1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
//! Vertex sets.
//!
//! [`Tess`] is a type that represents the gathering of vertices and the way to connect / link
//! them. A [`Tess`] has several intrinsic properties:
//!
//! - Its _primitive mode_ — [`Mode`]. That object tells the GPU how to connect the vertices.
//! - A default number of vertex to render. When passing the [`Tess`] to the GPU for rendering,
//!   it’s possible to specify the number of vertices to render or just let the [`Tess`] render
//!   a default number of vertices (typically, the whole [`Tess`]).
//! - A default number of _instances_, which allows for geometry instancing. Geometry instancing
//!   is the fact of drawing with the same [`Tess`] (GPU buffers) several times, only changing the
//!   instance index every time a new render is performed. This is done entirely on the GPU to
//!   prevent bandwidth exhaustion. The index of the instance, in the shader stages, is often used
//!   to pick material properties, matrices, etc. to customize each instances.
//! - An indexed configuration, allowing to tell the GPU how to render the vertices by referring to
//!   them via indices.
//! - For indexed configuration, an optional _primitive restart index_ can be specified. That
//!   index, when present in the indexed set, will make some primitive modes _“restart”_ and create
//!   new primitives. More on this on the documentation of [`Mode`].
//!
//! # Tessellation creation
//!
//! [`Tess`] is not created directly. Instead, you need to use a [`TessBuilder`]. Tessellation
//! builders make it easy to customize what a [`Tess`] will be made of before actually requesting
//! the GPU to create them. They support a large number of possible situations:
//!
//! - _Attributeless_: when you only specify the [`Mode`] and number of vertices to render (and
//!   optionally the number of instances). That will create a vertex set with no vertex data. Your
//!   vertex shader will be responsible for creating the vertex attributes on the fly.
//! - _Direct geometry_: when you pass vertices directly.
//! - _Indexed geometry_: when you pass vertices and reference from with indices.
//! - _Instanced geometry_: when you ask to use instances, making the graphics pipeline create
//!   several instances of your vertex set on the GPU.
//!
//! # Tessellation views
//!
//! Once you have a [`Tess`] — created from [`TessBuilder::build`], you can now render it in a
//! [`TessGate`]. In order to do so, you need a [`TessView`].
//!
//! A [`TessView`] is a temporary _view_ into a [`Tess`], describing what part of it should be
//! drawn. Creating [`TessView`]s is a cheap operation, and can be done in two different ways:
//!
//! - By directly using the methods from [`TessView`].
//! - By using the [`View`] trait.
//!
//! The [`View`] trait is a convenient way to create [`TessView`]. It provides the
//! [`View::view`] and [`View::inst_view`] methods, which accept Rust’s range operators
//! to create the [`TessView`]s in a more comfortable way.
//!
//! # Tessellation mapping
//!
//! Sometimes, you will want to edit tessellations in a dynamic way instead of re-creating new
//! ones. That can be useful for streaming data of for using a small part of a big [`Tess`]. The
//! [`Tess`] type has several methods to obtain subparts, allow you to map values and iterate over
//! them via standard Rust slices. See these for further details:
//!
//! - [`Tess::vertices`] [`Tess::vertices_mut`] to map tessellations’ vertices.
//! - [`Tess::indices`] [`Tess::indices_mut`] to map tessellations’ indices.
//! - [`Tess::instances`] [`Tess::instances_mut`] to map tessellations’ instances.
//!
//! > Note: because of their slice nature, mapping a tessellation (vertices, indices or instances)
//! > will not help you with resizing a [`Tess`], as this is not currently supported.
//!
//! [`TessGate`]: crate::tess_gate::TessGate

use std::error;
use std::fmt;
use std::marker::PhantomData;
use std::ops::{
  Deref, DerefMut, Range, RangeFrom, RangeFull, RangeInclusive, RangeTo, RangeToInclusive,
};

use crate::backend::tess::{
  IndexSlice as IndexSliceBackend, InstanceSlice as InstanceSliceBackend, Tess as TessBackend,
  VertexSlice as VertexSliceBackend,
};
use crate::buffer::BufferError;
use crate::context::GraphicsContext;
use crate::vertex::{Deinterleave, Vertex, VertexDesc};

/// Vertices can be connected via several modes.
///
/// Some modes allow for _primitive restart_. Primitive restart is a cool feature that allows to
/// _break_ the building of a primitive to _start over again_. For instance, when making a curve,
/// you can imagine gluing segments next to each other. If at some point, you want to start a new
/// curve, you have two choices:
///
///   - Either you stop your draw call and make another one.
///   - Or you just use the _primitive restart_ feature to ask to create another line from scratch.
///
/// _Primitive restart_ should be used as much as possible as it will decrease the number of GPU
/// commands you have to issue.
///
/// That feature is encoded with a special _vertex index_. You can setup the value of the _primitive
/// restart index_ with [`TessBuilder::set_primitive_restart_index`]. Whenever a vertex index is set
/// to the same value as the _primitive restart index_, the value is not interpreted as a vertex
/// index but just a marker / hint to start a new primitive.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Mode {
  /// A single point.
  ///
  /// Points are left unconnected from each other and represent a _point cloud_. This is the typical
  /// primitive mode you want to do, for instance, particles rendering.
  Point,
  /// A line, defined by two points.
  ///
  /// Every pair of vertices are connected together to form a straight line.
  Line,
  /// A strip line, defined by at least two points and zero or many other ones.
  ///
  /// The first two vertices create a line, and every new vertex flowing in the graphics pipeline
  /// (starting from the third, then) well extend the initial line, making a curve composed of
  /// several segments.
  ///
  /// > This kind of primitive mode allows the usage of _primitive restart_.
  LineStrip,
  /// A triangle, defined by three points.
  Triangle,
  /// A triangle fan, defined by at least three points and zero or many other ones.
  ///
  /// Such a mode is easy to picture: a cooling fan is a circular shape, with blades.
  /// [`Mode::TriangleFan`] is kind of the same. The first vertex is at the center of the fan, then
  /// the second vertex creates the first edge of the first triangle. Every time you add a new
  /// vertex, a triangle is created by taking the first (center) vertex, the very previous vertex
  /// and the current vertex. By specifying vertices around the center, you actually create a
  /// fan-like shape.
  ///
  /// > This kind of primitive mode allows the usage of _primitive restart_.
  TriangleFan,
  /// A triangle strip, defined by at least three points and zero or many other ones.
  ///
  /// This mode is a bit different from [`Mode::TriangleFan`]. The first two vertices define the
  /// first edge of the first triangle. Then, for each new vertex, a new triangle is created by
  /// taking the very previous vertex and the last to very previous vertex. What it means is that
  /// every time a triangle is created, the next vertex will share the edge that was created to
  /// spawn the previous triangle.
  ///
  /// This mode is useful to create long ribbons / strips of triangles.
  ///
  /// > This kind of primitive mode allows the usage of _primitive restart_.
  TriangleStrip,
  /// A general purpose primitive with _n_ vertices, for use in tessellation shaders.
  /// For example, `Mode::Patch(3)` represents triangle patches, so every three vertices in the
  /// buffer form a patch.
  ///
  /// If you want to employ tessellation shaders, this is the only primitive mode you can use.
  Patch(usize),
}

