1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#![no_std]
#![warn(missing_docs)]

//! Lokathor's crate of core-only odds and ends.

use core::{
  marker::PhantomData,
  mem::{align_of, size_of},
  num::*,
  ptr::NonNull,
};

pub mod arch;

mod marker;
pub use marker::*;

/// The
/// [wrapping](https://doc.rust-lang.org/std/primitive.i8.html#method.wrapping_abs)
/// absolute value of any signed integer.
///
/// * `branchless_abs!(a, type)`
///
/// Branchless, so you can use it in a `const` context.
#[macro_export]
macro_rules! branchless_abs {
  ($x:expr, $u:ty) => {{
    const SHIFT: u32 = core::mem::size_of::<$u>().wrapping_mul(8).wrapping_sub(1) as u32;
    let mask = ($x as $u).wrapping_shr(SHIFT);
    ($x as $u).wrapping_add(mask) ^ mask
  }};
}

/// The minimum of two integer values.
///
/// * `branchless_min!(a, b, type)`
///
/// Branchless, so you can use it in a `const` context.
#[macro_export]
macro_rules! branchless_min {
  ($x:expr, $y:expr, $u:ty) => {
    $y ^ (($x ^ $y) & (($x < $y) as $u).wrapping_neg())
  };
}

/// The maximum of two integer values.
///
/// * `branchless_max!(a, b, type)`
///
/// Branchless, so you can use it in a `const` context.
#[macro_export]
macro_rules! branchless_max {
  ($x:expr, $y:expr, $u:ty) => {
    $x ^ (($x ^ $y) & (($x < $y) as $u).wrapping_neg())
  };
}

/// If an unsigned value is a power of 2 (or is 0).
///
/// * `branchless_pow_of_2_or_zero!(a)`
///
/// Branchless, so you can use it in a `const` context.
#[macro_export]
macro_rules! branchless_pow_of_2_or_zero {
  ($v:expr) => {
    $v & $v.wrapping_sub(1) == 0
  };
}

/// If two signed values have opposite sign (zero counts as positive).
///
/// * `branchless_opposite_sign!(x, y)`
///
/// Branchless, so you can use it in a `const` context.
#[macro_export]
macro_rules! branchless_opposite_sign {
  ($x:expr, $y:expr) => {
    ($x ^ $y) < 0
  };
}

/// Force bits of an unsigned value off or on.
///
/// * `branchless_force_bits!(flag, mask, word, type)`
///
/// Branchless, so you can use it in a `const` context.
#[macro_export]
macro_rules! branchless_force_bits {
  ($f:expr, $m:expr, $w:expr, $t:ty) => {
    // Note(Lokathor): super-scalar form: (w & ~m) | (-f & m)
    $w ^ ((($f as $t).wrapping_neg() ^ $w) & $m)
  };
}

/// Negate a signed integer value or not.
///
/// * `branchless_negate!(negate, val, type)`
///
/// Branchless, so you can use it in a `const` context.
#[macro_export]
macro_rules! branchless_negate {
  ($f_negate:expr, $v:expr, $t:ty) => {
    ($v ^ ($f_negate as $t).wrapping_neg()).wrapping_add($f_negate as $t)
  };
}

/// Bitwise merge two values according to a bit mask.
///
/// * `branchless_masked_merge!(mask_yes, mask_no, mask)`
///
/// Branchless, so you can use it in a `const` context.
#[macro_export]
macro_rules! branchless_masked_merge {
  ($mask_yes:expr, $mask_no:expr, $mask:expr) => {
    (($mask_yes ^ $mask_no) & $mask) ^ $mask_no
  };
}

/// Wrap the inner value to a minimum alignment of 2.
///
/// This is for alignment shenanigans, you're not expected to use it in a
/// struct, more just in function arguments and such.
#[derive(Debug, Clone, Copy)]
#[repr(align(2))]
pub struct Align2<T>(pub T);

/// Wrap the inner value to a minimum alignment of 4.
///
/// This is for alignment shenanigans, you're not expected to use it in a
/// struct, more just in function arguments and such.
#[derive(Debug, Clone, Copy)]
#[repr(align(4))]
pub struct Align4<T>(pub T);

/// Wrap the inner value to a minimum alignment of 8.
///
/// This is for alignment shenanigans, you're not expected to use it in a
/// struct, more just in function arguments and such.
#[derive(Debug, Clone, Copy)]
#[repr(align(8))]
pub struct Align8<T>(pub T);

/// Wrap the inner value to a minimum alignment of 16.
///
/// This is for alignment shenanigans, you're not expected to use it in a
/// struct, more just in function arguments and such.
#[derive(Debug, Clone, Copy)]
#[repr(align(16))]
pub struct Align16<T>(pub T);

