing the left-hand side Natural with 0 if the result is negative.

$$ x \gets \max(x - yz, 0). $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SaturatingSubMulAssign};
use malachite_nz::natural::Natural;

let mut x = Natural::from(20u32);
x.saturating_sub_mul_assign(&Natural::from(3u32), Natural::from(4u32));
assert_eq!(x, 8);

let mut x = Natural::from(10u32);
x.saturating_sub_mul_assign(&Natural::from(3u32), Natural::from(4u32));
assert_eq!(x, 0);

let mut x = Natural::from(10u32).pow(12);
x.saturating_sub_mul_assign(&Natural::from(0x10000u32), Natural::from(0x10000u32));
assert_eq!(x, 995705032704u64);

Subtracts a Natural by the product of two other Naturals in place, taking the first Natural on the right-hand side by value and the second by reference and replacing the left-hand side Natural with 0 if the result is negative.

$$ x \gets \max(x - yz, 0). $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SaturatingSubMulAssign};
use malachite_nz::natural::Natural;

let mut x = Natural::from(20u32);
x.saturating_sub_mul_assign(Natural::from(3u32), &Natural::from(4u32));
assert_eq!(x, 8);

let mut x = Natural::from(10u32);
x.saturating_sub_mul_assign(Natural::from(3u32), &Natural::from(4u32));
assert_eq!(x, 0);

let mut x = Natural::from(10u32).pow(12);
x.saturating_sub_mul_assign(Natural::from(0x10000u32), &Natural::from(0x10000u32));
assert_eq!(x, 995705032704u64);

Subtracts a Natural by the product of two other Naturals in place, taking both Naturals on the right-hand side by value and replacing the left-hand side Natural with 0 if the result is negative.

$$ x \gets \max(x - yz, 0). $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SaturatingSubMulAssign};
use malachite_nz::natural::Natural;

let mut x = Natural::from(20u32);
x.saturating_sub_mul_assign(Natural::from(3u32), Natural::from(4u32));
assert_eq!(x, 8);

let mut x = Natural::from(10u32);
x.saturating_sub_mul_assign(Natural::from(3u32), Natural::from(4u32));
assert_eq!(x, 0);

let mut x = Natural::from(10u32).pow(12);
x.saturating_sub_mul_assign(Natural::from(0x10000u32), Natural::from(0x10000u32));
assert_eq!(x, 995705032704u64);

Returns a Natural’s scientific mantissa and exponent.

When $x$ is positive, we can write $x = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1 \leq m_s < 2$. We represent the rational mantissa as a float. The conversion might not be exact, so we round to the nearest float using the Nearest rounding mode. To use other rounding modes, use sci_mantissa_and_exponent_with_rounding. $$ f(x) \approx (\frac{x}{2^{\lfloor \log_2 x \rfloor}}, \lfloor \log_2 x \rfloor). $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples

See here.

Constructs a Natural from its scientific mantissa and exponent.

When $x$ is positive, we can write $x = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1 \leq m_s < 2$. Here, the rational mantissa is provided as a float. If the mantissa is outside the range $[1, 2)$, None is returned.

Some combinations of mantissas and exponents do not specify a Natural, in which case the resulting value is rounded to a Natural using the Nearest rounding mode. To specify other rounding modes, use from_sci_mantissa_and_exponent_with_rounding.

$$ f(x) \approx 2^{e_s}m_s. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is sci_exponent.

Examples

See here.

Extracts the scientific mantissa from a number.

Extracts the scientific exponent from a number.

Returns a Natural’s scientific mantissa and exponent.

When $x$ is positive, we can write $x = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1 \leq m_s < 2$. We represent the rational mantissa as a float. The conversion might not be exact, so we round to the nearest float using the Nearest rounding mode. To use other rounding modes, use sci_mantissa_and_exponent_with_rounding. $$ f(x) \approx (\frac{x}{2^{\lfloor \log_2 x \rfloor}}, \lfloor \log_2 x \rfloor). $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples

See here.