impl fmt::Display for Mode {
  fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
    match *self {
      Mode::Point => f.write_str("point"),
      Mode::Line => f.write_str("line"),
      Mode::LineStrip => f.write_str("line strip"),
      Mode::Triangle => f.write_str("triangle"),
      Mode::TriangleStrip => f.write_str("triangle strip"),
      Mode::TriangleFan => f.write_str("triangle fan"),
      Mode::Patch(ref n) => write!(f, "patch ({})", n),
    }
  }
}

/// Error that can occur while trying to map GPU tessellations to host code.
#[non_exhaustive]
#[derive(Debug, Eq, PartialEq)]
pub enum TessMapError {
  /// The CPU mapping failed due to buffer errors.
  BufferMapError(BufferError),
  /// Vertex target type is not the same as the one stored in the buffer.
  VertexTypeMismatch(VertexDesc, VertexDesc),
  /// Index target type is not the same as the one stored in the buffer.
  IndexTypeMismatch(TessIndexType, TessIndexType),
  /// The CPU mapping failed because you cannot map an attributeless tessellation since it doesn’t
  /// have any vertex attribute.
  ForbiddenAttributelessMapping,
  /// The CPU mapping failed because currently, mapping deinterleaved buffers is not supported via
  /// a single slice.
  ForbiddenDeinterleavedMapping,
}

impl TessMapError {
  /// The CPU mapping failed due to buffer errors.
  pub fn buffer_map_error(e: BufferError) -> Self {
    TessMapError::BufferMapError(e)
  }

  /// Vertex target type is not the same as the one stored in the buffer.
  pub fn vertex_type_mismatch(a: VertexDesc, b: VertexDesc) -> Self {
    TessMapError::VertexTypeMismatch(a, b)
  }

  /// Index target type is not the same as the one stored in the buffer.
  pub fn index_type_mismatch(a: TessIndexType, b: TessIndexType) -> Self {
    TessMapError::IndexTypeMismatch(a, b)
  }

  /// The CPU mapping failed because you cannot map an attributeless tessellation since it doesn’t
  /// have any vertex attribute.
  pub fn forbidden_attributeless_mapping() -> Self {
    TessMapError::ForbiddenAttributelessMapping
  }

  /// The CPU mapping failed because currently, mapping deinterleaved buffers is not supported via
  /// a single slice.
  pub fn forbidden_deinterleaved_mapping() -> Self {
    TessMapError::ForbiddenDeinterleavedMapping
  }
}

impl fmt::Display for TessMapError {
  fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
    match *self {
      TessMapError::BufferMapError(ref e) => write!(f, "cannot map tessellation buffer: {}", e),
      TessMapError::VertexTypeMismatch(ref a, ref b) => write!(
        f,
        "cannot map tessellation: vertex type mismatch between {:?} and {:?}",
        a, b
      ),
      TessMapError::IndexTypeMismatch(ref a, ref b) => write!(
        f,
        "cannot map tessellation: index type mismatch between {:?} and {:?}",
        a, b
      ),
      TessMapError::ForbiddenAttributelessMapping => {
        f.write_str("cannot map an attributeless buffer")
      }
      TessMapError::ForbiddenDeinterleavedMapping => {
        f.write_str("cannot map a deinterleaved buffer as interleaved")
      }
    }
  }
}

impl From<BufferError> for TessMapError {
  fn from(e: BufferError) -> Self {
    TessMapError::buffer_map_error(e)
  }
}

impl error::Error for TessMapError {
  fn source(&self) -> Option<&(dyn error::Error + 'static)> {
    match self {
      TessMapError::BufferMapError(e) => Some(e),
      _ => None,
    }
  }
}

/// Possible errors that might occur when dealing with [`Tess`].
#[non_exhaustive]
#[derive(Debug, Eq, PartialEq)]
pub enum TessError {
  /// Cannot create a tessellation.
  CannotCreate(String),
  /// Error related to attributeless tessellation and/or render.
  AttributelessError(String),
  /// Length incoherency in vertex, index or instance buffers.
  LengthIncoherency(usize),
  /// Internal error ocurring with a buffer.
  InternalBufferError(BufferError),
  /// Forbidden primitive mode by hardware.
  ForbiddenPrimitiveMode(Mode),
  /// No data provided and empty tessellation.
  NoData,
}

impl TessError {
  /// Cannot create a tessellation.
  pub fn cannot_create(e: impl Into<String>) -> Self {
    TessError::CannotCreate(e.into())
  }

  /// Error related to attributeless tessellation and/or render.
  pub fn attributeless_error(e: impl Into<String>) -> Self {
    TessError::AttributelessError(e.into())
  }

  /// Length incoherency in vertex, index or instance buffers.
  pub fn length_incoherency(len: usize) -> Self {
    TessError::LengthIncoherency(len)
  }

  /// Internal error ocurring with a buffer.
  pub fn internal_buffer_error(e: BufferError) -> Self {
    TessError::InternalBufferError(e)
  }

  /// Forbidden primitive mode by hardware.
  pub fn forbidden_primitive_mode(mode: Mode) -> Self {
    TessError::ForbiddenPrimitiveMode(mode)
  }

