1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

extern crate libc;
extern crate rgb;

use rustimpl::lodepng_free;
use rustimpl::lodepng_malloc;

#[allow(non_camel_case_types)]
pub mod ffi;

mod rustimpl;
use rustimpl::*;

mod error;
pub use error::*;
mod ucvec;
mod huffman;
mod iter;
use iter::*;

pub use rgb::RGB;
pub use rgb::RGBA8 as RGBA;

use std::os::raw::c_uint;
use std::fmt;
use std::mem;
use std::ptr;
use std::slice;
use std::cmp;
use std::fs::File;
use std::io::Write;
use std::io::Read;
use std::path::Path;
use std::marker::PhantomData;
use std::os::raw::c_void;

pub use ffi::State;
pub use ffi::ColorType;
pub use ffi::CompressSettings;
pub use ffi::DecompressSettings;
pub use ffi::Time;
pub use ffi::DecoderSettings;
pub use ffi::FilterStrategy;
pub use ffi::EncoderSettings;
pub use ffi::Error;

pub use ffi::Info;
pub use ffi::ColorMode;

#[doc(hidden)] #[deprecated(note="use `ColorType::GREY` instead")] pub const LCT_GREY: ColorType = ColorType::GREY;
#[doc(hidden)] #[deprecated(note="use `ColorType::RGB` instead")] pub const LCT_RGB: ColorType = ColorType::RGB;
#[doc(hidden)] #[deprecated(note="use `ColorType::PALETTE` instead")] pub const LCT_PALETTE: ColorType = ColorType::PALETTE;
#[doc(hidden)] #[deprecated(note="use `ColorType::GREY_ALPHA` instead")] pub const LCT_GREY_ALPHA: ColorType = ColorType::GREY_ALPHA;
#[doc(hidden)] #[deprecated(note="use `ColorType::RGBA` instead")] pub const LCT_RGBA: ColorType = ColorType::RGBA;
#[doc(hidden)] #[deprecated(note="use `FilterStrategy::ZERO` instead")] pub const LFS_ZERO: FilterStrategy = FilterStrategy::ZERO;
#[doc(hidden)] #[deprecated(note="use `FilterStrategy::MINSUM` instead")] pub const LFS_MINSUM: FilterStrategy = FilterStrategy::MINSUM;
#[doc(hidden)] #[deprecated(note="use `FilterStrategy::ENTROPY` instead")] pub const LFS_ENTROPY: FilterStrategy = FilterStrategy::ENTROPY;
#[doc(hidden)] #[deprecated(note="use `FilterStrategy::BRUTE_FORCE` instead")] pub const LFS_BRUTE_FORCE: FilterStrategy = FilterStrategy::BRUTE_FORCE;

impl ColorMode {
    pub fn new() -> Self {
        Self::default()
    }

    pub fn colortype(&self) -> ColorType {
        self.colortype
    }

    #[inline]
    pub fn bitdepth(&self) -> u32 {
        self.bitdepth
    }

    pub fn set_bitdepth(&mut self, d: u32) {
        assert!(d >= 1 && d <= 16);
        self.bitdepth = d;
    }

    pub fn palette_clear(&mut self) {
        unsafe {
            lodepng_free(self.palette as *mut _);
        }
        self.palette = ptr::null_mut();
        self.palettesize = 0;
    }

    /// add 1 color to the palette
    pub fn palette_add(&mut self, p: RGBA) -> Result<(), Error> {
        unsafe {
            /*the same resize technique as C++ std::vectors is used, and here it's made so that for a palette with
              the max of 256 colors, it'll have the exact alloc size*/
            if self.palette.is_null() {
                /*allocate palette if empty*/
                /*room for 256 colors with 4 bytes each*/
                self.palette = lodepng_malloc(1024) as *mut _;
                if self.palette.is_null() {
                    return Err(Error(83));
                }
            }
            if self.palettesize >= 256 {
                return Err(Error(38));
            }
            *self.palette.offset(self.palettesize as isize) = p;
            self.palettesize += 1;
        }
        Ok(())
    }

    pub fn palette(&self) -> &[RGBA] {
        unsafe {
            std::slice::from_raw_parts(self.palette, self.palettesize)
        }
    }

    pub fn palette_mut(&mut self) -> &mut [RGBA] {
        unsafe {
            std::slice::from_raw_parts_mut(self.palette as *mut _, self.palettesize)
        }
    }

    /// get the total amount of bits per pixel, based on colortype and bitdepth in the struct
    pub fn bpp(&self) -> u32 {
        lodepng_get_bpp_lct(self.colortype, self.bitdepth()) /*4 or 6*/
    }

    pub(crate) fn clear_key(&mut self) {
        self.key_defined = 0;
    }

    pub(crate) fn set_key(&mut self, r: u16, g: u16, b: u16) {
        self.key_defined = 1;
        self.key_r = r as c_uint;
        self.key_g = g as c_uint;
        self.key_b = b as c_uint;
    }

    pub(crate) fn key(&self) -> Option<(u16, u16, u16)> {
        if self.key_defined != 0 {
            Some((self.key_r as u16, self.key_g as u16, self.key_b as u16))
        } else {
            None
        }
    }

    /// get the amount of color channels used, based on colortype in the struct.
    /// If a palette is used, it counts as 1 channel.
    pub fn channels(&self) -> u8 {
        self.colortype.channels()
    }

