# llm-toolkit
Basic llm tools for rust
# Motivation & Philosophy
High-level LLM frameworks like LangChain, while powerful, can be problematic in Rust. Their heavy abstractions and complex type systems often conflict with Rust's strengths, imposing significant constraints and learning curves on developers.
There is a clear need for a different kind of tool: a low-level, unopinionated, and minimalist toolkit that provides robust "last mile" utilities for LLM integration, much like how `candle` provides core building blocks for ML without dictating the entire application architecture.
This document proposes the creation of `llm-toolkit`, a new library crate designed to be the professional's choice for building reliable, high-performance LLM-powered applications in Rust.
## Core Design Principles
1. **Minimalist & Unopinionated:**
The toolkit will NOT impose any specific application architecture. Developers are free to design their own `UseCase`s and `Service`s. `llm-toolkit` simply provides a set of sharp, reliable "tools" to be called when needed.
2. **Focused on the "Last Mile Problem":**
The toolkit focuses on solving the most common and frustrating problems that occur at the boundary between a strongly-typed Rust application and the unstructured, often unpredictable string-based responses from LLM APIs.
3. **Minimal Dependencies:**
The toolkit will have minimal dependencies (primarily `serde` and `minijinja`) to ensure it can be added to any Rust project with negligible overhead and maximum compatibility.
## Features
| **Content Extraction** | Safely extracting structured data (like JSON) from unstructured LLM responses. | `extract` module (`FlexibleExtractor`, `extract_json`) | Implemented |
| **Prompt Generation** | Building complex prompts from Rust data structures with a powerful templating engine. | `prompt!` macro, `#[derive(ToPrompt)]`, `#[derive(ToPromptSet)]` | Implemented |
| **Multi-Target Prompts** | Generate multiple prompt formats from a single data structure for different contexts. | `ToPromptSet` trait, `#[prompt_for(...)]` attributes | Implemented |
| **Intent Extraction** | Extracting structured intents (e.g., enums) from LLM responses. | `intent` module (`IntentExtractor`, `PromptBasedExtractor`) | Implemented |
| **Resilient Deserialization** | Deserializing LLM responses into Rust types, handling schema variations. | (Planned) | Planned |
## Prompt Generation
`llm-toolkit` offers three powerful and convenient ways to generate prompts, powered by the `minijinja` templating engine.
### 1. Ad-hoc Prompts with `prompt!` macro
For quick prototyping and flexible prompt creation, the `prompt!` macro provides a `println!`-like experience. You can pass any `serde::Serialize`-able data as context.
```rust
use llm_toolkit::prompt::prompt;
use serde::Serialize;
#[derive(Serialize)]
struct User {
name: &'static str,
role: &'static str,
}
let user = User { name: "Mai", role: "UX Engineer" };
let task = "designing a new macro";
let p = prompt!(
"User {{user.name}} ({{user.role}}) is currently {{task}}.",
user = user,
task = task
).unwrap();
assert_eq!(p, "User Mai (UX Engineer) is currently designing a new macro.");
```
### 2. Structured Prompts with `#[derive(ToPrompt)]`
For core application logic, you can derive the `ToPrompt` trait on your structs to generate prompts in a type-safe way.
**Setup:**
First, enable the `derive` feature in your `Cargo.toml`:
```toml
[dependencies]
llm-toolkit = { version = "0.1.0", features = ["derive"] }
serde = { version = "1.0", features = ["derive"] }
```
**Usage:**
Then, use the `#[derive(ToPrompt)]` and `#[prompt(...)]` attributes on your struct. The struct must also derive `serde::Serialize`.