  /// No data or empty tessellation.
  pub fn no_data() -> Self {
    TessError::NoData
  }
}

impl fmt::Display for TessError {
  fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
    match *self {
      TessError::CannotCreate(ref s) => write!(f, "Creation error: {}", s),
      TessError::AttributelessError(ref s) => write!(f, "Attributeless error: {}", s),
      TessError::LengthIncoherency(ref s) => {
        write!(f, "Incoherent size for internal buffers: {}", s)
      }
      TessError::InternalBufferError(ref e) => write!(f, "internal buffer error: {}", e),
      TessError::ForbiddenPrimitiveMode(ref e) => write!(f, "forbidden primitive mode: {}", e),
      TessError::NoData => f.write_str("no data or empty tessellation"),
    }
  }
}

impl From<BufferError> for TessError {
  fn from(e: BufferError) -> Self {
    TessError::internal_buffer_error(e)
  }
}

impl error::Error for TessError {
  fn source(&self) -> Option<&(dyn error::Error + 'static)> {
    match self {
      TessError::InternalBufferError(e) => Some(e),
      _ => None,
    }
  }
}

/// Possible tessellation index types.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum TessIndexType {
  /// 8-bit unsigned integer.
  U8,
  /// 16-bit unsigned integer.
  U16,
  /// 32-bit unsigned integer.
  U32,
}

impl TessIndexType {
  /// Get the number of bytes that are needed to represent a type described by the variant.
  pub fn bytes(self) -> usize {
    match self {
      TessIndexType::U8 => 1,
      TessIndexType::U16 => 2,
      TessIndexType::U32 => 4,
    }
  }
}

/// Class of tessellation indices.
///
/// Values which types implement this trait are allowed to be used to index tessellation in *indexed
/// draw commands*.
///
/// You shouldn’t have to worry too much about that trait. Have a look at the current implementors
/// for an exhaustive list of types you can use.
///
/// > Implementing this trait is `unsafe`.
pub unsafe trait TessIndex: Copy {
  /// Type of the underlying index.
  ///
  /// You are limited in which types you can use as indexes. Feel free to have a look at the
  /// documentation of the [`TessIndexType`] trait for further information.
  ///
  /// `None` means that you disable indexing.
  const INDEX_TYPE: Option<TessIndexType>;

  /// Get and convert the index to [`u32`], if possible.
  fn try_into_u32(self) -> Option<u32>;
}

unsafe impl TessIndex for () {
  const INDEX_TYPE: Option<TessIndexType> = None;

  fn try_into_u32(self) -> Option<u32> {
    None
  }
}

/// Boop.
unsafe impl TessIndex for u8 {
  const INDEX_TYPE: Option<TessIndexType> = Some(TessIndexType::U8);

  fn try_into_u32(self) -> Option<u32> {
    Some(self.into())
  }
}

/// Boop.
unsafe impl TessIndex for u16 {
  const INDEX_TYPE: Option<TessIndexType> = Some(TessIndexType::U16);

  fn try_into_u32(self) -> Option<u32> {
    Some(self.into())
  }
}

/// Wuuuuuuha.
unsafe impl TessIndex for u32 {
  const INDEX_TYPE: Option<TessIndexType> = Some(TessIndexType::U32);

  fn try_into_u32(self) -> Option<u32> {
    Some(self.into())
  }
}

/// Interleaved memory marker.
#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
pub enum Interleaved {}

/// Deinterleaved memory marker.
#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
pub enum Deinterleaved {}

/// Vertex input data of a [`TessBuilder`].
pub trait TessVertexData<S>: Vertex
where
  S: ?Sized,
{
  /// Vertex storage type.
  type Data;

  /// Coherent length of the vertices.
  ///
  /// Vertices length can be incohent for some implementations of [`TessVertexData::Data`],
  /// especially with deinterleaved memory.
  fn coherent_len(data: &Self::Data) -> Result<usize, TessError>;
}

impl<V> TessVertexData<Interleaved> for V
where
  V: Vertex,
{
  type Data = Vec<V>;

  fn coherent_len(data: &Self::Data) -> Result<usize, TessError> {
    Ok(data.len())
  }
}

impl<V> TessVertexData<Deinterleaved> for V
where
  V: Vertex,
{
  type Data = Vec<DeinterleavedData>;

  fn coherent_len(data: &Self::Data) -> Result<usize, TessError> {
    if data.is_empty() {
      Ok(0)
    } else {
      let len = data[0].len;

      if data[1..].iter().any(|a| a.len != len) {
        Err(TessError::length_incoherency(len))
      } else {
        Ok(len)
      }
    }
  }
}

/// Deinterleaved data.
#[derive(Debug, Clone)]
pub struct DeinterleavedData {
  raw: Vec<u8>,
  len: usize,
}

impl DeinterleavedData {
  fn new() -> Self {
    DeinterleavedData {
      raw: Vec::new(),
      len: 0,
    }
  }

  /// Turn the [`DeinterleavedData`] into its raw representation.
  pub fn into_vec(self) -> Vec<u8> {
    self.raw
  }
}

/// [`Tess`] builder object.
///
/// This type allows to create [`Tess`] via a _builder pattern_. You have several flavors of
/// possible _vertex storage_ situations, as well as _data encoding_, described below.
///
/// # Vertex storage
///
/// ## Interleaved
///
/// You can pass around interleaved vertices and indices. Those are encoded in `Vec<T>`. You
/// typically want to use this when you already have the vertices and/or indices allocated somewhere,
/// as the interface will use the input vector as a source of truth for lengths.
///
/// ## Deinterleaved
///
/// This is the same as interleaved data in terms of interface, but the `T` type is interpreted
/// a bit differently. Here, the encoding is `(Vec<Field0>, Vec<Field1>, …)`, where `Field0`,
/// `Field1` etc. are all the ordered fieds in `T`.
///
/// That representation allows field-based operation later on [`Tess`], while it would be
/// impossible with the interleaved version (you would need to get all the fields at once, since
/// you would work on`T` directly and each of its fields).
///
/// # Data encoding
///
/// - Vectors: you can pass vectors as input data for both vertices and indices. Those will be
///   interpreted differently based on the vertex storage you chose for vertices, and the normal
///   way for indices.
/// - Buffers: you can pass [`Buffer`] objects, too. Those are more flexible than vectors as you can
///   use all of the [`Buffer`] API before sending them to the builder.
/// - Disabled: disabling means that no data will be passed to the GPU. You can disable independently
///   vertex data and/or index data.
///
/// # Parametricity
///
/// - `B` is the backend type
/// - `V` is the vertex type.
/// - `S` is the storage type.
///
/// [`Buffer`]: crate::buffer::Buffer
#[derive(Debug)]
pub struct TessBuilder<'a, B, V, I = (), W = (), S = Interleaved>
where
  B: ?Sized,
  V: TessVertexData<S>,
  W: TessVertexData<S>,
  S: ?Sized,
{
  backend: &'a mut B,
  vertex_data: Option<V::Data>,
  index_data: Vec<I>,
  instance_data: Option<W::Data>,
  mode: Mode,
  vert_nb: usize,
  inst_nb: usize,
  restart_index: Option<I>,
  _phantom: PhantomData<&'a mut ()>,
}

