1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#![cfg_attr(feature = "const_mut_refs", feature(const_mut_refs))]
#![cfg_attr(
    feature = "alloc_ref",
    feature(allocator_api, alloc_layout_extra, nonnull_slice_from_raw_parts)
)]
#![no_std]

#[cfg(test)]
#[macro_use]
extern crate std;

#[cfg(feature = "use_spin")]
extern crate spinning_top;

#[cfg(feature = "use_spin")]
use core::alloc::GlobalAlloc;
use core::alloc::Layout;
#[cfg(feature = "alloc_ref")]
use core::alloc::{AllocError, Allocator};
#[cfg(feature = "use_spin")]
use core::ops::Deref;
use core::ptr::NonNull;
#[cfg(test)]
use hole::Hole;
use hole::HoleList;
#[cfg(feature = "use_spin")]
use spinning_top::Spinlock;

pub mod hole;
#[cfg(test)]
mod test;

/// A fixed size heap backed by a linked list of free memory blocks.
pub struct Heap {
    bottom: usize,
    size: usize,
    used: usize,
    holes: HoleList,
}

impl Heap {
    /// Creates an empty heap. All allocate calls will return `None`.
    #[cfg(not(feature = "const_mut_refs"))]
    pub fn empty() -> Heap {
        Heap {
            bottom: 0,
            size: 0,
            used: 0,
            holes: HoleList::empty(),
        }
    }

    #[cfg(feature = "const_mut_refs")]
    pub const fn empty() -> Heap {
        Heap {
            bottom: 0,
            size: 0,
            used: 0,
            holes: HoleList::empty(),
        }
    }

    /// Initializes an empty heap
    ///
    /// # Unsafety
    ///
    /// This function must be called at most once and must only be used on an
    /// empty heap.
    pub unsafe fn init(&mut self, heap_bottom: usize, heap_size: usize) {
        self.bottom = heap_bottom;
        self.size = heap_size;
        self.used = 0;
        self.holes = HoleList::new(heap_bottom, heap_size);
    }

    /// Creates a new heap with the given `bottom` and `size`. The bottom address must be valid
    /// and the memory in the `[heap_bottom, heap_bottom + heap_size)` range must not be used for
    /// anything else. This function is unsafe because it can cause undefined behavior if the
    /// given address is invalid.
    pub unsafe fn new(heap_bottom: usize, heap_size: usize) -> Heap {
        if heap_size < HoleList::min_size() {
            Self::empty()
        } else {
            Heap {
                bottom: heap_bottom,
                size: heap_size,
                used: 0,
                holes: HoleList::new(heap_bottom, heap_size),
            }
        }
    }

    /// Allocates a chunk of the given size with the given alignment. Returns a pointer to the
    /// beginning of that chunk if it was successful. Else it returns `None`.
    /// This function scans the list of free memory blocks and uses the first block that is big
    /// enough. The runtime is in O(n) where n is the number of free blocks, but it should be
    /// reasonably fast for small allocations.
    pub fn allocate_first_fit(&mut self, layout: Layout) -> Result<NonNull<u8>, ()> {
        match self.holes.allocate_first_fit(layout) {
            Ok((ptr, aligned_layout)) => {
                self.used += aligned_layout.size();
                Ok(ptr)
            }
            Err(err) => Err(err),
        }
    }

    /// Frees the given allocation. `ptr` must be a pointer returned
    /// by a call to the `allocate_first_fit` function with identical size and alignment. Undefined
    /// behavior may occur for invalid arguments, thus this function is unsafe.
    ///
    /// This function walks the list of free memory blocks and inserts the freed block at the
    /// correct place. If the freed block is adjacent to another free block, the blocks are merged
    /// again. This operation is in `O(n)` since the list needs to be sorted by address.
    pub unsafe fn deallocate(&mut self, ptr: NonNull<u8>, layout: Layout) {
        self.used -= self.holes.deallocate(ptr, layout).size();
    }