```rust
use llm_toolkit::ToPrompt;
use serde::Serialize;
#[derive(ToPrompt, Serialize)]
#[prompt(template = "USER PROFILE:\nName: {{name}}\nRole: {{role}}")]
struct UserProfile {
name: &'static str,
role: &'static str,
}
let user = UserProfile {
name: "Yui",
role: "World-Class Pro Engineer",
};
let p = user.to_prompt();
// The following would be printed:
// USER PROFILE:
// Name: Yui
// Role: World-Class Pro Engineer
```
#### Default Formatting and Field Attributes
If you omit the `#[prompt(template = "...")]` attribute on a struct, `ToPrompt` will automatically generate a key-value representation of the struct's fields. You can control this output with field-level attributes:
| `#[prompt(rename = "new_name")]` | Overrides the key with `"new_name"`. |
| `#[prompt(skip)]` | Excludes the field from the output. |
| `#[prompt(format_with = "path::to::func")]`| Uses a custom function to format the field's **value**. |
The **key** for each field is determined with the following priority:
1. `#[prompt(rename = "...")]` attribute.
2. Doc comment (`/// ...`) on the field.
3. The field's name (fallback).
**Comprehensive Example:**
```rust
use llm_toolkit::ToPrompt;
use llm_toolkit_macros::ToPrompt; // Make sure to import the derive macro
use serde::Serialize;
// A custom formatting function
fn format_id(id: &u64) -> String {
format!("user-{}", id)
}
#[derive(ToPrompt, Serialize)]
struct AdvancedUser {
/// The user's unique identifier
id: u64,
#[prompt(rename = "full_name")]
name: String,
// This field will not be included in the prompt
#[prompt(skip)]
internal_hash: String,
// This field will use a custom formatting function for its value
#[prompt(format_with = "format_id")]
formatted_id: u64,
}
let user = AdvancedUser {
id: 123,
name: "Mai".to_string(),
internal_hash: "abcdef".to_string(),
formatted_id: 123,
};
let p = user.to_prompt();
// The following would be generated:
// The user's unique identifier: 123
// full_name: Mai
// formatted_id: user-123
```
#### Tip: Handling Special Characters in Templates
When using raw string literals (`r#"..."#`) for your templates, be aware of a potential parsing issue if your template content includes the `#` character (e.g., in a hex color code like `"#FFFFFF"`).
The macro parser can sometimes get confused by the inner `#`. To avoid this, you can use a different number of `#` symbols for the raw string delimiter.
**Problematic Example:**
```rust
// This might fail to parse correctly
#[prompt(template = r#"{"color": "#FFFFFF"}"#)]
struct Color { /* ... */ }
```
**Solution:**
```rust
// Use r##"..."## to avoid ambiguity
#[prompt(template = r##"{"color": "#FFFFFF"}"##)]
struct Color { /* ... */ }
```
### 3. Enum Documentation with `#[derive(ToPrompt)]`
For enums, the `ToPrompt` derive macro provides flexible ways to generate prompts that describe your enum variants for LLM consumption. You can use doc comments, custom descriptions, or exclude variants entirely.
#### Basic Usage with Doc Comments
By default, the macro extracts documentation from Rust doc comments (`///`) on both the enum and its variants:
```rust
use llm_toolkit::ToPrompt;
/// Represents different user intents for a chatbot
#[derive(ToPrompt)]
pub enum BasicIntent {
/// User wants to greet or say hello
Greeting,
/// User is asking for help or assistance
Help,
}
```
#### Advanced Attribute Controls
The `ToPrompt` derive macro supports powerful attribute-based controls for fine-tuning the generated prompts:
- **`#[prompt("...")]`** - Provide a custom description that overrides the doc comment
- **`#[prompt(skip)]`** - Exclude a variant from the prompt entirely (useful for internal-only variants)
- **No attribute** - Variants without doc comments or attributes will show just the variant name
Here's a comprehensive example showcasing all features:
```rust
use llm_toolkit::ToPrompt;
/// Represents different actions a user can take in the system
#[derive(ToPrompt)]
pub enum UserAction {
/// User wants to create a new document
CreateDocument,
/// User is searching for existing content
Search { query: String },
#[prompt("Custom: User is updating their profile settings and preferences")]
UpdateProfile,
#[prompt(skip)]
InternalDebugAction,
DeleteItem,
}
let action = UserAction::CreateDocument;
let p = action.to_prompt();
// The following would be printed:
// UserAction: Represents different actions a user can take in the system
//
// Possible values:
// - CreateDocument: User wants to create a new document
// - Search: User is searching for existing content
// - UpdateProfile: Custom: User is updating their profile settings and preferences
// - DeleteItem
```
Note how in the output:
- `CreateDocument` and `Search` use their doc comments
- `UpdateProfile` uses the custom description from `#[prompt("...")]`
- `InternalDebugAction` is completely excluded due to `#[prompt(skip)]`
- `DeleteItem` appears with just its name since it has no documentation
### 4. Multi-Target Prompts with `#[derive(ToPromptSet)]`
For applications that need to generate different prompt formats from the same data structure for various contexts (e.g., human-readable vs. machine-parsable, or different LLM models), the `ToPromptSet` derive macro enables powerful multi-target prompt generation.