Constructs a Natural from its scientific mantissa and exponent.

When $x$ is positive, we can write $x = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1 \leq m_s < 2$. Here, the rational mantissa is provided as a float. If the mantissa is outside the range $[1, 2)$, None is returned.

Some combinations of mantissas and exponents do not specify a Natural, in which case the resulting value is rounded to a Natural using the Nearest rounding mode. To specify other rounding modes, use from_sci_mantissa_and_exponent_with_rounding.

$$ f(x) \approx 2^{e_s}m_s. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is sci_exponent.

Examples

See here.

Extracts the scientific mantissa from a number.

Extracts the scientific exponent from a number.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), taking it by value.

$$ f(x, k) = \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), taking it by reference.

$$ f(x, k) = \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), taking it by value.

$$ f(x, k) = \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), taking it by reference.

$$ f(x, k) = \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), taking it by value.

$$ f(x, k) = \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), taking it by reference.

$$ f(x, k) = \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), taking it by value.

$$ f(x, k) = \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), taking it by reference.

$$ f(x, k) = \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), taking it by value.

$$ f(x, k) = \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), taking it by reference.

$$ f(x, k) = \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), taking it by value.

$$ f(x, k) = \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), taking it by reference.

$$ f(x, k) = \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2), taking it by value.

$f(x, k) = x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2), taking it by reference.

$f(x, k) = x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2), taking it by value.

$f(x, k) = x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2), taking it by reference.

$f(x, k) = x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2), taking it by value.

$f(x, k) = x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2), taking it by reference.

$f(x, k) = x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2), taking it by value.

$f(x, k) = x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2), taking it by reference.

$f(x, k) = x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2), taking it by value.

$f(x, k) = x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2), taking it by reference.

$f(x, k) = x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2), taking it by value.

$f(x, k) = x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2), taking it by reference.

$f(x, k) = x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.

Examples

See here.

The resulting type after applying the << operator.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), in place.

$$ x \gets \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

See here.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), in place.

$$ x \gets \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

See here.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), in place.

$$ x \gets \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

See here.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), in place.

$$ x \gets \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

See here.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), in place.

$$ x \gets \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

See here.

Left-shifts a Natural (multiplies it by a power of 2 or divides it by a power of 2 and takes the floor), in place.

$$ x \gets \lfloor x2^k \rfloor. $$

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

See here.

Left-shifts a Natural (multiplies it by a power of 2), in place.

$x \gets x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.s

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2), in place.

$x \gets x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.s

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2), in place.

$x \gets x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.s

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2), in place.

$x \gets x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.s

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2), in place.

$x \gets x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.s

Examples

See here.

Left-shifts a Natural (multiplies it by a power of 2), in place.

$x \gets x2^k$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is bits.s

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

Let $q = x2^k$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

Let $q = x2^k$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

Let $q = x2^k$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

Let $q = x2^k$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

Let $q = x2^k$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

Let $q = x2^k$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

Let $q = x2^k$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

Let $q = x2^k$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

Let $q = x2^k$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

Let $q = x2^k$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

Let $q = x2^k$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

Let $q = x2^k$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2) and rounds according to the specified rounding mode, in place.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

See the ShlRound documentation for details.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2) and rounds according to the specified rounding mode, in place.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

See the ShlRound documentation for details.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2) and rounds according to the specified rounding mode, in place.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

See the ShlRound documentation for details.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2) and rounds according to the specified rounding mode, in place.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

See the ShlRound documentation for details.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2) and rounds according to the specified rounding mode, in place.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

See the ShlRound documentation for details.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Left-shifts a Natural (multiplies or divides it by a power of 2) and rounds according to the specified rounding mode, in place.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use bits > 0 || self.divisible_by_power_of_2(bits). Rounding might only be necessary if bits is negative.

See the ShlRound documentation for details.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is negative and rm is RoundingMode::Exact but self is not divisible by $2^{-k}$.