    /// is it a greyscale type? (only colortype 0 or 4)
    pub fn is_greyscale_type(&self) -> bool {
        self.colortype == ColorType::GREY || self.colortype == ColorType::GREY_ALPHA
    }

    /// has it got an alpha channel? (only colortype 2 or 6)
    pub fn is_alpha_type(&self) -> bool {
        (self.colortype as u32 & 4) != 0
    }

    /// has it got a palette? (only colortype 3)
    pub fn is_palette_type(&self) -> bool {
        self.colortype == ColorType::PALETTE
    }

    /// only returns true if there is a palette and there is a value in the palette with alpha < 255.
    /// Loops through the palette to check this.
    pub fn has_palette_alpha(&self) -> bool {
        self.palette().iter().any(|p| p.a < 255)
    }

    /// Check if the given color info indicates the possibility of having non-opaque pixels in the PNG image.
    /// Returns true if the image can have translucent or invisible pixels (it still be opaque if it doesn't use such pixels).
    /// Returns false if the image can only have opaque pixels.
    /// In detail, it returns true only if it's a color type with alpha, or has a palette with non-opaque values,
    /// or if "key_defined" is true.
    pub fn can_have_alpha(&self) -> bool {
        self.key().is_some() || self.is_alpha_type() || self.has_palette_alpha()
    }

    /// Returns the byte size of a raw image buffer with given width, height and color mode
    pub fn raw_size(&self, w: u32, h: u32) -> usize {
        /*will not overflow for any color type if roughly w * h < 268435455*/
        let bpp = self.bpp() as usize;
        let n = w as usize * h as usize;
        ((n / 8) * bpp) + ((n & 7) * bpp + 7) / 8
    }

    /*in an idat chunk, each scanline is a multiple of 8 bits, unlike the lodepng output buffer*/
    pub(crate) fn raw_size_idat(&self, w: usize, h: usize) -> usize {
        /*will not overflow for any color type if roughly w * h < 268435455*/
        let bpp = self.bpp() as usize;
        let line = ((w / 8) * bpp) + ((w & 7) * bpp + 7) / 8;
        h * line
    }
}

impl Drop for ColorMode {
    fn drop(&mut self) {
        self.palette_clear()
    }
}

impl Clone for ColorMode {
    fn clone(&self) -> Self {
        let mut c = Self {
            colortype: self.colortype,
            bitdepth: self.bitdepth,
            palette: ptr::null_mut(),
            palettesize: 0,
            key_defined: self.key_defined,
            key_r: self.key_r,
            key_g: self.key_g,
            key_b: self.key_b,
        };
        for &p in self.palette() {
            c.palette_add(p).unwrap();
        }
        c
    }
}

impl Default for ColorMode {
    fn default() -> Self {
        Self {
            key_defined: 0,
            key_r: 0,
            key_g: 0,
            key_b: 0,
            colortype: ColorType::RGBA,
            bitdepth: 8,
            palette: ptr::null_mut(),
            palettesize: 0,
        }
    }
}

impl ColorType {
    /// Create color mode with given type and bitdepth
    pub fn to_color_mode(&self, bitdepth: c_uint) -> ColorMode {
        unsafe {
            ColorMode {
                colortype: *self,
                bitdepth: bitdepth,
                ..mem::zeroed()
            }
        }
    }

    /// channels * bytes per channel = bytes per pixel
    pub fn channels(&self) -> u8 {
        match *self {
            ColorType::GREY | ColorType::PALETTE => 1,
            ColorType::GREY_ALPHA => 2,
            ColorType::BGR |
            ColorType::RGB => 3,
            ColorType::BGRA |
            ColorType::BGRX |
            ColorType::RGBA => 4,
        }
    }
}

impl Time {
    pub fn new() -> Self {
        Self::default()
    }
}

impl Info {
    pub fn new() -> Self {
        Self {
            color: ColorMode::new(),
            interlace_method: 0, compression_method: 0, filter_method: 0,
            background_defined: 0, background_r: 0, background_g: 0, background_b: 0,
            time_defined: 0, time: Time::new(),
            unknown_chunks_data: [ptr::null_mut(), ptr::null_mut(), ptr::null_mut()],
            unknown_chunks_size: [0, 0, 0],
            text_num: 0, text_keys: ptr::null_mut(), text_strings: ptr::null_mut(),
            itext_num: 0, itext_keys: ptr::null_mut(), itext_langtags: ptr::null_mut(),
            itext_transkeys: ptr::null_mut(), itext_strings: ptr::null_mut(),
            phys_defined: 0, phys_x: 0, phys_y: 0, phys_unit: 0,
        }
    }

    pub fn text_keys_cstr(&self) -> TextKeysCStrIter {
        TextKeysCStrIter {
            k: self.text_keys,
            v: self.text_strings,
            n: self.text_num,
            _p: PhantomData,
        }
    }

    pub fn itext_keys(&self) -> ITextKeysIter {
        ITextKeysIter {
            k: self.itext_keys,
            l: self.itext_langtags,
            t: self.itext_transkeys,
            s: self.itext_strings,
            n: self.itext_num,
            _p: PhantomData,
        }
    }