impl<'a, B, V, I, W, S> TessBuilder<'a, B, V, I, W, S>
where
  B: ?Sized,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  /// Set the [`Mode`] to connect vertices.
  ///
  /// Calling that function twice replace the previously set value.
  pub fn set_mode(mut self, mode: Mode) -> Self {
    self.mode = mode;
    self
  }

  /// Set the default number of vertices to render.
  ///
  /// Calling that function twice replace the previously set value.
  pub fn set_vertex_nb(mut self, vert_nb: usize) -> Self {
    self.vert_nb = vert_nb;
    self
  }

  /// Set the default number of instances to render.
  ///
  /// Calling that function twice replace the previously set value.
  pub fn set_instance_nb(mut self, inst_nb: usize) -> Self {
    self.inst_nb = inst_nb;
    self
  }

  /// Set the primitive restart index.
  ///
  /// Calling that function twice replace the previously set value.
  pub fn set_primitive_restart_index(mut self, restart_index: I) -> Self {
    self.restart_index = Some(restart_index);
    self
  }
}

impl<'a, B, V, I, W, S> TessBuilder<'a, B, V, I, W, S>
where
  B: ?Sized,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  /// Create a new default [`TessBuilder`].
  ///
  /// # Notes
  ///
  /// Feel free to use the [`GraphicsContext::new_tess`] method for a simpler method.
  ///
  /// [`GraphicsContext::new_tess`]: crate::context::GraphicsContext::new_tess
  pub fn new<C>(ctx: &'a mut C) -> Self
  where
    C: GraphicsContext<Backend = B>,
  {
    TessBuilder {
      backend: ctx.backend(),
      vertex_data: None,
      index_data: Vec::new(),
      instance_data: None,
      mode: Mode::Point,
      vert_nb: 0,
      inst_nb: 0,
      restart_index: None,
      _phantom: PhantomData,
    }
  }
}

// set_indices, which works only if I = ()
impl<'a, B, V, W, S> TessBuilder<'a, B, V, (), W, S>
where
  B: ?Sized,
  V: TessVertexData<S>,
  W: TessVertexData<S>,
  S: ?Sized,
{
  /// Add indices to be bundled in the [`Tess`].
  ///
  /// Every time you call that function, the set of indices is replaced by the one you provided.
  /// The type of expected indices is ruled by the `II` type variable you chose.
  pub fn set_indices<I, X>(self, indices: X) -> TessBuilder<'a, B, V, I, W, S>
  where
    X: Into<Vec<I>>,
  {
    TessBuilder {
      backend: self.backend,
      vertex_data: self.vertex_data,
      index_data: indices.into(),
      instance_data: self.instance_data,
      mode: self.mode,
      vert_nb: self.vert_nb,
      inst_nb: self.inst_nb,
      restart_index: None,
      _phantom: PhantomData,
    }
  }
}

// set_vertices, interleaved version; works only for V = ()
impl<'a, B, I, W> TessBuilder<'a, B, (), I, W, Interleaved>
where
  B: ?Sized,
  I: TessIndex,
  W: TessVertexData<Interleaved>,
{
  /// Add vertices to be bundled in the [`Tess`].
  ///
  /// Every time you call that function, the set of vertices is replaced by the one you provided.
  pub fn set_vertices<V, X>(self, vertices: X) -> TessBuilder<'a, B, V, I, W, Interleaved>
  where
    X: Into<Vec<V>>,
    V: TessVertexData<Interleaved, Data = Vec<V>>,
  {
    TessBuilder {
      backend: self.backend,
      vertex_data: Some(vertices.into()),
      index_data: self.index_data,
      instance_data: self.instance_data,
      mode: self.mode,
      vert_nb: self.vert_nb,
      inst_nb: self.inst_nb,
      restart_index: self.restart_index,
      _phantom: PhantomData,
    }
  }
}

impl<'a, B, I, V> TessBuilder<'a, B, V, I, (), Interleaved>
where
  B: ?Sized,
  I: TessIndex,
  V: TessVertexData<Interleaved>,
{
  /// Add instances to be bundled in the [`Tess`].
  ///
  /// Every time you call that function, the set of instances is replaced by the one you provided.
  pub fn set_instances<W, X>(self, instances: X) -> TessBuilder<'a, B, V, I, W, Interleaved>
  where
    X: Into<Vec<W>>,
    W: TessVertexData<Interleaved, Data = Vec<W>>,
  {
    TessBuilder {
      backend: self.backend,
      vertex_data: self.vertex_data,
      index_data: self.index_data,
      instance_data: Some(instances.into()),
      mode: self.mode,
      vert_nb: self.vert_nb,
      inst_nb: self.inst_nb,
      restart_index: self.restart_index,
      _phantom: PhantomData,
    }
  }
}

impl<'a, B, V, I, W> TessBuilder<'a, B, V, I, W, Deinterleaved>
where
  B: ?Sized,
  V: TessVertexData<Deinterleaved, Data = Vec<DeinterleavedData>>,
  I: TessIndex,
  W: TessVertexData<Deinterleaved, Data = Vec<DeinterleavedData>>,
{
  /// Add vertices to be bundled in the [`Tess`].
  ///
  /// Every time you call that function, the set of vertices is replaced by the one you provided.
  pub fn set_attributes<A, X>(mut self, attributes: X) -> Self
  where
    X: Into<Vec<A>>,
    V: Deinterleave<A>,
  {
    let build_raw = |deinterleaved: &mut Vec<DeinterleavedData>| {
      // turn the attribute into a raw vector (Vec<u8>)
      let boxed_slice = attributes.into().into_boxed_slice();
      let len = boxed_slice.len();
      let len_bytes = len * std::mem::size_of::<A>();
      let ptr = Box::into_raw(boxed_slice);
      // please Dog pardon me
      let raw = unsafe { Vec::from_raw_parts(ptr as _, len_bytes, len_bytes) };

      deinterleaved[V::RANK] = DeinterleavedData { raw, len };
    };

    match self.vertex_data {
      Some(ref mut deinterleaved) => {
        build_raw(deinterleaved);
      }