Examples

See here.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), taking it by value.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), taking it by reference.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), taking it by value.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), taking it by reference.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), taking it by value.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), taking it by reference.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), taking it by value.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), taking it by reference.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), taking it by value.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), taking it by reference.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), taking it by value.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), taking it by reference.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), taking it by value.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), taking it by reference.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), taking it by value.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), taking it by reference.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), taking it by value.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), taking it by reference.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), taking it by value.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), taking it by reference.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), taking it by value.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), taking it by reference.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), taking it by value.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), taking it by reference.

$$ f(x, k) = \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

The resulting type after applying the >> operator.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), in place.

$$ x \gets \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), in place.

$$ x \gets \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), in place.

$$ x \gets \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), in place.

$$ x \gets \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), in place.

$$ x \gets \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

Right-shifts a Natural (divides it by a power of 2 and takes the floor or multiplies it by a power of 2), in place.

$$ x \gets \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), in place.

$$ x \gets \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), in place.

$$ x \gets \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), in place.

$$ x \gets \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), in place.

$$ x \gets \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), in place.

$$ x \gets \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

Right-shifts a Natural (divides it by a power of 2 and takes the floor), in place.

$$ x \gets \left \lfloor \frac{x}{2^k} \right \rfloor. $$

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is max(1, self.significant_bits() - bits).

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is self.significant_bits().

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n)$

$M(m) = O(m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(1, self.significant_bits() - bits).

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is self.significant_bits().

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n)$

$M(m) = O(m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(1, self.significant_bits() - bits).

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is self.significant_bits().

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n)$

$M(m) = O(m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(1, self.significant_bits() - bits).

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is self.significant_bits().

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n)$

$M(m) = O(m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(1, self.significant_bits() - bits).

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is self.significant_bits().

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n)$

$M(m) = O(m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(1, self.significant_bits() - bits).

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2), taking it by value, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory and $n$ is self.significant_bits().

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2), taking it by reference, and rounds according to the specified rounding mode.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

Let $q = \frac{x}{2^k}$:

$f(x, k, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$

$f(x, k, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$

$$ f(x, k, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd}. \end{cases} $$

$f(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Worst-case complexity

$T(n) = O(n)$

$M(m) = O(m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(1, self.significant_bits() - bits).

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2) and rounds according to the specified rounding mode, in place.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

See the ShrRound documentation for details.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2) and rounds according to the specified rounding mode, in place.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

See the ShrRound documentation for details.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2) and rounds according to the specified rounding mode, in place.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

See the ShrRound documentation for details.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2) and rounds according to the specified rounding mode, in place.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

See the ShrRound documentation for details.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2) and rounds according to the specified rounding mode, in place.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

See the ShrRound documentation for details.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides or multiplies it by a power of 2) and rounds according to the specified rounding mode, in place.

Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

See the ShrRound documentation for details.

Worst-case complexity

$T(n, m) = O(n + m)$

$M(n, m) = O(n + m)$

where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is max(-bits, 0).

Panics

Let $k$ be bits. Panics if $k$ is positive and rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2) and rounds according to the specified rounding mode, in place. Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>=. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

See the ShrRound documentation for details.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2) and rounds according to the specified rounding mode, in place. Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>=. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

See the ShrRound documentation for details.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2) and rounds according to the specified rounding mode, in place. Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>=. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

See the ShrRound documentation for details.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2) and rounds according to the specified rounding mode, in place. Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>=. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

See the ShrRound documentation for details.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2) and rounds according to the specified rounding mode, in place. Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>=. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

See the ShrRound documentation for details.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Shifts a Natural right (divides it by a power of 2) and rounds according to the specified rounding mode, in place. Passing RoundingMode::Floor or RoundingMode::Down is equivalent to using >>=. To test whether RoundingMode::Exact can be passed, use self.divisible_by_power_of_2(bits).