    /// use this to clear the texts again after you filled them in
    pub fn clear_text(&mut self) {
        unsafe {
            for i in 0..self.text_num as isize {
                string_cleanup(&mut *self.text_keys.offset(i));
                string_cleanup(&mut *self.text_strings.offset(i));
            }
            lodepng_free(self.text_keys as *mut _);
            lodepng_free(self.text_strings as *mut _);
            self.text_num = 0;
            self.itext_num = 0;
        }
    }

    /// push back both texts at once
    pub fn add_text(&mut self, key: &str, str: &str) -> Result<(), Error> {
        self.push_text(string_copy_slice(key.as_bytes()), string_copy_slice(str.as_bytes()))
    }

    /// use this to clear the itexts again after you filled them in
    pub fn clear_itext(&mut self) {
        unsafe {
            for i in 0..self.itext_num as isize {
                string_cleanup(&mut *self.itext_keys.offset(i));
                string_cleanup(&mut *self.itext_langtags.offset(i));
                string_cleanup(&mut *self.itext_transkeys.offset(i));
                string_cleanup(&mut *self.itext_strings.offset(i));
            }
            lodepng_free(self.itext_keys as *mut _);
            lodepng_free(self.itext_langtags as *mut _);
            lodepng_free(self.itext_transkeys as *mut _);
            lodepng_free(self.itext_strings as *mut _);
        }
        self.itext_keys = ptr::null_mut();
        self.itext_langtags = ptr::null_mut();
        self.itext_transkeys = ptr::null_mut();
        self.itext_strings = ptr::null_mut();
        self.itext_num = 0;
    }

    /// push back the 4 texts of 1 chunk at once
    pub fn add_itext(&mut self, key: &str, langtag: &str, transkey: &str, text: &str) -> Result<(), Error> {
        self.push_itext(
            string_copy_slice(key.as_bytes()),
            string_copy_slice(langtag.as_bytes()),
            string_copy_slice(transkey.as_bytes()),
            string_copy_slice(text.as_bytes()),
        )
    }

    pub fn append_chunk(&mut self, position: ChunkPosition, chunk: ChunkRef) -> Result<(), Error> {
        let set = position as usize;
        unsafe {
            let mut tmp = ucvector::from_raw(&mut self.unknown_chunks_data[set], self.unknown_chunks_size[set]);
            chunk_append(&mut tmp, chunk.data)?;
            let (data, size) = tmp.into_raw();
            self.unknown_chunks_data[set] = data;
            self.unknown_chunks_size[set] = size;
        }
        Ok(())
    }

    pub fn create_chunk<C: AsRef<[u8]>>(&mut self, position: ChunkPosition, chtype: C, data: &[u8]) -> Result<(), Error> {
        let chtype = chtype.as_ref();
        if chtype.len() != 4 {
            return Err(Error(67));
        }
        unsafe {
            ffi::lodepng_chunk_create(
                &mut self.unknown_chunks_data[position as usize],
                &mut self.unknown_chunks_size[position as usize],
                data.len() as c_uint,
                chtype.as_ptr() as *const _,
                data.as_ptr(),
            ).to_result()
        }
    }

    pub fn get<Name: AsRef<[u8]>>(&self, index: Name) -> Option<ChunkRef> {
        let index = index.as_ref();
        self.unknown_chunks(ChunkPosition::IHDR)
            .chain(self.unknown_chunks(ChunkPosition::PLTE))
            .chain(self.unknown_chunks(ChunkPosition::IDAT))
            .find(|c| c.is_type(index))
    }

    pub fn unknown_chunks(&self, position: ChunkPosition) -> ChunksIter {
        ChunksIter {
            data: unsafe {
                slice::from_raw_parts(
                    self.unknown_chunks_data[position as usize],
                    self.unknown_chunks_size[position as usize])
            }
        }
    }


    fn set_unknown_chunks(&mut self, src: &Info) -> Result<(), Error> {
        for i in 0..3 {
            unsafe {
                self.unknown_chunks_size[i] = src.unknown_chunks_size[i];
                self.unknown_chunks_data[i] = lodepng_malloc(src.unknown_chunks_size[i]) as *mut u8;
                if self.unknown_chunks_data[i].is_null() && self.unknown_chunks_size[i] != 0 {
                    return Err(Error(83));
                }
                for j in 0..src.unknown_chunks_size[i] {
                    *self.unknown_chunks_data[i].offset(j as isize) = *src.unknown_chunks_data[i].offset(j as isize);
                }
            }
        }
        Ok(())
    }
}

impl Clone for Info {
    fn clone(&self) -> Self {
        let mut dest = Self {
            compression_method: self.compression_method,
            filter_method: self.filter_method,
            interlace_method: self.interlace_method,
            color: self.color.clone(),
            background_defined: self.background_defined,
            background_r: self.background_r,
            background_g: self.background_g,
            background_b: self.background_b,
            text_num: 0,
            text_keys: ptr::null_mut(),
            text_strings: ptr::null_mut(),
            itext_num: 0,
            itext_keys: ptr::null_mut(),
            itext_langtags: ptr::null_mut(),
            itext_transkeys: ptr::null_mut(),
            itext_strings: ptr::null_mut(),
            time_defined: self.time_defined,
            time: self.time,
            phys_defined: self.phys_defined,
            phys_x: self.phys_x,
            phys_y: self.phys_y,
            phys_unit: self.phys_unit,
            unknown_chunks_data: [ptr::null_mut(), ptr::null_mut(), ptr::null_mut()],
            unknown_chunks_size: [0, 0, 0],
        };
        rustimpl::Text_copy(&mut dest, self).unwrap();
        rustimpl::LodePNGIText_copy(&mut dest, self).unwrap();
        dest.set_unknown_chunks(self).unwrap();
        dest
    }
}