      None => {
        let mut deinterleaved = vec![DeinterleavedData::new(); V::ATTR_COUNT];
        build_raw(&mut deinterleaved);

        self.vertex_data = Some(deinterleaved);
      }
    }

    self
  }

  /// Add instances to be bundled in the [`Tess`].
  ///
  /// Every time you call that function, the set of instances is replaced by the one you provided.
  pub fn set_instance_attributes<A, X>(mut self, attributes: X) -> Self
  where
    X: Into<Vec<A>>,
    W: Deinterleave<A>,
  {
    let build_raw = |deinterleaved: &mut Vec<DeinterleavedData>| {
      // turn the attribute into a raw vector (Vec<u8>)
      let boxed_slice = attributes.into().into_boxed_slice();
      let len = boxed_slice.len();
      let len_bytes = len * std::mem::size_of::<A>();
      let ptr = Box::into_raw(boxed_slice);
      // please Dog pardon me
      let raw = unsafe { Vec::from_raw_parts(ptr as _, len_bytes, len_bytes) };

      deinterleaved[W::RANK] = DeinterleavedData { raw, len };
    };

    match self.instance_data {
      None => {
        let mut deinterleaved = vec![DeinterleavedData::new(); W::ATTR_COUNT];
        build_raw(&mut deinterleaved);

        self.instance_data = Some(deinterleaved);
      }

      Some(ref mut deinterleaved) => {
        build_raw(deinterleaved);
      }
    }

    self
  }
}

impl<'a, B, V, I, W, S> TessBuilder<'a, B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
{
  /// Build a [`Tess`] if the [`TessBuilder`] has enough data and is in a valid state. What is
  /// needed is backend-dependent but most of the time, you will want to:
  ///
  /// - Set a [`Mode`].
  /// - Give vertex data and optionally indices, or give none of them but only a number of vertices
  ///   (attributeless objects).
  /// - If you provide vertex data by submitting several sets with [`TessBuilder::set_attributes`]
  ///   and/or [`TessBuilder::set_instances`], do not forget that you must submit sets with the
  ///   same size. Otherwise, the GPU will not know what values use for missing attributes in
  ///   vertices.
  pub fn build(self) -> Result<Tess<B, V, I, W, S>, TessError> {
    // validate input data before giving it to the backend
    let vert_nb = self.guess_vertex_len()?;
    let inst_nb = self.guess_instance_len()?;

    unsafe {
      self
        .backend
        .build(
          self.vertex_data,
          self.index_data,
          self.instance_data,
          self.mode,
          vert_nb,
          inst_nb,
          self.restart_index,
        )
        .map(|repr| Tess {
          repr,
          _phantom: PhantomData,
        })
    }
  }

  fn guess_vertex_len(&self) -> Result<usize, TessError> {
    // if we don’t have an explicit number of vertex to render, we rely on the vertex data coherent
    // length
    if self.vert_nb == 0 {
      // if we don’t have index data, get the length from the vertex data; otherwise, get it from
      // the index data
      if self.index_data.is_empty() {
        match self.vertex_data {
          Some(ref data) => V::coherent_len(data),
          None => Err(TessError::NoData),
        }
      } else {
        Ok(self.index_data.len())
      }
    } else {
      // ensure the length is okay regarding what we have in the index / vertex data
      if self.index_data.is_empty() {
        match self.vertex_data {
          Some(ref data) => {
            let coherent_len = V::coherent_len(data)?;

            if self.vert_nb <= coherent_len {
              Ok(self.vert_nb)
            } else {
              Err(TessError::length_incoherency(self.vert_nb))
            }
          }

          None => Ok(self.vert_nb),
        }
      } else {
        if self.vert_nb <= self.index_data.len() {
          Ok(self.vert_nb)
        } else {
          Err(TessError::length_incoherency(self.vert_nb))
        }
      }
    }
  }

  fn guess_instance_len(&self) -> Result<usize, TessError> {
    // as with vertex length, we first check for an explicit number, and if none, we deduce it
    if self.inst_nb == 0 {
      match self.instance_data {
        Some(ref data) => W::coherent_len(data),
        None => Ok(0),
      }
    } else {
      let coherent_len = self
        .instance_data
        .as_ref()
        .ok_or_else(|| TessError::attributeless_error("missing number of instances"))
        .and_then(W::coherent_len)?;

      if self.inst_nb <= coherent_len {
        Ok(self.inst_nb)
      } else {
        Err(TessError::length_incoherency(self.inst_nb))
      }
    }
  }
}

/// A GPU vertex set.
///
/// Vertex set are the only way to represent space data. The dimension you choose is up to you, but
/// people will typically want to represent objects in 2D or 3D. A _vertex_ is a point in such
/// space and it carries _properties_ — called _“vertex attributes_”. Those attributes are
/// completely free to use. They must, however, be compatible with the [`Semantics`] and [`Vertex`]
/// traits.
///
/// [`Tess`] are built out of [`TessBuilder`] and can be _sliced_ to edit their content in-line —
/// by mapping the GPU memory region and access data via slices.
///
/// [`Semantics`]: crate::vertex::Semantics
/// [`TessGate`]: crate::tess_gate::TessGate
#[derive(Debug)]
pub struct Tess<B, V, I = (), W = (), S = Interleaved>
where
  B: ?Sized + TessBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  pub(crate) repr: B::TessRepr,
  _phantom: PhantomData<*const S>,
}

impl<B, V, I, W, S> Tess<B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  /// Get the number of vertices.
  pub fn vert_nb(&self) -> usize {
    unsafe { B::tess_vertices_nb(&self.repr) }
  }