    /// Returns the bottom address of the heap.
    pub fn bottom(&self) -> usize {
        self.bottom
    }

    /// Returns the size of the heap.
    pub fn size(&self) -> usize {
        self.size
    }

    /// Return the top address of the heap
    pub fn top(&self) -> usize {
        self.bottom + self.size
    }

    /// Returns the size of the used part of the heap
    pub fn used(&self) -> usize {
        self.used
    }

    /// Returns the size of the free part of the heap
    pub fn free(&self) -> usize {
        self.size - self.used
    }

    /// Extends the size of the heap by creating a new hole at the end
    ///
    /// # Unsafety
    ///
    /// The new extended area must be valid
    pub unsafe fn extend(&mut self, by: usize) {
        let top = self.top();
        let layout = Layout::from_size_align(by, 1).unwrap();
        self.holes
            .deallocate(NonNull::new_unchecked(top as *mut u8), layout);
        self.size += by;
    }
}

#[cfg(all(feature = "alloc_ref", feature = "use_spin"))]
unsafe impl Allocator for LockedHeap {
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        if layout.size() == 0 {
            return Ok(NonNull::slice_from_raw_parts(layout.dangling(), 0));
        }
        match self.0.lock().allocate_first_fit(layout) {
            Ok(ptr) => Ok(NonNull::slice_from_raw_parts(ptr, layout.size())),
            Err(()) => Err(AllocError),
        }
    }

    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        if layout.size() != 0 {
            self.0.lock().deallocate(ptr, layout);
        }
    }
}

#[cfg(feature = "use_spin")]
pub struct LockedHeap(Spinlock<Heap>);

#[cfg(feature = "use_spin")]
impl LockedHeap {
    /// Creates an empty heap. All allocate calls will return `None`.
    #[cfg(feature = "use_spin_nightly")]
    pub const fn empty() -> LockedHeap {
        LockedHeap(Spinlock::new(Heap::empty()))
    }

    /// Creates an empty heap. All allocate calls will return `None`.
    #[cfg(not(feature = "use_spin_nightly"))]
    pub fn empty() -> LockedHeap {
        LockedHeap(Spinlock::new(Heap::empty()))
    }

    /// Creates a new heap with the given `bottom` and `size`. The bottom address must be valid
    /// and the memory in the `[heap_bottom, heap_bottom + heap_size)` range must not be used for
    /// anything else. This function is unsafe because it can cause undefined behavior if the
    /// given address is invalid.
    pub unsafe fn new(heap_bottom: usize, heap_size: usize) -> LockedHeap {
        LockedHeap(Spinlock::new(Heap {
            bottom: heap_bottom,
            size: heap_size,
            used: 0,
            holes: HoleList::new(heap_bottom, heap_size),
        }))
    }
}

#[cfg(feature = "use_spin")]
impl Deref for LockedHeap {
    type Target = Spinlock<Heap>;

    fn deref(&self) -> &Spinlock<Heap> {
        &self.0
    }
}

#[cfg(feature = "use_spin")]
unsafe impl GlobalAlloc for LockedHeap {
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        self.0
            .lock()
            .allocate_first_fit(layout)
            .ok()
            .map_or(0 as *mut u8, |allocation| allocation.as_ptr())
    }

    unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
        self.0
            .lock()
            .deallocate(NonNull::new_unchecked(ptr), layout)
    }
}

/// Align downwards. Returns the greatest x with alignment `align`
/// so that x <= addr. The alignment must be a power of 2.
pub fn align_down(addr: usize, align: usize) -> usize {
    if align.is_power_of_two() {
        addr & !(align - 1)
    } else if align == 0 {
        addr
    } else {
        panic!("`align` must be a power of 2");
    }
}

/// Align upwards. Returns the smallest x with alignment `align`
/// so that x >= addr. The alignment must be a power of 2.
pub fn align_up(addr: usize, align: usize) -> usize {
    align_down(addr + align - 1, align)
}