impl State {
    pub fn new() -> Self {
        Self::default()
    }

    pub fn set_auto_convert(&mut self, mode: bool) {
        self.encoder.auto_convert = mode as c_uint;
    }

    pub fn set_filter_strategy(&mut self, mode: FilterStrategy, palette_filter_zero: bool) {
        self.encoder.filter_strategy = mode;
        self.encoder.filter_palette_zero = if palette_filter_zero {1} else {0};
    }

    pub unsafe fn set_custom_zlib(&mut self, callback: ffi::custom_compress_callback, context: *const c_void) {
        self.encoder.zlibsettings.custom_zlib = callback;
        self.encoder.zlibsettings.custom_context = context;
    }

    pub unsafe fn set_custom_deflate(&mut self, callback: ffi::custom_compress_callback, context: *const c_void) {
        self.encoder.zlibsettings.custom_deflate = callback;
        self.encoder.zlibsettings.custom_context = context;
    }

    pub fn info_raw(&self) -> &ColorMode {
        &self.info_raw
    }

    pub fn info_raw_mut(&mut self) -> &mut ColorMode {
        &mut self.info_raw
    }

    pub fn info_png(&self) -> &Info {
        &self.info_png
    }

    pub fn info_png_mut(&mut self) -> &mut Info {
        &mut self.info_png
    }

    /// whether to convert the PNG to the color type you want. Default: yes
    pub fn color_convert(&mut self, true_or_false: bool) {
        self.decoder.color_convert = if true_or_false { 1 } else { 0 };
    }

    /// if false but remember_unknown_chunks is true, they're stored in the unknown chunks.
    pub fn read_text_chunks(&mut self, true_or_false: bool) {
        self.decoder.read_text_chunks = if true_or_false { 1 } else { 0 };
    }

    /// store all bytes from unknown chunks in the `Info` (off by default, useful for a png editor)
    pub fn remember_unknown_chunks(&mut self, true_or_false: bool) {
        self.decoder.remember_unknown_chunks = if true_or_false { 1 } else { 0 };
    }

    /// Decompress ICC profile from iCCP chunk
    pub fn get_icc(&self) -> Result<Vec<u8>, Error> {
        let iccp = self.info_png().get("iCCP");
        if iccp.is_none() {
            return Err(Error(89));
        }
        let iccp = iccp.as_ref().unwrap().data();
        if iccp.get(0).cloned().unwrap_or(255) == 0 { // text min length is 1
            return Err(Error(89));
        }

        let name_len = cmp::min(iccp.len(), 80); // skip name
        for i in 0..name_len {
            if iccp[i] == 0 { // string terminator
                if iccp.get(i+1).cloned().unwrap_or(255) != 0 { // compression type
                    return Err(Error(72));
                }
                return zlib_decompress(&iccp[i+2 ..], &self.decoder.zlibsettings);
            }
        }
        Err(Error(75))
    }

    /// Load PNG from buffer using State's settings
    ///
    ///  ```no_run
    ///  # use lodepng::*; let mut state = State::new();
    ///  # let slice = [0u8]; #[allow(unused_variables)] fn do_stuff<T>(_buf: T) {}
    ///
    ///  state.info_raw_mut().colortype = ColorType::RGBA;
    ///  match state.decode(&slice) {
    ///      Ok(Image::RGBA(with_alpha)) => do_stuff(with_alpha),
    ///      _ => panic!("¯\\_(ツ)_/¯")
    ///  }
    ///  ```
    pub fn decode<Bytes: AsRef<[u8]>>(&mut self, input: Bytes) -> Result<Image, Error> {
        let input = input.as_ref();
        unsafe {
            let (v, w, h) = rustimpl::lodepng_decode(self, input)?;
            let (data, _) = v.into_raw();
            Ok(new_bitmap(data, w, h, self.info_raw.colortype, self.info_raw.bitdepth))
        }
    }

    pub fn decode_file<P: AsRef<Path>>(&mut self, filepath: P) -> Result<Image, Error> {
        self.decode(&load_file(filepath)?)
    }

    /// Returns (width, height)
    pub fn inspect(&mut self, input: &[u8]) -> Result<(usize, usize), Error> {
        let (info, w, h) = rustimpl::lodepng_inspect(&self.decoder, input)?;
        self.info_png = info;
        Ok((w, h))
    }

    pub fn encode<PixelType: Copy>(&mut self, image: &[PixelType], w: usize, h: usize) -> Result<Vec<u8>, Error> {
        let image = buffer_for_type(image, w, h, self.info_raw.colortype, self.info_raw.bitdepth)?;
        Ok(rustimpl::lodepng_encode(image, w as c_uint, h as c_uint, self)?.into_vec())
    }

    pub fn encode_file<PixelType: Copy, P: AsRef<Path>>(&mut self, filepath: P, image: &[PixelType], w: usize, h: usize) -> Result<(), Error> {
        let buf = self.encode(image, w, h)?;
        save_file(filepath, buf.as_ref())
    }
}

impl Default for State {
    fn default() -> Self {
        Self {
            decoder: DecoderSettings::new(),
            encoder: EncoderSettings::new(),
            info_raw: ColorMode::new(),
            info_png: Info::new(),
            error: Error(1),
        }
    }
}

