
‭TDPL (Three Dimensional Particle Library)‬

‭Name: Miles Dustin‬
‭Email:‬‭midustin@pdx.edu‬

‭Description: TDPL (Three Dimensional Particle Library) is a Rust library for creating particle‬
‭system graphical effects. I plan to build this library using the Macroquad Crate for graphics‬
‭creation.‬

‭Since the Rust class started, I’ve been doing some research on graphics libraries available for‬
‭use in Rust with the intention of building a different application that aids in artistic fractal design /‬
‭rendering to 2D images. I came across Macroquad and found it to be similar to other libraries‬
‭outside of Rust that I am familiar with and built the application I had in mind relatively quickly (at‬
‭least a pretty simple version of it). I originally was exploring this idea for this project, but given‬
‭how much I’ve started enjoying the idea of using Macroquad more often, I thought a library‬
‭would be a fun project.‬

‭My intention for this library is to easily generalize some particle system style graphics so they‬
‭can easily be placed inside a Macroquad 3d environment without needing to create complex‬
‭data structures to maintain the individual particles within the system, limiting the hassle of‬
‭having to interact with each particle when designing a system. Some ideas for how I would‬
‭structure this library are based around different types of particle system geometries. For‬
‭example, a line particle system versus a planar particle system versus a spatial particle system:‬

‭For the Line Particle System, particles fall along a path defined by the caller. I originally was‬
‭calling this a Linear system, but I thought it might be nice to define lines in terms of b-splines for‬
‭more complex geometry. The caller would have control over:‬

‭-‬ ‭Densities on line at specified interval or periods‬
‭-‬ ‭Length of time for graphical output (or continuously generate the output)‬
‭-‬ ‭Color of particles at a given period and location‬
‭-‬ ‭Randomization amount for specified values‬

‭Some other more global controls I would like to provide are how to interpolate between different‬
‭settings when generating the system (ex: should the change from red to green be linearly‬
‭interpolated, sudden, exponential?). The basic idea for the linear particle system would also‬
‭apply to the planar system and the spatial system except with some small changes to make up‬
‭for the changes in geometry.‬

‭I think my main concerns for this project revolve around creating controls for the caller that‬
‭aren’t too complex (making the library a hassle for the caller), but also aren’t too simple (making‬
‭it difficult to produce intricate and interesting designs). I was thinking of defining settings similar‬
‭to the SuperCollider language used in audio synthesis design, where controls are defined using‬
‭arrays or vectors. For example the first, second, and third colors produced by the particles can‬

mailto:midustin@pdx.edu


‭be defined as ‘vec![COLOR_A, COLOR_B, COLOR_C]’ where the length for each setting is‬
‭defined as ‘vec![LENGTH_A, LENGTH_B, LENGTH_C]’.‬