  /// Get the number of indices.
  pub fn inst_nb(&self) -> usize {
    unsafe { B::tess_instances_nb(&self.repr) }
  }

  /// Slice the [`Tess`] in order to read its content via usual slices.
  ///
  /// This method gives access to the underlying _index storage_.
  pub fn indices(&mut self) -> Result<Indices<B, V, I, W, S>, TessMapError>
  where
    B: IndexSliceBackend<V, I, W, S>,
  {
    unsafe { B::indices(&mut self.repr).map(|repr| Indices { repr }) }
  }

  /// Slice the [`Tess`] in order to read its content via usual slices.
  ///
  /// This method gives access to the underlying _index storage_.
  pub fn indices_mut(&mut self) -> Result<IndicesMut<B, V, I, W, S>, TessMapError>
  where
    B: IndexSliceBackend<V, I, W, S>,
  {
    unsafe { B::indices_mut(&mut self.repr).map(|repr| IndicesMut { repr }) }
  }
}

impl<B, V, I, W> Tess<B, V, I, W, Interleaved>
where
  B: ?Sized + TessBackend<V, I, W, Interleaved>,
  V: TessVertexData<Interleaved>,
  I: TessIndex,
  W: TessVertexData<Interleaved>,
{
  /// Slice the [`Tess`] in order to read its content via usual slices.
  ///
  /// This method gives access to the underlying _vertex storage_.
  pub fn vertices(&mut self) -> Result<Vertices<B, V, I, W, Interleaved, V>, TessMapError>
  where
    B: VertexSliceBackend<V, I, W, Interleaved, V>,
  {
    unsafe { B::vertices(&mut self.repr).map(|repr| Vertices { repr }) }
  }

  /// Slice the [`Tess`] in order to read its content via usual slices.
  ///
  /// This method gives access to the underlying _vertex storage_.
  pub fn vertices_mut(&mut self) -> Result<VerticesMut<B, V, I, W, Interleaved, V>, TessMapError>
  where
    B: VertexSliceBackend<V, I, W, Interleaved, V>,
  {
    unsafe { B::vertices_mut(&mut self.repr).map(|repr| VerticesMut { repr }) }
  }

  /// Slice the [`Tess`] in order to read its content via usual slices.
  ///
  /// This method gives access to the underlying _instance storage_.
  pub fn instances(&mut self) -> Result<Instances<B, V, I, W, Interleaved, V>, TessMapError>
  where
    B: InstanceSliceBackend<V, I, W, Interleaved, V>,
  {
    unsafe { B::instances(&mut self.repr).map(|repr| Instances { repr }) }
  }

  /// Slice the [`Tess`] in order to read its content via usual slices.
  ///
  /// This method gives access to the underlying _instance storage_.
  pub fn instances_mut(&mut self) -> Result<InstancesMut<B, V, I, W, Interleaved, V>, TessMapError>
  where
    B: InstanceSliceBackend<V, I, W, Interleaved, V>,
  {
    unsafe { B::instances_mut(&mut self.repr).map(|repr| InstancesMut { repr }) }
  }
}

impl<B, V, I, W> Tess<B, V, I, W, Deinterleaved>
where
  B: ?Sized + TessBackend<V, I, W, Deinterleaved>,
  V: TessVertexData<Deinterleaved>,
  I: TessIndex,
  W: TessVertexData<Deinterleaved>,
{
  /// Slice the [`Tess`] in order to read its content via usual slices.
  ///
  /// This method gives access to the underlying _vertex storage_.
  pub fn vertices<T>(&mut self) -> Result<Vertices<B, V, I, W, Deinterleaved, T>, TessMapError>
  where
    B: VertexSliceBackend<V, I, W, Deinterleaved, T>,
    V: Deinterleave<T>,
  {
    unsafe { B::vertices(&mut self.repr).map(|repr| Vertices { repr }) }
  }

  /// Slice the [`Tess`] in order to read its content via usual slices.
  ///
  /// This method gives access to the underlying _vertex storage_.
  pub fn vertices_mut<T>(
    &mut self,
  ) -> Result<VerticesMut<B, V, I, W, Deinterleaved, T>, TessMapError>
  where
    B: VertexSliceBackend<V, I, W, Deinterleaved, T>,
    V: Deinterleave<T>,
  {
    unsafe { B::vertices_mut(&mut self.repr).map(|repr| VerticesMut { repr }) }
  }

  /// Slice the [`Tess`] in order to read its content via usual slices.
  ///
  /// This method gives access to the underlying _instance storage_.
  pub fn instances<T>(&mut self) -> Result<Instances<B, V, I, W, Deinterleaved, T>, TessMapError>
  where
    B: InstanceSliceBackend<V, I, W, Deinterleaved, T>,
    W: Deinterleave<T>,
  {
    unsafe { B::instances(&mut self.repr).map(|repr| Instances { repr }) }
  }

  /// Slice the [`Tess`] in order to read its content via usual slices.
  ///
  /// This method gives access to the underlying _instance storage_.
  pub fn instances_mut<T>(
    &mut self,
  ) -> Result<InstancesMut<B, V, I, W, Deinterleaved, T>, TessMapError>
  where
    B: InstanceSliceBackend<V, I, W, Deinterleaved, T>,
    W: Deinterleave<T>,
  {
    unsafe { B::instances_mut(&mut self.repr).map(|repr| InstancesMut { repr }) }
  }
}

/// TODO
#[derive(Debug)]
pub struct Vertices<B, V, I, W, S, T>
where
  B: ?Sized + TessBackend<V, I, W, S> + VertexSliceBackend<V, I, W, S, T>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  repr: B::VertexSliceRepr,
}

impl<B, V, I, W, S, T> Deref for Vertices<B, V, I, W, S, T>
where
  B: ?Sized + TessBackend<V, I, W, S> + VertexSliceBackend<V, I, W, S, T>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  type Target = [T];

  fn deref(&self) -> &Self::Target {
    self.repr.deref()
  }
}

/// TODO
#[derive(Debug)]
pub struct VerticesMut<B, V, I, W, S, T>
where
  B: ?Sized + TessBackend<V, I, W, S> + VertexSliceBackend<V, I, W, S, T>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  repr: B::VertexSliceMutRepr,
}

impl<B, V, I, W, S, T> Deref for VerticesMut<B, V, I, W, S, T>
where
  B: ?Sized + TessBackend<V, I, W, S> + VertexSliceBackend<V, I, W, S, T>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  type Target = [T];

  fn deref(&self) -> &Self::Target {
    self.repr.deref()
  }
}

impl<B, V, I, W, S, T> DerefMut for VerticesMut<B, V, I, W, S, T>
where
  B: ?Sized + TessBackend<V, I, W, S> + VertexSliceBackend<V, I, W, S, T>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  fn deref_mut(&mut self) -> &mut Self::Target {
    self.repr.deref_mut()
  }
}