/// Opaque greyscale pixel (acces with `px.0`)
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct Grey<ComponentType: Copy>(pub ComponentType);

/// Greyscale pixel with alpha (`px.1` is alpha)
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct GreyAlpha<ComponentType: Copy>(pub ComponentType, pub ComponentType);

impl<T: Default + Copy> Default for Grey<T> {
    fn default() -> Self {
        Grey(Default::default())
    }
}

impl<T: Default + Copy> Default for GreyAlpha<T> {
    fn default() -> Self {
        GreyAlpha(Default::default(), Default::default())
    }
}

/// Bitmap types.
///
/// Images with >=8bpp are stored with pixel per vec element.
/// Images with <8bpp are represented as a bunch of bytes, with multiple pixels per byte.
#[derive(Debug)]
pub enum Image {
    /// Bytes of the image. See bpp how many pixels per element there are
    RawData(Bitmap<u8>),
    Grey(Bitmap<Grey<u8>>),
    Grey16(Bitmap<Grey<u16>>),
    GreyAlpha(Bitmap<GreyAlpha<u8>>),
    GreyAlpha16(Bitmap<GreyAlpha<u16>>),
    RGBA(Bitmap<RGBA>),
    RGB(Bitmap<RGB<u8>>),
    RGBA16(Bitmap<rgb::RGBA<u16>>),
    RGB16(Bitmap<RGB<u16>>),
}

/// Position in the file section after…
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum ChunkPosition {
    IHDR = 0,
    PLTE = 1,
    IDAT = 2,
}

/// Reference to a chunk
#[derive(Copy, Clone)]
pub struct ChunkRef<'a> {
    data: &'a [u8],
}

/// Low-level representation of an image
pub struct Bitmap<PixelType: Copy> {
    /// Raw bitmap memory. Layout depends on color mode and bitdepth used to create it.
    ///
    /// * For RGB/RGBA images one element is one pixel.
    /// * For <8bpp images pixels are packed, so raw bytes are exposed and you need to do bit-twiddling youself
    pub buffer: Vec<PixelType>,
    /// Width in pixels
    pub width: usize,
    /// Height in pixels
    pub height: usize,
}

impl<T: Copy> Bitmap<T> {
    unsafe fn from_buffer(out: *mut u8, w: usize, h: usize) -> Self {
        Self {
            buffer: vec_from_malloced(out as *mut _, w * h),
            width: w,
            height: h,
        }
    }
}

impl<PixelType: Copy> fmt::Debug for Bitmap<PixelType> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{{{} × {} Bitmap}}", self.width, self.height)
    }
}

fn required_size(w: usize, h: usize, colortype: ColorType, bitdepth: u32) -> usize {
    colortype.to_color_mode(bitdepth).raw_size(w as c_uint, h as c_uint)
}

unsafe fn vec_from_malloced<T>(ptr: *mut T, elts: usize) -> Vec<T> where T: Copy {
    let v = Vec::from(std::slice::from_raw_parts(ptr, elts));
    self::libc::free(ptr as *mut _);
    v
}

unsafe fn new_bitmap(out: *mut u8, w: usize, h: usize, colortype: ColorType, bitdepth: c_uint) -> Image {
    match (colortype, bitdepth) {
        (ColorType::RGBA, 8) => Image::RGBA(Bitmap::from_buffer(out, w, h)),
        (ColorType::RGB, 8) => Image::RGB(Bitmap::from_buffer(out, w, h)),
        (ColorType::RGBA, 16) => Image::RGBA16(Bitmap::from_buffer(out, w, h)),
        (ColorType::RGB, 16) => Image::RGB16(Bitmap::from_buffer(out, w, h)),
        (ColorType::GREY, 8) => Image::Grey(Bitmap::from_buffer(out, w, h)),
        (ColorType::GREY, 16) => Image::Grey16(Bitmap::from_buffer(out, w, h)),
        (ColorType::GREY_ALPHA, 8) => Image::GreyAlpha(Bitmap::from_buffer(out, w, h)),
        (ColorType::GREY_ALPHA, 16) => Image::GreyAlpha16(Bitmap::from_buffer(out, w, h)),
        (_, 0) => panic!("Invalid depth"),
        (c, b) => Image::RawData(Bitmap {
            buffer: vec_from_malloced(out, required_size(w, h, c, b)),
            width: w,
            height: h,
        }),
    }
}

fn save_file<P: AsRef<Path>>(filepath: P, data: &[u8]) -> Result<(), Error> {
    let mut file = File::create(filepath)?;
    file.write_all(data)?;
    Ok(())
}

fn load_file<P: AsRef<Path>>(filepath: P) -> Result<Vec<u8>, Error> {
    let mut file = File::open(filepath)?;
    let mut data = Vec::new();
    file.read_to_end(&mut data)?;
    Ok(data)
}

