1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
//! # Hierarchical Clustering
//!
//! `linfa-hierarchical` provides an implementation of agglomerative hierarchical clustering.
//! In this clustering algorithm, each point is first considered as a separate cluster. During each
//! step, two points are merged into new clusters, until a stopping criterion is reached. The distance
//! between the points is computed as the negative-log transform of the similarity kernel.
//!
//! _Documentation_: [latest](https://docs.rs/linfa-hierarchical).
//!
//! ## The big picture
//!
//! `linfa-hierarchical` is a crate in the [`linfa`](https://crates.io/crates/linfa) ecosystem,
//! a wider effort to bootstrap a toolkit for classical Machine Learning implemented in pure Rust,
//! akin in spirit to Python's `scikit-learn`.
//!
//! ## Current state
//!
//! `linfa-hierarchical` implements agglomerative hierarchical clustering with support of the
//! [kodama](https://docs.rs/kodama/0.2.3/kodama/) crate.

use std::collections::HashMap;

use kodama::linkage;
pub use kodama::Method;

use linfa::param_guard::TransformGuard;
use linfa::traits::Transformer;
use linfa::Float;
use linfa::{dataset::DatasetBase, ParamGuard};
use linfa_kernel::Kernel;

pub use error::{HierarchicalError, Result};

mod error;

/// Criterion when to stop merging
///
/// The criterion defines at which point the merging process should stop. This can be either, when
/// a certain number of clusters is reached, or the distance becomes larger than a maximal
/// distance.
#[derive(Clone, Debug)]
pub enum Criterion<F: Float> {
    NumClusters(usize),
    Distance(F),
}

/// Agglomerative hierarchical clustering
///
/// In this clustering algorithm, each point is first considered as a separate cluster. During each
/// step, two points are merged into new clusters, until a stopping criterion is reached. The distance
/// between the points is computed as the negative-log transform of the similarity kernel.
#[derive(Default)]
pub struct HierarchicalCluster<T: Float>(ValidHierarchicalCluster<T>);

/// Checked version of [`HierarchicalCluster`](`HierarchicalCluster`)
pub struct ValidHierarchicalCluster<T: Float> {
    method: Method,
    stopping: Criterion<T>,
}

impl<F: Float> ParamGuard for HierarchicalCluster<F> {
    type Checked = ValidHierarchicalCluster<F>;
    type Error = HierarchicalError<F>;

    fn check_ref(&self) -> std::result::Result<&Self::Checked, Self::Error> {
        match self.0.stopping {
            Criterion::NumClusters(x) if x == 0 => Err(
                HierarchicalError::InvalidStoppingCondition(self.0.stopping.clone()),
            ),
            Criterion::Distance(x) if x.is_negative() || x.is_nan() || x.is_infinite() => Err(
                HierarchicalError::InvalidStoppingCondition(self.0.stopping.clone()),
            ),
            _ => Ok(&self.0),
        }
    }

    fn check(self) -> std::result::Result<Self::Checked, Self::Error> {
        self.check_ref()?;
        Ok(self.0)
    }
}
impl<F: Float> TransformGuard for HierarchicalCluster<F> {}

impl<F: Float> HierarchicalCluster<F> {
    /// Select a merging method
    pub fn with_method(mut self, method: Method) -> HierarchicalCluster<F> {
        self.0.method = method;
        self
    }

    /// Stop merging when a certain number of clusters are reached
    ///
    /// In the fitting process points are merged until a certain criterion is reached. With this
    /// option the merging process will stop, when the number of clusters drops below this value.
    pub fn num_clusters(mut self, num_clusters: usize) -> HierarchicalCluster<F> {
        self.0.stopping = Criterion::NumClusters(num_clusters);
        self
    }

    /// Stop merging when a certain distance is reached
    ///
    /// In the fitting process points are merged until a certain criterion is reached. With this
    /// option the merging process will stop, then the distance exceeds this value.
    pub fn max_distance(mut self, max_distance: F) -> HierarchicalCluster<F> {
        self.0.stopping = Criterion::Distance(max_distance);
        self
    }
}

impl<F: Float> Transformer<Kernel<F>, DatasetBase<Kernel<F>, Vec<usize>>>
    for ValidHierarchicalCluster<F>
{
    /// Perform hierarchical clustering of a similarity matrix
    ///
    /// Returns the class id for each data point
    fn transform(&self, kernel: Kernel<F>) -> DatasetBase<Kernel<F>, Vec<usize>> {
        // ignore all similarities below this value
        let threshold = F::cast(1e-6);

        // transform similarities to distances with log transformation
        let mut distance = kernel
            .to_upper_triangle()
            .into_iter()
            .map(|x| {
                if x > threshold {
                    -x.ln()
                } else {
                    -threshold.ln()
                }
            })
            .collect::<Vec<_>>();