See the ShrRound documentation for details.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Let $k$ be bits. Panics if rm is RoundingMode::Exact but self is not divisible by $2^k$.

Examples

See here.

Compares a Natural to zero.

Returns Greater or Equal depending on whether the Natural is positive or zero, respectively.

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Sign;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;
use std::cmp::Ordering;

assert_eq!(Natural::ZERO.sign(), Ordering::Equal);
assert_eq!(Natural::from(123u32).sign(), Ordering::Greater);

Returns the number of significant bits of a Natural.

$$ f(n) = \begin{cases} 0 & \text{if} \quad n = 0, \\ \lfloor \log_2 n \rfloor + 1 & \text{if} \quad n > 0. \end{cases} $$

Worst-case complexity

Constant time and additional memory.

Examples
extern crate malachite_base;

use malachite_base::num::logic::traits::SignificantBits;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.significant_bits(), 0);
assert_eq!(Natural::from(100u32).significant_bits(), 7);

Replaces a Natural with the floor of its square root and returns the remainder (the difference between the original Natural and the square of the floor).

$f(x) = x - \lfloor\sqrt{x}\rfloor^2$,

$x \gets \lfloor\sqrt{x}\rfloor$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::SqrtAssignRem;
use malachite_nz::natural::Natural;

let mut x = Natural::from(99u8);
assert_eq!(x.sqrt_assign_rem(), 18);
assert_eq!(x, 9);

let mut x = Natural::from(100u8);
assert_eq!(x.sqrt_assign_rem(), 0);
assert_eq!(x, 10);

let mut x = Natural::from(101u8);
assert_eq!(x.sqrt_assign_rem(), 1);
assert_eq!(x, 10);

let mut x = Natural::from(1000000000u32);
assert_eq!(x.sqrt_assign_rem(), 49116);
assert_eq!(x, 31622);

let mut x = Natural::from(10000000000u64);
assert_eq!(x.sqrt_assign_rem(), 0);
assert_eq!(x, 100000);

Returns the floor of the square root of a Natural and the remainder (the difference between the Natural and the square of the floor). The Natural is taken by value.

$f(x) = (\lfloor\sqrt{x}\rfloor, x - \lfloor\sqrt{x}\rfloor^2)$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::SqrtRem;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(99u8).sqrt_rem().to_debug_string(), "(9, 18)");
assert_eq!(Natural::from(100u8).sqrt_rem().to_debug_string(), "(10, 0)");
assert_eq!(Natural::from(101u8).sqrt_rem().to_debug_string(), "(10, 1)");
assert_eq!(Natural::from(1000000000u32).sqrt_rem().to_debug_string(), "(31622, 49116)");
assert_eq!(Natural::from(10000000000u64).sqrt_rem().to_debug_string(), "(100000, 0)");

Returns the floor of the square root of a Natural and the remainder (the difference between the Natural and the square of the floor). The Natural is taken by reference.

$f(x) = (\lfloor\sqrt{x}\rfloor, x - \lfloor\sqrt{x}\rfloor^2)$.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::SqrtRem;
use malachite_base::strings::ToDebugString;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(99u8)).sqrt_rem().to_debug_string(), "(9, 18)");
assert_eq!((&Natural::from(100u8)).sqrt_rem().to_debug_string(), "(10, 0)");
assert_eq!((&Natural::from(101u8)).sqrt_rem().to_debug_string(), "(10, 1)");
assert_eq!((&Natural::from(1000000000u32)).sqrt_rem().to_debug_string(), "(31622, 49116)");
assert_eq!((&Natural::from(10000000000u64)).sqrt_rem().to_debug_string(), "(100000, 0)");

Squares a Natural, taking it by value.

$$ f(x) = x^2. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Square;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::ZERO.square(), 0);
assert_eq!(Natural::from(123u32).square(), 15129);

Squares a Natural, taking it by reference.

$$ f(x) = x^2. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Square;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!((&Natural::ZERO).square(), 0);
assert_eq!((&Natural::from(123u32)).square(), 15129);