/// Converts PNG data in memory to raw pixel data.
///
/// `decode32` and `decode24` are more convenient if you want specific image format.
///
/// See `State::decode()` for advanced decoding.
///
/// * `in`: Memory buffer with the PNG file.
/// * `colortype`: the desired color type for the raw output image. See `ColorType`.
/// * `bitdepth`: the desired bit depth for the raw output image. 1, 2, 4, 8 or 16. Typically 8.
pub fn decode_memory<Bytes: AsRef<[u8]>>(input: Bytes, colortype: ColorType, bitdepth: c_uint) -> Result<Image, Error> {
    let input = input.as_ref();
    unsafe {
        assert!(bitdepth > 0 && bitdepth <= 16);
        let (v, w, h) = rustimpl::lodepng_decode_memory(input, colortype, bitdepth)?;
        let (data, _) = v.into_raw();
        Ok(new_bitmap(data, w, h, colortype, bitdepth))
    }
}

/// Same as `decode_memory`, but always decodes to 32-bit RGBA raw image
pub fn decode32<Bytes: AsRef<[u8]>>(input: Bytes) -> Result<Bitmap<RGBA>, Error> {
    match decode_memory(input, ColorType::RGBA, 8)? {
        Image::RGBA(img) => Ok(img),
        _ => Err(Error(56)), // given output image colortype or bitdepth not supported for color conversion
    }
}

/// Same as `decode_memory`, but always decodes to 24-bit RGB raw image
pub fn decode24<Bytes: AsRef<[u8]>>(input: Bytes) -> Result<Bitmap<RGB<u8>>, Error> {
    match decode_memory(input, ColorType::RGB, 8)? {
        Image::RGB(img) => Ok(img),
        _ => Err(Error(56)),
    }
}

/// Load PNG from disk, from file with given name.
/// Same as the other decode functions, but instead takes a file path as input.
///
/// `decode32_file` and `decode24_file` are more convenient if you want specific image format.
///
/// There's also `State::decode()` if you'd like to set more settings.
///
///  ```no_run
///  # use lodepng::*; let filepath = std::path::Path::new("");
///  # fn do_stuff<T>(_buf: T) {}
///
///  match decode_file(filepath, ColorType::RGBA, 8) {
///      Ok(Image::RGBA(with_alpha)) => do_stuff(with_alpha),
///      Ok(Image::RGB(without_alpha)) => do_stuff(without_alpha),
///      _ => panic!("¯\\_(ツ)_/¯")
///  }
///  ```
pub fn decode_file<P: AsRef<Path>>(filepath: P, colortype: ColorType, bitdepth: c_uint) -> Result<Image, Error> {
    decode_memory(&load_file(filepath)?, colortype, bitdepth)
}

/// Same as `decode_file`, but always decodes to 32-bit RGBA raw image
pub fn decode32_file<P: AsRef<Path>>(filepath: P) -> Result<Bitmap<RGBA>, Error> {
    match decode_file(filepath, ColorType::RGBA, 8)? {
        Image::RGBA(img) => Ok(img),
        _ => Err(Error(56)),
    }
}

/// Same as `decode_file`, but always decodes to 24-bit RGB raw image
pub fn decode24_file<P: AsRef<Path>>(filepath: P) -> Result<Bitmap<RGB<u8>>, Error> {
    match decode_file(filepath, ColorType::RGB, 8)? {
        Image::RGB(img) => Ok(img),
        _ => Err(Error(56)),
    }
}

fn buffer_for_type<PixelType: Copy>(image: &[PixelType], w: usize, h: usize, colortype: ColorType, bitdepth: u32) -> Result<&[u8], Error> {
    let bytes_per_pixel = bitdepth as usize/8;
    assert!(mem::size_of::<PixelType>() <= 4*bytes_per_pixel, "Implausibly large {}-byte pixel data type", mem::size_of::<PixelType>());

    let px_bytes = mem::size_of::<PixelType>();
    let image_bytes = image.len() * px_bytes;
    let required_bytes = required_size(w, h, colortype, bitdepth);

    if image_bytes != required_bytes {
        debug_assert_eq!(image_bytes, required_bytes, "Image is {} bytes large ({}x{}x{}), but needs to be {} ({:?}, {})",
            image_bytes, w,h,px_bytes, required_bytes, colortype, bitdepth);
        return Err(Error(84));
    }

    unsafe {
        Ok(slice::from_raw_parts(image.as_ptr() as *const _, image_bytes))
    }
}

/// Converts raw pixel data into a PNG image in memory. The colortype and bitdepth
/// of the output PNG image cannot be chosen, they are automatically determined
/// by the colortype, bitdepth and content of the input pixel data.
///
/// Note: for 16-bit per channel colors, needs big endian format like PNG does.
///
/// * `image`: The raw pixel data to encode. The size of this buffer should be `w` * `h` * (bytes per pixel), bytes per pixel depends on colortype and bitdepth.
/// * `w`: width of the raw pixel data in pixels.
/// * `h`: height of the raw pixel data in pixels.
/// * `colortype`: the color type of the raw input image. See `ColorType`.
/// * `bitdepth`: the bit depth of the raw input image. 1, 2, 4, 8 or 16. Typically 8.
pub fn encode_memory<PixelType: Copy>(image: &[PixelType], w: usize, h: usize, colortype: ColorType, bitdepth: c_uint) -> Result<Vec<u8>, Error> {
    let image = buffer_for_type(image, w, h, colortype, bitdepth)?;
    Ok(rustimpl::lodepng_encode_memory(image, w as u32, h as u32, colortype, bitdepth)?.into_vec())
}