#### Basic Multi-Target Setup
```rust
use llm_toolkit::ToPromptSet;
use serde::Serialize;
#[derive(ToPromptSet, Serialize)]
#[prompt_for(name = "Visual", template = "## {{title}}\n\n> {{description}}")]
struct Task {
title: String,
description: String,
#[prompt_for(name = "Agent")]
priority: u8,
#[prompt_for(name = "Agent", rename = "internal_id")]
id: u64,
#[prompt_for(skip)]
is_dirty: bool,
}
let task = Task {
title: "Implement feature".to_string(),
description: "Add new functionality".to_string(),
priority: 1,
id: 42,
is_dirty: false,
};
// Generate visual-friendly prompt using template
let visual_prompt = task.to_prompt_for("Visual")?;
// Output: "## Implement feature\n\n> Add new functionality"
// Generate agent-friendly prompt with key-value format
let agent_prompt = task.to_prompt_for("Agent")?;
// Output: "title: Implement feature\ndescription: Add new functionality\npriority: 1\ninternal_id: 42"
```
#### Advanced Features
**Custom Formatting Functions:**
```rust
fn format_priority(priority: &u8) -> String {
match priority {
1 => "Low".to_string(),
2 => "Medium".to_string(),
3 => "High".to_string(),
_ => "Unknown".to_string(),
}
}
#[derive(ToPromptSet, Serialize)]
struct FormattedTask {
title: String,
#[prompt_for(name = "Human", format_with = "format_priority")]
priority: u8,
}
```
**Multimodal Support:**
```rust
use llm_toolkit::prompt::{PromptPart, ToPrompt};
#[derive(ToPromptSet, Serialize)]
#[prompt_for(name = "Multimodal", template = "Analyzing image: {{caption}}")]
struct ImageTask {
caption: String,
#[prompt_for(name = "Multimodal", image)]
image: ImageData,
}
// Generate multimodal prompt with both text and image
let parts = task.to_prompt_parts_for("Multimodal")?;
// Returns Vec<PromptPart> with both Image and Text parts
```
#### Target Configuration Options
| `#[prompt_for(name = "TargetName")]` | Include field in specific target | `#[prompt_for(name = "Debug")]` |
| `#[prompt_for(name = "Target", template = "...")]` | Use template for target (struct-level) | `#[prompt_for(name = "Visual", template = "{{title}}")]` |
| `#[prompt_for(name = "Target", rename = "new_name")]` | Rename field for specific target | `#[prompt_for(name = "API", rename = "task_id")]` |
| `#[prompt_for(name = "Target", format_with = "func")]` | Custom formatting function | `#[prompt_for(name = "Human", format_with = "format_date")]` |
| `#[prompt_for(name = "Target", image)]` | Mark field as image content | `#[prompt_for(name = "Vision", image)]` |
| `#[prompt_for(skip)]` | Exclude field from all targets | `#[prompt_for(skip)]` |
When to use `ToPromptSet` vs `ToPrompt`:
- **`ToPrompt`**: Single, consistent prompt format across your application
- **`ToPromptSet`**: Multiple prompt formats needed for different contexts (human vs. machine, different LLM models, etc.)
## Future Directions
### Image Handling Abstraction
A planned feature is to introduce a unified interface for handling image inputs across different LLM providers. This would abstract away the complexities of dealing with various data formats (e.g., Base64, URLs, local file paths) and model-specific requirements, providing a simple and consistent API for multimodal applications.