/// Wrap the inner value to a minimum alignment of 32.
///
/// This is for alignment shenanigans, you're not expected to use it in a
/// struct, more just in function arguments and such.
#[derive(Debug, Clone, Copy)]
#[repr(align(32))]
pub struct Align32<T>(pub T);

/// Re-interprets `&T` as `&[u8]`.
///
/// Any ZST becomes an empty slice, and in that case the pointer value of that
/// empty slice might not match the pointer value of the input reference.
#[inline]
pub fn bytes_of<T: Pod>(t: &T) -> &[u8] {
  try_cast_slice::<T, u8>(core::slice::from_ref(t)).unwrap_or(&[])
}

/// Re-interprets `&mut T` as `&mut [u8]`.
///
/// Any ZST becomes an empty slice, and in that case the pointer value of that
/// empty slice might not match the pointer value of the input reference.
#[inline]
pub fn bytes_of_mut<T: Pod>(t: &mut T) -> &mut [u8] {
  try_cast_slice_mut::<T, u8>(core::slice::from_mut(t)).unwrap_or(&mut [])
}

/// As `align_to`, but safe because of the [`Pod`] bound.
#[inline]
pub fn pod_align_to<T: Pod, U: Pod>(vals: &[T]) -> (&[T], &[U], &[T]) {
  unsafe { vals.align_to::<U>() }
}

/// As `align_to_mut`, but safe because of the [`Pod`] bound.
#[inline]
pub fn pod_align_to_mut<T: Pod, U: Pod>(vals: &mut [T]) -> (&mut [T], &mut [U], &mut [T]) {
  unsafe { vals.align_to_mut::<U>() }
}

/// The things that can go wrong when casting between [`Pod`] data forms.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum PodCastError {
  /// You tried to cast a slice to an element type with a higher alignment
  /// requirement but the slice wasn't aligned.
  TargetAlignmentGreaterAndInputNotAligned,
  /// You tried to cast between a zero-sized type and a non-zero-sized type.
  /// Because the output slice resizes based on the input and output types, it's
  /// fairly nonsensical to throw a ZST into the mix. You can go from a ZST to
  /// another ZST, if you want.
  CantConvertBetweenZSTAndNonZST,
  /// If the element size changes then the output slice changes length
  /// accordingly. If the output slice wouldn't be a whole number of elements
  /// then the conversion fails.
  OutputSliceWouldHaveSlop,
  /// When casting an individual `T`, `&T`, or `&mut T` value the source size
  /// and destination size must be an exact match.
  SizeMismatch,
}

/// As [`try_cast`], but unwraps the result for you.
#[inline]
pub fn cast<A: Pod, B: Pod>(a: A) -> B {
  try_cast(a).unwrap()
}

/// Try to cast `T` into `U`.
///
/// ## Failure
///
/// * If the types don't have the same size this fails.
#[inline]
pub fn try_cast<A: Pod, B: Pod>(a: A) -> Result<B, PodCastError> {
  if size_of::<A>() == size_of::<B>() {
    let mut b = B::zeroed();
    // Note(Lokathor): We copy in terms of `u8` because that allows us to bypass
    // any potential alignment difficulties.
    let ap = &a as *const A as *const u8;
    let bp = &mut b as *mut B as *mut u8;
    unsafe { ap.copy_to_nonoverlapping(bp, size_of::<A>()) };
    Ok(b)
  } else {
    Err(PodCastError::SizeMismatch)
  }
}

/// As [`try_cast_slice`], but unwraps the result for you.
#[inline]
pub fn cast_slice<A: Pod, B: Pod>(a: &[A]) -> &[B] {
  try_cast_slice(a).unwrap()
}

/// As [`try_cast_slice_mut`], but unwraps the result for you.
#[inline]
pub fn cast_slice_mut<A: Pod, B: Pod>(a: &[A]) -> &[B] {
  try_cast_slice(a).unwrap()
}

/// As [`try_cast_ref`], but unwraps the result for you.
#[inline]
pub fn cast_ref<A: Pod, B: Pod>(a: &A) -> &B {
  try_cast_ref(a).unwrap()
}

/// As [`try_cast_mut`], but unwraps the result for you.
#[inline]
pub fn cast_mut<A: Pod, B: Pod>(a: &mut A) -> &mut B {
  try_cast_mut(a).unwrap()
}

/// Try to convert a `&T` into `&U`.
///
/// ## Failure
///
/// * If the reference isn't aligned in the new type
/// * If the source type and target type aren't the same size.
#[inline]
pub fn try_cast_ref<A: Pod, B: Pod>(a: &A) -> Result<&B, PodCastError> {
  // Note(Lokathor): everything with `align_of` and `size_of` will optimize away
  // after monomorphization.
  if align_of::<B>() > align_of::<A>() && (a as *const A as usize) % align_of::<B>() != 0 {
    Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
  } else if size_of::<B>() == size_of::<A>() {
    Ok(unsafe {
      (a as *const A as *const B)
        .as_ref()
        .unwrap_or_else(|| core::hint::unreachable_unchecked())
    })
  } else {
    Err(PodCastError::SizeMismatch)
  }
}