/// Same as `encode_memory`, but always encodes from 32-bit RGBA raw image
pub fn encode32<PixelType: Copy>(image: &[PixelType], w: usize, h: usize) -> Result<Vec<u8>, Error> {
    encode_memory(image, w, h, ColorType::RGBA, 8)
}

/// Same as `encode_memory`, but always encodes from 24-bit RGB raw image
pub fn encode24<PixelType: Copy>(image: &[PixelType], w: usize, h: usize) -> Result<Vec<u8>, Error> {
    encode_memory(image, w, h, ColorType::RGB, 8)
}

/// Converts raw pixel data into a PNG file on disk.
/// Same as the other encode functions, but instead takes a file path as output.
///
/// NOTE: This overwrites existing files without warning!
pub fn encode_file<PixelType: Copy, P: AsRef<Path>>(filepath: P, image: &[PixelType], w: usize, h: usize, colortype: ColorType, bitdepth: c_uint) -> Result<(), Error> {
    let encoded = encode_memory(image, w, h, colortype, bitdepth)?;
    save_file(filepath, encoded.as_ref())
}

/// Same as `encode_file`, but always encodes from 32-bit RGBA raw image
pub fn encode32_file<PixelType: Copy, P: AsRef<Path>>(filepath: P, image: &[PixelType], w: usize, h: usize) -> Result<(), Error> {
    encode_file(filepath, image, w, h, ColorType::RGBA, 8)
}

/// Same as `encode_file`, but always encodes from 24-bit RGB raw image
pub fn encode24_file<PixelType: Copy, P: AsRef<Path>>(filepath: P, image: &[PixelType], w: usize, h: usize) -> Result<(), Error> {
    encode_file(filepath, image, w, h, ColorType::RGB, 8)
}

/// Automatically chooses color type that gives smallest amount of bits in the
/// output image, e.g. grey if there are only greyscale pixels, palette if there
/// are less than 256 colors, ...
///
/// The auto_convert parameter is not supported any more.
///
/// updates values of mode with a potentially smaller color model. mode_out should
/// contain the user chosen color model, but will be overwritten with the new chosen one.
#[doc(hidden)]
#[deprecated]
pub fn auto_choose_color(mode_out: &mut ColorMode, image: &[u8], w: usize, h: usize, mode_in: &ColorMode) -> Result<(), Error> {
    *mode_out = rustimpl::auto_choose_color(image, w, h, mode_in)?;
    Ok(())
}

impl<'a> ChunkRef<'a> {
    pub(crate) fn new(data: &'a [u8]) -> Self {
        Self {data}
    }

    pub fn len(&self) -> usize {
        rustimpl::lodepng_chunk_length(self.data)
    }

    pub fn name(&self) -> [u8; 4] {
        let mut tmp = [0; 4];
        tmp.copy_from_slice(rustimpl::lodepng_chunk_type(self.data));
        tmp
    }

    pub fn is_type<C: AsRef<[u8]>>(&self, name: C) -> bool {
        rustimpl::lodepng_chunk_type(self.data) == name.as_ref()
    }

    pub fn is_ancillary(&self) -> bool {
        rustimpl::lodepng_chunk_ancillary(self.data)
    }

    pub fn is_private(&self) -> bool {
        rustimpl::lodepng_chunk_private(self.data)
    }

    pub fn is_safe_to_copy(&self) -> bool {
        rustimpl::lodepng_chunk_safetocopy(self.data)
    }

    pub fn data(&self) -> &[u8] {
        rustimpl::lodepng_chunk_data(self.data).unwrap()
    }

    pub fn check_crc(&self) -> bool {
        rustimpl::lodepng_chunk_check_crc(&*self.data)
    }
}

pub struct ChunkRefMut<'a> {
    data: &'a mut [u8],
}

impl<'a> ChunkRefMut<'a> {
    pub fn data_mut(&mut self) -> &mut [u8] {
        rustimpl::lodepng_chunk_data_mut(self.data).unwrap()
    }

    pub fn generate_crc(&mut self) {
        rustimpl::lodepng_chunk_generate_crc(self.data)
    }
}

/// Compresses data with Zlib.
/// Zlib adds a small header and trailer around the deflate data.
/// The data is output in the format of the zlib specification.
#[doc(hidden)]
pub fn zlib_compress(input: &[u8], settings: &CompressSettings) -> Result<Vec<u8>, Error> {
    let mut v = ucvector::new();
    rustimpl::lodepng_zlib_compress(&mut v, input, settings)?;
    Ok(v.into_vec())
}

fn zlib_decompress(input: &[u8], settings: &DecompressSettings) -> Result<Vec<u8>, Error> {
    Ok(rustimpl::lodepng_zlib_decompress(input, settings)?.into_vec())
}