Squares a Natural in place.

$$ x \gets x^2. $$

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::SquareAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

let mut x = Natural::ZERO;
x.square_assign();
assert_eq!(x, 0);

let mut x = Natural::from(123u32);
x.square_assign();
assert_eq!(x, 15129);

Subtracts a Natural by another Natural, taking the first by value and the second by reference.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(123u32) - &Natural::ZERO, 123);
assert_eq!(Natural::from(456u32) - &Natural::from(123u32), 333);
assert_eq!(
    Natural::from(10u32).pow(12) * Natural::from(3u32) - &Natural::from(10u32).pow(12),
    2000000000000u64
);

The resulting type after applying the - operator.

Subtracts a Natural by another Natural, taking both by reference.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(&Natural::from(123u32) - &Natural::ZERO, 123);
assert_eq!(&Natural::from(456u32) - &Natural::from(123u32), 333);
assert_eq!(
    &(Natural::from(10u32).pow(12) * Natural::from(3u32)) - &Natural::from(10u32).pow(12),
    2000000000000u64
);

The resulting type after applying the - operator.

Subtracts a Natural by another Natural, taking both by value.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(123u32) - Natural::ZERO, 123);
assert_eq!(Natural::from(456u32) - Natural::from(123u32), 333);
assert_eq!(
    Natural::from(10u32).pow(12) * Natural::from(3u32) - Natural::from(10u32).pow(12),
    2000000000000u64
);

The resulting type after applying the - operator.

Subtracts a Natural by another Natural, taking the first by reference and the second by value.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::natural::Natural;

assert_eq!(&Natural::from(123u32) - Natural::ZERO, 123);
assert_eq!(&Natural::from(456u32) - Natural::from(123u32), 333);
assert_eq!(
    &(Natural::from(10u32).pow(12) * Natural::from(3u32)) - Natural::from(10u32).pow(12),
    2000000000000u64
);

The resulting type after applying the - operator.

Subtracts a Natural by another Natural in place, taking the Natural on the right-hand side by reference.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_nz::natural::Natural;

let mut x = Natural::from(10u32).pow(12) * Natural::from(10u32);
x -= &Natural::from(10u32).pow(12);
x -= &(Natural::from(10u32).pow(12) * Natural::from(2u32));
x -= &(Natural::from(10u32).pow(12) * Natural::from(3u32));
x -= &(Natural::from(10u32).pow(12) * Natural::from(4u32));
assert_eq!(x, 0);

Subtracts a Natural by another Natural in place, taking the Natural on the right-hand side by value.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if other is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::Pow;
use malachite_nz::natural::Natural;

let mut x = Natural::from(10u32).pow(12) * Natural::from(10u32);
x -= Natural::from(10u32).pow(12);
x -= Natural::from(10u32).pow(12) * Natural::from(2u32);
x -= Natural::from(10u32).pow(12) * Natural::from(3u32);
x -= Natural::from(10u32).pow(12) * Natural::from(4u32);
assert_eq!(x, 0);

Subtracts a Natural by the product of two other Naturals, taking the first by value and the second and third by reference.

$$ f(x, y, z) = x - yz. $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is x.significant_bits().

Panics

Panics if y * z is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SubMul};
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(20u32).sub_mul(&Natural::from(3u32), &Natural::from(4u32)), 8);
assert_eq!(
    Natural::from(10u32).pow(12)
            .sub_mul(&Natural::from(0x10000u32), &Natural::from(0x10000u32)),
    995705032704u64
);

Subtracts a Natural by the product of two other Naturals, taking all three by reference.

$$ f(x, y, z) = x - yz. $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n, m) = O(m + n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is x.significant_bits().