/// TODO
#[derive(Debug)]
pub struct Indices<B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S> + IndexSliceBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  repr: B::IndexSliceRepr,
}

impl<B, V, I, W, S> Deref for Indices<B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S> + IndexSliceBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  type Target = [I];

  fn deref(&self) -> &Self::Target {
    self.repr.deref()
  }
}

/// TODO
#[derive(Debug)]
pub struct IndicesMut<B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S> + IndexSliceBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  repr: B::IndexSliceMutRepr,
}

impl<B, V, I, W, S> Deref for IndicesMut<B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S> + IndexSliceBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  type Target = [I];

  fn deref(&self) -> &Self::Target {
    self.repr.deref()
  }
}

impl<B, V, I, W, S> DerefMut for IndicesMut<B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S> + IndexSliceBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  fn deref_mut(&mut self) -> &mut Self::Target {
    self.repr.deref_mut()
  }
}

/// TODO
#[derive(Debug)]
pub struct Instances<B, V, I, W, S, T>
where
  B: ?Sized + TessBackend<V, I, W, S> + InstanceSliceBackend<V, I, W, S, T>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  repr: B::InstanceSliceRepr,
}

impl<B, V, I, W, S, T> Deref for Instances<B, V, I, W, S, T>
where
  B: ?Sized + TessBackend<V, I, W, S> + InstanceSliceBackend<V, I, W, S, T>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  type Target = [T];

  fn deref(&self) -> &Self::Target {
    self.repr.deref()
  }
}

/// TODO
#[derive(Debug)]
pub struct InstancesMut<B, V, I, W, S, T>
where
  B: ?Sized + TessBackend<V, I, W, S> + InstanceSliceBackend<V, I, W, S, T>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  repr: B::InstanceSliceMutRepr,
}

impl<B, V, I, W, S, T> Deref for InstancesMut<B, V, I, W, S, T>
where
  B: ?Sized + TessBackend<V, I, W, S> + InstanceSliceBackend<V, I, W, S, T>,
  S: ?Sized,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
{
  type Target = [T];

  fn deref(&self) -> &Self::Target {
    self.repr.deref()
  }
}

impl<B, V, I, W, S, T> DerefMut for InstancesMut<B, V, I, W, S, T>
where
  B: ?Sized + TessBackend<V, I, W, S> + InstanceSliceBackend<V, I, W, S, T>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  fn deref_mut(&mut self) -> &mut Self::Target {
    self.repr.deref_mut()
  }
}

/// Possible error that might occur while dealing with [`TessView`] objects.
#[non_exhaustive]
#[derive(Debug, Eq, PartialEq)]
pub enum TessViewError {
  /// The view has incorrect size.
  ///
  /// data.
  IncorrectViewWindow {
    /// Capacity of data in the [`Tess`].
    capacity: usize,
    /// Requested start.
    start: usize,
    /// Requested number.
    nb: usize,
  },
}

impl fmt::Display for TessViewError {
  fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
    match self {
      TessViewError::IncorrectViewWindow{ capacity, start, nb } => {
        write!(f, "TessView incorrect window error: requested slice size {} starting at {}, but capacity is only {}",
          nb, start, capacity)
      }
    }
  }
}

impl error::Error for TessViewError {}

/// A _view_ into a GPU tessellation.
#[derive(Clone)]
pub struct TessView<'a, B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  /// Tessellation to render.
  pub(crate) tess: &'a Tess<B, V, I, W, S>,
  /// Start index (vertex) in the tessellation.
  pub(crate) start_index: usize,
  /// Number of vertices to pick from the tessellation.
  pub(crate) vert_nb: usize,
  /// Number of instances to render.
  pub(crate) inst_nb: usize,
}

impl<'a, B, V, I, W, S> TessView<'a, B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  /// Create a view that is using the whole input [`Tess`].
  pub fn whole(tess: &'a Tess<B, V, I, W, S>) -> Self {
    TessView {
      tess,
      start_index: 0,
      vert_nb: tess.vert_nb(),
      inst_nb: tess.inst_nb(),
    }
  }

  /// Create a view that is using the whole input [`Tess`] with `inst_nb` instances.
  pub fn inst_whole(tess: &'a Tess<B, V, I, W, S>, inst_nb: usize) -> Self {
    TessView {
      tess,
      start_index: 0,
      vert_nb: tess.vert_nb(),
      inst_nb,
    }
  }

  /// Create a view that is using only a subpart of the input [`Tess`], starting from the beginning
  /// of the vertices.
  pub fn sub(tess: &'a Tess<B, V, I, W, S>, vert_nb: usize) -> Result<Self, TessViewError> {
    let capacity = tess.vert_nb();

    if vert_nb > capacity {
      return Err(TessViewError::IncorrectViewWindow {
        capacity,
        start: 0,
        nb: vert_nb,
      });
    }

    Ok(TessView {
      tess,
      start_index: 0,
      vert_nb,
      inst_nb: tess.inst_nb(),
    })
  }

  /// Create a view that is using only a subpart of the input [`Tess`], starting from the beginning
  /// of the vertices, with `inst_nb` instances.
  pub fn inst_sub(
    tess: &'a Tess<B, V, I, W, S>,
    vert_nb: usize,
    inst_nb: usize,
  ) -> Result<Self, TessViewError> {
    let capacity = tess.vert_nb();

    if vert_nb > capacity {
      return Err(TessViewError::IncorrectViewWindow {
        capacity,
        start: 0,
        nb: vert_nb,
      });
    }

    Ok(TessView {
      tess,
      start_index: 0,
      vert_nb,
      inst_nb,
    })
  }