        // call kodama linkage function
        let num_observations = kernel.size();
        let res = linkage(&mut distance, num_observations, self.method);

        // post-process results, iterate through merging step until threshold is reached
        // at the beginning every node is in its own cluster
        let mut clusters = (0..num_observations)
            .map(|x| (x, vec![x]))
            .collect::<HashMap<_, _>>();

        // counter for new clusters, which are formed as unions of previous ones
        let mut ct = num_observations;

        for step in res.steps() {
            let should_stop = match self.stopping {
                Criterion::NumClusters(max_clusters) => clusters.len() <= max_clusters,
                Criterion::Distance(dis) => step.dissimilarity >= dis,
            };

            // break if one of the two stopping condition is reached
            if should_stop {
                break;
            }

            // combine ids from both clusters
            let mut ids = Vec::with_capacity(2);
            let mut cl = clusters.remove(&step.cluster1).unwrap();
            ids.append(&mut cl);
            let mut cl = clusters.remove(&step.cluster2).unwrap();
            ids.append(&mut cl);

            // insert into hashmap and increase counter
            clusters.insert(ct, ids);
            ct += 1;
        }

        // flatten resulting clusters and reverse index
        let mut tmp = vec![0; num_observations];
        for (i, (_, ids)) in clusters.into_iter().enumerate() {
            for id in ids {
                tmp[id] = i;
            }
        }

        // return node_index -> cluster_index map
        DatasetBase::new(kernel, tmp)
    }
}

impl<F: Float, T> Transformer<DatasetBase<Kernel<F>, T>, DatasetBase<Kernel<F>, Vec<usize>>>
    for ValidHierarchicalCluster<F>
{
    /// Perform hierarchical clustering of a similarity matrix
    ///
    /// Returns the class id for each data point
    fn transform(&self, dataset: DatasetBase<Kernel<F>, T>) -> DatasetBase<Kernel<F>, Vec<usize>> {
        self.transform(dataset.records)
    }
}

/// Initialize hierarchical clustering, which averages in-cluster points and stops when two
/// clusters are reached.
impl<T: Float> Default for ValidHierarchicalCluster<T> {
    fn default() -> Self {
        Self {
            method: Method::Average,
            stopping: Criterion::NumClusters(2),
        }
    }
}

#[cfg(test)]
mod tests {
    use linfa::traits::Transformer;
    use linfa_kernel::{Kernel, KernelMethod};
    use ndarray::{Array, Axis};
    use ndarray_rand::{rand_distr::Normal, RandomExt};

    use super::HierarchicalCluster;

    #[test]
    fn test_blobs() {
        // we have 10 observations per cluster
        let npoints = 10;
        // generate data
        let entries = ndarray::concatenate(
            Axis(0),
            &[
                Array::random((npoints, 2), Normal::new(-1., 0.1).unwrap()).view(),
                Array::random((npoints, 2), Normal::new(1., 0.1).unwrap()).view(),
            ],
        )
        .unwrap();

        let kernel = Kernel::params()
            .method(KernelMethod::Gaussian(5.0))
            .transform(entries.view());

        let kernel = HierarchicalCluster::default()
            .max_distance(0.1)
            .transform(kernel)
            .unwrap();

        // check that all assigned ids are equal for the first cluster
        let ids = kernel.targets();
        let first_cluster_id = &ids[0];
        assert!(ids
            .iter()
            .take(npoints)
            .all(|item| item == first_cluster_id));

        // and for the second
        let second_cluster_id = &ids[npoints];
        assert!(ids
            .iter()
            .skip(npoints)
            .all(|item| item == second_cluster_id));

        // the cluster ids shouldn't be equal
        assert_ne!(first_cluster_id, second_cluster_id);

        // perform hierarchical clustering until we have two clusters left
        let kernel = HierarchicalCluster::default()
            .num_clusters(2)
            .transform(kernel)
            .unwrap();

        // check that all assigned ids are equal for the first cluster
        let ids = kernel.targets();
        let first_cluster_id = &ids[0];
        assert!(ids
            .iter()
            .take(npoints)
            .all(|item| item == first_cluster_id));

        // and for the second
        let second_cluster_id = &ids[npoints];
        assert!(ids
            .iter()
            .skip(npoints)
            .all(|item| item == second_cluster_id));

        // the cluster ids shouldn't be equal
        assert_ne!(first_cluster_id, second_cluster_id);
    }

    #[test]
    fn test_noise() {
        // generate 1000 normal distributed points
        let data = Array::random((100, 2), Normal::new(0., 1.0).unwrap());

        let kernel = Kernel::params()
            .method(KernelMethod::Linear)
            .transform(data.view());

        let predictions = HierarchicalCluster::default()
            .max_distance(3.0)
            .transform(kernel)
            .unwrap();

        dbg!(&predictions.targets());
    }
}