Panics

Panics if y * z is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SubMul};
use malachite_nz::natural::Natural;

assert_eq!((&Natural::from(20u32)).sub_mul(&Natural::from(3u32), &Natural::from(4u32)), 8);
assert_eq!(
    (&Natural::from(10u32).pow(12))
            .sub_mul(&Natural::from(0x10000u32), &Natural::from(0x10000u32)),
    995705032704u64
);

Subtracts a Natural by the product of two other Naturals, taking the first and third by value and the second by reference.

$$ f(x, y, z) = x - yz. $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is x.significant_bits().

Panics

Panics if y * z is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SubMul};
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(20u32).sub_mul(&Natural::from(3u32), Natural::from(4u32)), 8);
assert_eq!(
    Natural::from(10u32).pow(12)
            .sub_mul(&Natural::from(0x10000u32), Natural::from(0x10000u32)),
    995705032704u64
);

Subtracts a Natural by the product of two other Naturals, taking the first two by value and the third by reference.

$$ f(x, y, z) = x - yz. $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is x.significant_bits().

Panics

Panics if y * z is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SubMul};
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(20u32).sub_mul(Natural::from(3u32), &Natural::from(4u32)), 8);
assert_eq!(
    Natural::from(10u32).pow(12)
            .sub_mul(Natural::from(0x10000u32), &Natural::from(0x10000u32)),
    995705032704u64
);

Subtracts a Natural by the product of two other Naturals, taking all three by value.

$$ f(x, y, z) = x - yz. $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is x.significant_bits().

Panics

Panics if y * z is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SubMul};
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(20u32).sub_mul(Natural::from(3u32), Natural::from(4u32)), 8);
assert_eq!(
    Natural::from(10u32).pow(12)
            .sub_mul(Natural::from(0x10000u32), Natural::from(0x10000u32)),
    995705032704u64
);

Subtracts a Natural by the product of two other Naturals in place, taking both Naturals on the right-hand side by reference.

$$ x \gets x - yz. $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is x.significant_bits().

Panics

Panics if y * z is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SubMulAssign};
use malachite_nz::natural::Natural;

let mut x = Natural::from(20u32);
x.sub_mul_assign(&Natural::from(3u32), &Natural::from(4u32));
assert_eq!(x, 8);

let mut x = Natural::from(10u32).pow(12);
x.sub_mul_assign(&Natural::from(0x10000u32), &Natural::from(0x10000u32));
assert_eq!(x, 995705032704u64);

Subtracts a Natural by the product of two other Naturals in place, taking the first Natural on the right-hand side by reference and the second by value.

$$ x \gets x - yz. $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is x.significant_bits().

Panics

Panics if y * z is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SubMulAssign};
use malachite_nz::natural::Natural;

let mut x = Natural::from(20u32);
x.sub_mul_assign(&Natural::from(3u32), Natural::from(4u32));
assert_eq!(x, 8);

let mut x = Natural::from(10u32).pow(12);
x.sub_mul_assign(&Natural::from(0x10000u32), Natural::from(0x10000u32));
assert_eq!(x, 995705032704u64);

Subtracts a Natural by the product of two other Naturals in place, taking the first Natural on the right-hand side by value and the second by reference.

$$ x \gets x - yz. $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is x.significant_bits().

Panics

Panics if y * z is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SubMulAssign};
use malachite_nz::natural::Natural;

let mut x = Natural::from(20u32);
x.sub_mul_assign(Natural::from(3u32), &Natural::from(4u32));
assert_eq!(x, 8);

let mut x = Natural::from(10u32).pow(12);
x.sub_mul_assign(Natural::from(0x10000u32), &Natural::from(0x10000u32));
assert_eq!(x, 995705032704u64);

Subtracts a Natural by the product of two other Naturals in place, taking both Naturals on the right-hand side by value.

$$ x \gets x - yz. $$

Worst-case complexity

$T(n, m) = O(m + n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits()), and $m$ is x.significant_bits().

Panics

Panics if y * z is greater than self.

