1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

use crate::{
    raw,
    peripherals::{
        rng::Rng,
    },
    typestates::{
        init_state,
    }
};

#[derive(Copy, Clone)]
pub enum Region {
    Region0,
    Region1,
    Region2,
}

// crate::wrap_stateful_peripheral!(Rtc, RTC);
pub struct Prince<State = init_state::Unknown> {
    pub(crate) raw: raw::PRINCE,
    pub _state: State,
}

impl core::convert::From<raw::PRINCE> for Prince {
    fn from(raw: raw::PRINCE) -> Self {
        Prince::new(raw)
    }
}

impl Prince {

    pub fn new(raw: raw::PRINCE) -> Self {
        Prince { raw , _state: init_state::Unknown }
    }

    // PRINCE doesn't actually get enabled or disabled,
    // but am using this pattern to enforce that random numbers get written to the mask registers.
    pub fn enabled(self, rng: &Rng<init_state::Enabled>) -> Prince<init_state::Enabled> {

        // "It is a good practice to set this register to a different random value each time the system is booted."
        self.raw.mask_lsb.write(|w| unsafe {w.bits( rng.get_random_u32() )});
        self.raw.mask_msb.write(|w| unsafe {w.bits( rng.get_random_u32() )});

        // Disable encrypted writes
        self.raw.enc_enable.write(|w| w.en().clear_bit());

        self.raw.base_addr2.write(|w| unsafe{w.bits(0x80000)});
        self.raw.base_addr1.write(|w| unsafe{w.bits(0x40000)});

        // Default is 0.
        // self.raw.base_addr0.write(|w| unsafe{w.bits(0x00000)});

        Prince {
            raw: self.raw,
            _state: init_state::Enabled(()),
        }
    }
}

impl Prince<init_state::Enabled> {

    #[inline]
    pub fn enable_all_region_2(&self) {
        self.raw.sr_enable2.write(|w| unsafe{w.bits(0xffffffff)});
    }
    #[inline]
    pub fn enable_all_region_1(&self) {
        self.raw.sr_enable1.write(|w| unsafe{w.bits(0xffffffff)});
    }
    #[inline]
    pub fn enable_all_region_0(&self) {
        self.raw.sr_enable0.write(|w| unsafe{w.bits(0xffffffff)});
    }

    #[inline]
    pub fn disable_all_region_2(&self) {
        self.raw.sr_enable2.write(|w| unsafe{w.bits(0x0)});
    }
    #[inline]
    pub fn disable_all_region_1(&self) {
        self.raw.sr_enable1.write(|w| unsafe{w.bits(0x0)});
    }
    #[inline]
    pub fn disable_all_region_0(&self) {
        self.raw.sr_enable0.write(|w| unsafe{w.bits(0x0)});
    }

    pub fn enable_region_2_for<R>(&self, f: impl FnOnce() -> R) -> R {
        self.enable_all_region_2();
        let result = f();
        self.disable_all_region_2();
        result
    }

    pub fn enable_region_1_for<R>(&self, f: impl FnOnce() -> R) -> R {
        self.enable_all_region_1();
        let result = f();
        self.disable_all_region_1();
        result
    }

    pub fn enable_region_0_for<R>(&self, f: impl FnOnce() -> R) -> R {
        self.enable_all_region_0();
        let result = f();
        self.disable_all_region_0();
        result
    }

    pub fn set_region_enable(&self, region: Region, enable: u32) {
        match region {
            Region::Region0 =>
                self.raw.sr_enable0.write(|w| unsafe{w.bits(enable)}),
            Region::Region1 =>
                self.raw.sr_enable1.write(|w| unsafe{w.bits(enable)}),
            Region::Region2 =>
                self.raw.sr_enable2.write(|w| unsafe{w.bits(enable)}),
        };
    }

    pub fn write_encrypted<R>(&mut self, f: impl FnOnce(&mut Self) -> R) -> R {
        // Immediately prior to flash programming, set the ENC_ENABLE.EN bit
        unsafe { self.enable_encrypted_write(); }

        let result = f(self);

        // After completion of flash programming clear ENC_ENABLE.EN, to prevent
        // unintended PRINCE encryption of writes
        unsafe { self.disable_encrypted_write(); }
        result
    }

    /// marked unsafe to discourage unpaired use; prefer `write_encrypted`
    pub unsafe fn enable_encrypted_write(&mut self) {
        // Immediately prior to flash programming, set the ENC_ENABLE.EN bit
        self.raw.enc_enable.write(|w| w.en().set_bit());
    }

    /// marked unsafe to discourage unpaired use; prefer `write_encrypted`
    pub unsafe fn disable_encrypted_write(&mut self) {
        // After completion of flash programming clear ENC_ENABLE.EN, to prevent
        // unintended PRINCE encryption of writes
        self.raw.enc_enable.write(|w| w.en().clear_bit());
    }

}