  /// Create a view that is using only a subpart of the input [`Tess`], starting from `start`, with
  /// `nb` vertices.
  pub fn slice(
    tess: &'a Tess<B, V, I, W, S>,
    start: usize,
    nb: usize,
  ) -> Result<Self, TessViewError> {
    let capacity = tess.vert_nb();

    if start > capacity || nb + start > capacity {
      return Err(TessViewError::IncorrectViewWindow {
        capacity,
        start,
        nb,
      });
    }

    Ok(TessView {
      tess,
      start_index: start,
      vert_nb: nb,
      inst_nb: tess.inst_nb(),
    })
  }

  /// Create a view that is using only a subpart of the input [`Tess`], starting from `start`, with
  /// `nb` vertices and `inst_nb` instances.
  pub fn inst_slice(
    tess: &'a Tess<B, V, I, W, S>,
    start: usize,
    nb: usize,
    inst_nb: usize,
  ) -> Result<Self, TessViewError> {
    let capacity = tess.vert_nb();

    if start > capacity || nb + start > capacity {
      return Err(TessViewError::IncorrectViewWindow {
        capacity,
        start,
        nb,
      });
    }

    Ok(TessView {
      tess,
      start_index: start,
      vert_nb: nb,
      inst_nb,
    })
  }
}

impl<'a, B, V, I, W, S> From<&'a Tess<B, V, I, W, S>> for TessView<'a, B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  fn from(tess: &'a Tess<B, V, I, W, S>) -> Self {
    TessView::whole(tess)
  }
}

/// [`TessView`] helper trait.
///
/// This trait helps to create [`TessView`] by allowing using the Rust range operators, such as
///
/// - [`..`](https://doc.rust-lang.org/std/ops/struct.RangeFull.html); the full range operator.
/// - [`a .. b`](https://doc.rust-lang.org/std/ops/struct.Range.html); the range operator.
/// - [`a ..`](https://doc.rust-lang.org/std/ops/struct.RangeFrom.html); the range-from operator.
/// - [`.. b`](https://doc.rust-lang.org/std/ops/struct.RangeTo.html); the range-to operator.
/// - [`..= b`](https://doc.rust-lang.org/std/ops/struct.RangeToInclusive.html); the inclusive range-to operator.
pub trait View<B, V, I, W, S, Idx>
where
  B: ?Sized + TessBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  /// Slice a tessellation object and yields a [`TessView`] according to the index range.
  fn view(&self, idx: Idx) -> Result<TessView<B, V, I, W, S>, TessViewError>;

  /// Slice a tesselation object and yields a [`TessView`] according to the index range with as
  /// many instances as specified.
  fn inst_view(&self, idx: Idx, inst_nb: usize) -> Result<TessView<B, V, I, W, S>, TessViewError>;
}

impl<B, V, I, W, S> View<B, V, I, W, S, RangeFull> for Tess<B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  fn view(&self, _: RangeFull) -> Result<TessView<B, V, I, W, S>, TessViewError> {
    Ok(TessView::whole(self))
  }

  fn inst_view(
    &self,
    _: RangeFull,
    inst_nb: usize,
  ) -> Result<TessView<B, V, I, W, S>, TessViewError> {
    Ok(TessView::inst_whole(self, inst_nb))
  }
}

impl<B, V, I, W, S> View<B, V, I, W, S, RangeTo<usize>> for Tess<B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  fn view(&self, to: RangeTo<usize>) -> Result<TessView<B, V, I, W, S>, TessViewError> {
    TessView::sub(self, to.end)
  }

  fn inst_view(
    &self,
    to: RangeTo<usize>,
    inst_nb: usize,
  ) -> Result<TessView<B, V, I, W, S>, TessViewError> {
    TessView::inst_sub(self, to.end, inst_nb)
  }
}

impl<B, V, I, W, S> View<B, V, I, W, S, RangeFrom<usize>> for Tess<B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  fn view(&self, from: RangeFrom<usize>) -> Result<TessView<B, V, I, W, S>, TessViewError> {
    TessView::slice(self, from.start, self.vert_nb() - from.start)
  }

  fn inst_view(
    &self,
    from: RangeFrom<usize>,
    inst_nb: usize,
  ) -> Result<TessView<B, V, I, W, S>, TessViewError> {
    TessView::inst_slice(self, from.start, self.vert_nb() - from.start, inst_nb)
  }
}

impl<B, V, I, W, S> View<B, V, I, W, S, Range<usize>> for Tess<B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  fn view(&self, range: Range<usize>) -> Result<TessView<B, V, I, W, S>, TessViewError> {
    TessView::slice(self, range.start, range.end - range.start)
  }

  fn inst_view(
    &self,
    range: Range<usize>,
    inst_nb: usize,
  ) -> Result<TessView<B, V, I, W, S>, TessViewError> {
    TessView::inst_slice(self, range.start, range.end - range.start, inst_nb)
  }
}

impl<B, V, I, W, S> View<B, V, I, W, S, RangeInclusive<usize>> for Tess<B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  fn view(&self, range: RangeInclusive<usize>) -> Result<TessView<B, V, I, W, S>, TessViewError> {
    let start = *range.start();
    let end = *range.end();
    TessView::slice(self, start, end - start + 1)
  }

  fn inst_view(
    &self,
    range: RangeInclusive<usize>,
    inst_nb: usize,
  ) -> Result<TessView<B, V, I, W, S>, TessViewError> {
    let start = *range.start();
    let end = *range.end();
    TessView::inst_slice(self, start, end - start + 1, inst_nb)
  }
}

impl<B, V, I, W, S> View<B, V, I, W, S, RangeToInclusive<usize>> for Tess<B, V, I, W, S>
where
  B: ?Sized + TessBackend<V, I, W, S>,
  V: TessVertexData<S>,
  I: TessIndex,
  W: TessVertexData<S>,
  S: ?Sized,
{
  fn view(&self, to: RangeToInclusive<usize>) -> Result<TessView<B, V, I, W, S>, TessViewError> {
    TessView::sub(self, to.end + 1)
  }

  fn inst_view(
    &self,
    to: RangeToInclusive<usize>,
    inst_nb: usize,
  ) -> Result<TessView<B, V, I, W, S>, TessViewError> {
    TessView::inst_sub(self, to.end + 1, inst_nb)
  }
}