1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
use slices::min_repeating_len;
use std::iter::{Chain, Cycle};

fn rational_sequence_reduce<T: Eq>(non_repeating: &mut Vec<T>, repeating: &mut Vec<T>) {
    if repeating.is_empty() {
        return;
    }
    repeating.truncate(min_repeating_len(repeating));
    if non_repeating.is_empty() {
        return;
    }
    let extra_non_repeating = non_repeating
        .iter()
        .rev()
        .zip(repeating.iter().rev().cycle())
        .take_while(|(x, y)| x == y)
        .count();
    if extra_non_repeating != 0 {
        non_repeating.truncate(non_repeating.len() - extra_non_repeating);
        let len = repeating.len();
        repeating.rotate_right(extra_non_repeating % len);
    }
}

pub_test! {rational_sequence_is_reduced<T: Eq>(non_repeating: &[T], repeating: &[T]) -> bool {
    if repeating.is_empty() {
        return true;
    }
    if min_repeating_len(repeating) != repeating.len() {
        return false;
    }
    if non_repeating.is_empty() {
        return true;
    }
    non_repeating
        .iter()
        .rev()
        .zip(repeating.iter().rev().cycle())
        .take_while(|(x, y)| x == y)
        .count()
        == 0
}}

/// A `RationalSequence` is a sequence that is either finite or eventually repeating, just like
/// the digits of a rational number.
///
/// In testing, the set of rational sequences may be used as a proxy for the set of all sequences,
/// which is too large to work with.
#[derive(Clone, Default, Eq, Hash, PartialEq)]
pub struct RationalSequence<T: Eq> {
    non_repeating: Vec<T>,
    repeating: Vec<T>,
}

impl<T: Eq> RationalSequence<T> {
    /// Returns whether this `RationalSequence` is empty.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::rational_sequences::RationalSequence;
    ///
    /// assert_eq!(RationalSequence::<u8>::from_slice(&[]).is_empty(), true);
    /// assert_eq!(RationalSequence::<u8>::from_slice(&[1, 2, 3]).is_empty(), false);
    /// assert_eq!(RationalSequence::<u8>::from_slices(&[], &[3, 4]).is_empty(), false);
    /// assert_eq!(RationalSequence::<u8>::from_slices(&[1, 2], &[3, 4]).is_empty(), false);
    /// ```
    pub fn is_empty(&self) -> bool {
        self.non_repeating.is_empty() && self.repeating.is_empty()
    }

    /// Returns whether this `RationalSequence` is finite (has no repeating part).
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::rational_sequences::RationalSequence;
    ///
    /// assert_eq!(RationalSequence::<u8>::from_slice(&[]).is_finite(), true);
    /// assert_eq!(RationalSequence::<u8>::from_slice(&[1, 2, 3]).is_finite(), true);
    /// assert_eq!(RationalSequence::<u8>::from_slices(&[], &[3, 4]).is_finite(), false);
    /// assert_eq!(RationalSequence::<u8>::from_slices(&[1, 2], &[3, 4]).is_finite(), false);
    /// ```
    pub fn is_finite(&self) -> bool {
        self.repeating.is_empty()
    }

    /// Returns the length of this `RationalSequence`. If the sequence is infinite, `None` is
    /// returned.
    ///
    /// For a measure of length that always exists, try [`component_len`](Self::component_len).
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::rational_sequences::RationalSequence;
    ///
    /// assert_eq!(RationalSequence::<u8>::from_slice(&[]).len(), Some(0));
    /// assert_eq!(RationalSequence::<u8>::from_slice(&[1, 2, 3]).len(), Some(3));
    /// assert_eq!(RationalSequence::<u8>::from_slices(&[], &[3, 4]).len(), None);
    /// assert_eq!(RationalSequence::<u8>::from_slices(&[1, 2], &[3, 4]).len(), None);
    /// ```
    pub fn len(&self) -> Option<usize> {
        if self.repeating.is_empty() {
            Some(self.non_repeating.len())
        } else {
            None
        }
    }

    /// Returns the sum of the lengths of the non-repeating and repeating parts of this
    /// `RationalSequence`.
    ///
    /// This is often a more useful way of measuring the complexity of a sequence than
    /// [`len`](Self::len).
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::rational_sequences::RationalSequence;
    ///
    /// assert_eq!(RationalSequence::<u8>::from_slice(&[]).component_len(), 0);
    /// assert_eq!(RationalSequence::<u8>::from_slice(&[1, 2, 3]).component_len(), 3);
    /// assert_eq!(RationalSequence::<u8>::from_slices(&[], &[3, 4]).component_len(), 2);
    /// assert_eq!(RationalSequence::<u8>::from_slices(&[1, 2], &[3, 4]).component_len(), 4);
    /// ```
    pub fn component_len(&self) -> usize {
        self.non_repeating.len() + self.repeating.len()
    }

    /// Returns an iterator of references to the elements of this sequence.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// extern crate itertools;
    ///
    /// use itertools::Itertools;
    /// use malachite_base::rational_sequences::RationalSequence;
    ///
    /// let empty: &[u8] = &[];
    /// assert_eq!(RationalSequence::<u8>::from_slice(empty).iter().cloned().collect_vec(), empty);
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_slice(&[1, 2, 3]).iter().cloned().collect_vec(),
    ///     &[1, 2, 3]
    /// );
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_slices(&[], &[3, 4]).iter().cloned().take(10)
    ///         .collect_vec(),
    ///     &[3, 4, 3, 4, 3, 4, 3, 4, 3, 4]
    /// );
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_slices(&[1, 2], &[3, 4]).iter().cloned().take(10)
    ///         .collect_vec(),
    ///     &[1, 2, 3, 4, 3, 4, 3, 4, 3, 4]
    /// );
    /// ```
    pub fn iter(&self) -> Chain<std::slice::Iter<T>, Cycle<std::slice::Iter<T>>> {
        (&self.non_repeating)
            .iter()
            .chain((&self.repeating).iter().cycle())
    }
}

impl<T: Clone + Eq> RationalSequence<T> {
    // Returns true iff `self` is valid.
    //
    // To be valid, the non-repeating and repeating parts must be reduced. For example, `[1, 2]`
    // and `[3, 4]` is a reduced pair. On the other hand, `[1, 2]` and `[3, 4, 3, 4]` is a
    // non-reduced pair representing the same sequence, as is `[1, 2, 3]` and `[4, 3]`. All
    // `RationalSequence`s must be valid.
    #[cfg(feature = "test_build")]
    pub fn is_valid(&self) -> bool {
        rational_sequence_is_reduced(&self.non_repeating, &self.repeating)
    }
}

/// Functions for getting and setting elements in a [`RationalSequence`].
pub mod access;
/// Functions for comparing [`RationalSequence`]s.
pub mod cmp;
/// Functions for converting a [`RationalSequence`]s to and from a [`Vec`] or a slice.
pub mod conversion;
/// Functions for generating all [`RationalSequence`]s over a set of elements.
pub mod exhaustive;
/// Functions for generating random [`RationalSequence`]s from a set of elements.
pub mod random;
/// Functions for displaying a [`RationalSequence`].
pub mod to_string;