/// Compress a buffer with deflate. See RFC 1951.
#[doc(hidden)]
pub fn deflate(input: &[u8], settings: &CompressSettings) -> Result<Vec<u8>, Error> {
    Ok(rustimpl::lodepng_deflatev(input, settings)?.into_vec())
}

impl CompressSettings {
    /// Default compression settings
    pub fn new() -> CompressSettings {
        Self::default()
    }
}

impl Default for CompressSettings {
    fn default() -> Self {
        Self {
            btype: 2,
            use_lz77: 1,
            windowsize: DEFAULT_WINDOWSIZE as u32,
            minmatch: 3,
            nicematch: 128,
            lazymatching: 1,
            custom_zlib: None,
            custom_deflate: None,
            custom_context: ptr::null_mut(),
        }
    }
}

impl DecompressSettings {
    pub fn new() -> Self {
        Self::default()
    }
}

impl Default for DecompressSettings {
    fn default() -> Self {
        Self {
            ignore_adler32: 0,
            custom_zlib: None,
            custom_inflate: None,
            custom_context: ptr::null_mut(),
        }
    }
}

impl DecoderSettings {
    pub fn new() -> Self {
        Self::default()
    }
}

impl Default for DecoderSettings {
    fn default() -> Self {
        Self {
            color_convert: 1,
            read_text_chunks: 1,
            remember_unknown_chunks: 0,
            ignore_crc: 0,
            zlibsettings: DecompressSettings::new(),
        }
    }
}

impl EncoderSettings {
    pub fn new() -> Self {
        Self::default()
    }
}

impl Default for EncoderSettings {
    fn default() -> Self {
        Self {
            zlibsettings: CompressSettings::new(),
            filter_palette_zero: 1,
            filter_strategy: FilterStrategy::MINSUM,
            auto_convert: 1,
            force_palette: 0,
            predefined_filters: ptr::null_mut(),
            add_id: 0,
            text_compression: 1,
        }
    }
}

#[cfg(test)]
mod test {
    use std::mem;
    use super::*;

    #[test]
    fn pixel_sizes() {
        assert_eq!(4, mem::size_of::<RGBA>());
        assert_eq!(3, mem::size_of::<RGB<u8>>());
        assert_eq!(2, mem::size_of::<GreyAlpha<u8>>());
        assert_eq!(1, mem::size_of::<Grey<u8>>());
    }

    #[test]
    fn create_and_destroy1() {
        DecoderSettings::new();
        EncoderSettings::new();
        CompressSettings::new();
    }

    #[test]
    fn create_and_destroy2() {
        State::new().info_png();
        State::new().info_png_mut();
        State::new().clone().info_raw();
        State::new().clone().info_raw_mut();
    }

    #[test]
    fn test_pal() {
        let mut state = State::new();
        state.info_raw_mut().colortype = ColorType::PALETTE;
        assert_eq!(state.info_raw().colortype(), ColorType::PALETTE);
        state.info_raw_mut().palette_add(RGBA::new(1,2,3,4)).unwrap();
        state.info_raw_mut().palette_add(RGBA::new(5,6,7,255)).unwrap();
        assert_eq!(&[RGBA{r:1u8,g:2,b:3,a:4},RGBA{r:5u8,g:6,b:7,a:255}], state.info_raw().palette());
        state.info_raw_mut().palette_clear();
        assert_eq!(0, state.info_raw().palette().len());
    }

    #[test]
    fn chunks() {
        let mut state = State::new();
        {
            let info = state.info_png_mut();
            for _ in info.unknown_chunks(ChunkPosition::IHDR) {
                panic!("no chunks yet");
            }

            let testdata = &[1,2,3];
            info.create_chunk(ChunkPosition::PLTE, &[255,0,100,32], testdata).unwrap();
            assert_eq!(1, info.unknown_chunks(ChunkPosition::PLTE).count());

            info.create_chunk(ChunkPosition::IHDR, "foob", testdata).unwrap();
            assert_eq!(1, info.unknown_chunks(ChunkPosition::IHDR).count());
            info.create_chunk(ChunkPosition::IHDR, "foob", testdata).unwrap();
            assert_eq!(2, info.unknown_chunks(ChunkPosition::IHDR).count());

            for _ in info.unknown_chunks(ChunkPosition::IDAT) {}
            let chunk = info.unknown_chunks(ChunkPosition::IHDR).next().unwrap();
            assert_eq!("foob".as_bytes(), chunk.name());
            assert!(chunk.is_type("foob"));
            assert!(!chunk.is_type("foobar"));
            assert!(!chunk.is_type("foo"));
            assert!(!chunk.is_type("FOOB"));
            assert!(chunk.check_crc());
            assert_eq!(testdata, chunk.data());
            info.get("foob").unwrap();
        }

        let img = state.encode(&[0u32], 1, 1).unwrap();
        let mut dec = State::new();
        dec.remember_unknown_chunks(true);
        dec.decode(img).unwrap();
        let chunk = dec.info_png().unknown_chunks(ChunkPosition::IHDR).next().unwrap();
        assert_eq!("foob".as_bytes(), chunk.name());
        dec.info_png().get("foob").unwrap();
    }

    #[test]
    fn read_icc() {
        let mut s = State::new();
        s.remember_unknown_chunks(true);
        let f = s.decode_file("tests/profile.png");
        f.unwrap();
        let icc = s.info_png().get("iCCP").unwrap();
        assert_eq!(275, icc.len());
        assert_eq!("ICC Pro".as_bytes(), &icc.data()[0..7]);

        let data = s.get_icc().unwrap();
        assert_eq!("appl".as_bytes(), &data[4..8]);
    }
}