/// As [`try_cast_ref`], but `mut`.
#[inline]
pub fn try_cast_mut<A: Pod, B: Pod>(a: &mut A) -> Result<&mut B, PodCastError> {
  // Note(Lokathor): everything with `align_of` and `size_of` will optimize away
  // after monomorphization.
  if align_of::<B>() > align_of::<A>() && (a as *mut A as usize) % align_of::<B>() != 0 {
    Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
  } else if size_of::<B>() == size_of::<A>() {
    Ok(unsafe {
      (a as *mut A as *mut B)
        .as_mut()
        .unwrap_or_else(|| core::hint::unreachable_unchecked())
    })
  } else {
    Err(PodCastError::SizeMismatch)
  }
}

/// Try to convert `&[T]` into `&[U]` (possibly with a change in length).
///
/// * `input.as_ptr() as usize == output.as_ptr() as usize`
/// * `input.len() * size_of::<A>() == output.len() * size_of::<B>()`
///
/// ## Failure
///
/// * If the target type has a greater alignment requirement and the input slice
///   isn't aligned.
/// * If the target element type is a different size from the current element
///   type, and the output slice wouldn't be a whole number of elements when
///   accounting for the size change (eg: three `u16` values is 1.5 `u32`
///   values, so that's a failure).
/// * Similarly, you can't convert between a
///   [ZST](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts)
///   and a non-ZST.
#[inline]
pub fn try_cast_slice<A: Pod, B: Pod>(a: &[A]) -> Result<&[B], PodCastError> {
  // Note(Lokathor): everything with `align_of` and `size_of` will optimize away
  // after monomorphization.
  if align_of::<B>() > align_of::<A>() && (a.as_ptr() as usize) % align_of::<B>() != 0 {
    Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
  } else if size_of::<B>() == size_of::<A>() {
    Ok(unsafe { core::slice::from_raw_parts(a.as_ptr() as *const B, a.len()) })
  } else if size_of::<A>() == 0 || size_of::<B>() == 0 {
    Err(PodCastError::CantConvertBetweenZSTAndNonZST)
  } else if core::mem::size_of_val(a) % size_of::<B>() == 0 {
    let new_len = core::mem::size_of_val(a) / size_of::<B>();
    Ok(unsafe { core::slice::from_raw_parts(a.as_ptr() as *const B, new_len) })
  } else {
    Err(PodCastError::OutputSliceWouldHaveSlop)
  }
}

/// As [`try_cast_slice`], but `mut`.
#[inline]
pub fn try_cast_slice_mut<A: Pod, B: Pod>(a: &mut [A]) -> Result<&mut [B], PodCastError> {
  // Note(Lokathor): everything with `align_of` and `size_of` will optimize away
  // after monomorphization.
  if align_of::<B>() > align_of::<A>() && (a.as_ptr() as usize) % align_of::<B>() != 0 {
    Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
  } else if size_of::<B>() == size_of::<A>() {
    Ok(unsafe { core::slice::from_raw_parts_mut(a.as_ptr() as *mut B, a.len()) })
  } else if size_of::<A>() == 0 || size_of::<B>() == 0 {
    Err(PodCastError::CantConvertBetweenZSTAndNonZST)
  } else if core::mem::size_of_val(a) % size_of::<B>() == 0 {
    let new_len = core::mem::size_of_val(a) / size_of::<B>();
    Ok(unsafe { core::slice::from_raw_parts_mut(a.as_ptr() as *mut B, new_len) })
  } else {
    Err(PodCastError::OutputSliceWouldHaveSlop)
  }
}

/// `f32` absolute value, because it's `std` only right now.
///
/// will probably be removed if `f32::abs` becomes `core`.
#[inline(always)]
pub fn abs_f32(f: f32) -> f32 {
  // Note(Lokathor): Only tested on little-endian, but ScottMCM of T-lang claims
  // that this will be fine on big-endian machines so #TRUST
  f32::from_bits(f.to_bits() & (core::i32::MAX as u32))
}

/// `f64` absolute value, because it's `std` only right now.
///
/// will probably be removed if `f64::abs` becomes `core`.
#[inline]
pub fn abs_f64(f: f64) -> f64 {
  // Note(Lokathor): Only tested on little-endian, but ScottMCM of T-lang claims
  // that this will be fine on big-endian machines so #TRUST
  f64::from_bits(f.to_bits() & (core::i64::MAX as u64))
}