Examples
extern crate malachite_base;

use malachite_base::num::arithmetic::traits::{Pow, SubMulAssign};
use malachite_nz::natural::Natural;

let mut x = Natural::from(20u32);
x.sub_mul_assign(Natural::from(3u32), Natural::from(4u32));
assert_eq!(x, 8);

let mut x = Natural::from(10u32).pow(12);
x.sub_mul_assign(Natural::from(0x10000u32), Natural::from(0x10000u32));
assert_eq!(x, 995705032704u64);

Determines whether a Natural can be converted to a string using to_sci and a particular set of options.

Worst-case complexity

$T(n) = O(n \log n \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::conversion::string::options::ToSciOptions;
use malachite_base::num::conversion::traits::ToSci;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

let mut options = ToSciOptions::default();
assert!(Natural::from(123u8).fmt_sci_valid(options));
assert!(Natural::from(u128::MAX).fmt_sci_valid(options));
// u128::MAX has more than 16 significant digits
options.set_rounding_mode(RoundingMode::Exact);
assert!(!Natural::from(u128::MAX).fmt_sci_valid(options));
options.set_precision(50);
assert!(Natural::from(u128::MAX).fmt_sci_valid(options));

Converts a Natural to a string using a specified base, possibly formatting the number using scientific notation.

See ToSciOptions for details on the available options. Note that setting neg_exp_threshold has no effect, since there is never a need to use negative exponents when representing a Natural.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if options.rounding_mode is Exact, but the size options are such that the input must be rounded.

Examples
extern crate malachite_base;

use malachite_base::num::conversion::string::options::ToSciOptions;
use malachite_base::num::conversion::traits::ToSci;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::natural::Natural;

assert_eq!(format!("{}", Natural::from(u128::MAX).to_sci()), "3.402823669209385e38");
assert_eq!(Natural::from(u128::MAX).to_sci().to_string(), "3.402823669209385e38");

let n = Natural::from(123456u32);
let mut options = ToSciOptions::default();
assert_eq!(format!("{}", n.to_sci_with_options(options)), "123456");
assert_eq!(n.to_sci_with_options(options).to_string(), "123456");

options.set_precision(3);
assert_eq!(n.to_sci_with_options(options).to_string(), "1.23e5");

options.set_rounding_mode(RoundingMode::Ceiling);
assert_eq!(n.to_sci_with_options(options).to_string(), "1.24e5");

options.set_e_uppercase();
assert_eq!(n.to_sci_with_options(options).to_string(), "1.24E5");

options.set_force_exponent_plus_sign(true);
assert_eq!(n.to_sci_with_options(options).to_string(), "1.24E+5");

options = ToSciOptions::default();
options.set_base(36);
assert_eq!(n.to_sci_with_options(options).to_string(), "2n9c");

options.set_uppercase();
assert_eq!(n.to_sci_with_options(options).to_string(), "2N9C");

options.set_base(2);
options.set_precision(10);
assert_eq!(n.to_sci_with_options(options).to_string(), "1.1110001e16");

options.set_include_trailing_zeros(true);
assert_eq!(n.to_sci_with_options(options).to_string(), "1.111000100e16");

Converts a number to a string, possibly in scientific notation.

Converts a number to a string, possibly in scientific notation, using the default ToSciOptions. Read more

Converts a Natural to a String using a specified base.

Digits from 0 to 9 become chars from '0' to '9'. Digits from 10 to 35 become the lowercase chars 'a' to 'z'.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2 or greater than 36.

Examples
extern crate malachite_base;

use malachite_base::num::conversion::traits::ToStringBase;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(1000u32).to_string_base(2), "1111101000");
assert_eq!(Natural::from(1000u32).to_string_base(10), "1000");
assert_eq!(Natural::from(1000u32).to_string_base(36), "rs");

Converts a Natural to a String using a specified base.

Digits from 0 to 9 become chars from '0' to '9'. Digits from 10 to 35 become the uppercase chars 'A' to 'Z'.

Worst-case complexity

$T(n) = O(n (\log n)^2 \log\log n)$

$M(n) = O(n \log n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Panics

Panics if base is less than 2 or greater than 36.

Examples
extern crate malachite_base;

use malachite_base::num::conversion::traits::ToStringBase;
use malachite_nz::natural::Natural;

assert_eq!(Natural::from(1000u32).to_string_base_upper(2), "1111101000");
assert_eq!(Natural::from(1000u32).to_string_base_upper(10), "1000");
assert_eq!(Natural::from(1000u32).to_string_base_upper(36), "RS");

The constant 2.

Converts a Natural to a hexadecimal String using uppercase characters.

Using the # format flag prepends "0x" to the string.

Worst-case complexity

$T(n) = O(n)$

$M(n) = O(n)$

where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().

Examples
extern crate malachite_base;

use malachite_base::num::basic::traits::Zero;
use malachite_base::strings::ToUpperHexString;
use malachite_nz::natural::Natural;
use std::str::FromStr;

assert_eq!(Natural::ZERO.to_upper_hex_string(), "0");
assert_eq!(Natural::from(123u32).to_upper_hex_string(), "7B");
assert_eq!(
    Natural::from_str("1000000000000").unwrap().to_upper_hex_string(),
    "E8D4A51000"
);
assert_eq!(format!("{:07X}", Natural::from(123u32)), "000007B");

assert_eq!(format!("{:#X}", Natural::ZERO), "0x0");
assert_eq!(format!("{:#X}", Natural::from(123u32)), "0x7B");
assert_eq!(
    format!("{:#X}", Natural::from_str("1000000000000").unwrap()),
    "0xE8D4A51000"
);
assert_eq!(format!("{:#07X}", Natural::from(123u32)), "0x0007B");

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of a signed primitive integer type that’s smaller than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a usize or a value of an unsigned primitive integer type that’s larger than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to an isize or a value of a signed primitive integer type that’s larger than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of a signed primitive integer type that’s smaller than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of an unsigned primitive integer type that’s smaller than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a value of a signed primitive integer type that’s smaller than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a SignedLimb (the signed type whose width is the same as a limb’s), wrapping modulo $2^W$, where $W$ is the width of a limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to a usize or a value of an unsigned primitive integer type that’s larger than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Converts a Natural to an isize or a value of a signed primitive integer type that’s larger than a Limb, wrapping modulo $2^W$, where $W$ is the width of a limb.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

The constant 0.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Should always be Self

Returns the String produced by Ts Binary implementation.

Examples
use malachite_base::strings::ToBinaryString;

assert_eq!(5u64.to_binary_string(), "101");
assert_eq!((-100i16).to_binary_string(), "1111111110011100");

Returns the String produced by Ts Debug implementation.

Examples
use malachite_base::strings::ToDebugString;

assert_eq!([1, 2, 3].to_debug_string(), "[1, 2, 3]");
assert_eq!(
    [vec![2, 3], vec![], vec![4]].to_debug_string(),
    "[[2, 3], [], [4]]"
);
assert_eq!(Some(5).to_debug_string(), "Some(5)");

Returns the String produced by Ts LowerHex implementation.

Examples
use malachite_base::strings::ToLowerHexString;

assert_eq!(50u64.to_lower_hex_string(), "32");
assert_eq!((-100i16).to_lower_hex_string(), "ff9c");

Returns the String produced by Ts Octal implementation.

Examples
use malachite_base::strings::ToOctalString;

assert_eq!(50u64.to_octal_string(), "62");
assert_eq!((-100i16).to_octal_string(), "177634");

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

Uses borrowed data to replace owned data, usually by cloning. Read more

Converts the given value to a String. Read more

Returns the String produced by Ts UpperHex implementation.

Examples
use malachite_base::strings::ToUpperHexString;

assert_eq!(50u64.to_upper_hex_string(), "32");
assert_eq!((-100i16).to_upper_hex_string(), "FF9C");

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.