1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
//! keysinterface provides keys into rust-lightning and defines some useful enums which describe
//! spendable on-chain outputs which the user owns and is responsible for using just as any other
//! on-chain output which is theirs.

use bitcoin::blockdata::transaction::{OutPoint, TxOut};
use bitcoin::blockdata::script::{Script, Builder};
use bitcoin::blockdata::opcodes;
use bitcoin::network::constants::Network;
use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};

use bitcoin_hashes::{Hash, HashEngine};
use bitcoin_hashes::sha256::Hash as Sha256;
use bitcoin_hashes::hash160::Hash as Hash160;

use secp256k1::key::{SecretKey, PublicKey};
use secp256k1::Secp256k1;
use secp256k1;

use util::logger::Logger;
use util::rng;
use util::byte_utils;

use std::time::{SystemTime, UNIX_EPOCH};
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};

/// When on-chain outputs are created by rust-lightning an event is generated which informs the
/// user thereof. This enum describes the format of the output and provides the OutPoint.
pub enum SpendableOutputDescriptor {
	/// Outpoint with an output to a script which was provided via KeysInterface, thus you should
	/// have stored somewhere how to spend script_pubkey!
	/// Outputs from a justice tx, claim tx or preimage tx
	StaticOutput {
		/// The outpoint spendable by user wallet
		outpoint: OutPoint,
		/// The output which is referenced by the given outpoint
		output: TxOut,
	},
	/// Outpoint commits to a P2WSH
	/// P2WSH should be spend by the following witness :
	/// <local_delayedsig> 0 <witnessScript>
	/// With input nSequence set to_self_delay.
	/// Outputs from a HTLC-Success/Timeout tx/commitment tx
	DynamicOutputP2WSH {
		/// Outpoint spendable by user wallet
		outpoint: OutPoint,
		/// local_delayedkey = delayed_payment_basepoint_secret + SHA256(per_commitment_point || delayed_payment_basepoint) OR
		key: SecretKey,
		/// witness redeemScript encumbering output.
		witness_script: Script,
		/// nSequence input must commit to self_delay to satisfy script's OP_CSV
		to_self_delay: u16,
		/// The output which is referenced by the given outpoint
		output: TxOut,
	},
	/// Outpoint commits to a P2WPKH
	/// P2WPKH should be spend by the following witness :
	/// <local_sig> <local_pubkey>
	/// Outputs to_remote from a commitment tx
	DynamicOutputP2WPKH {
		/// Outpoint spendable by user wallet
		outpoint: OutPoint,
		/// localkey = payment_basepoint_secret + SHA256(per_commitment_point || payment_basepoint
		key: SecretKey,
		/// The output which is reference by the given outpoint
		output: TxOut,
	}
}

/// A trait to describe an object which can get user secrets and key material.
pub trait KeysInterface: Send + Sync {
	/// Get node secret key (aka node_id or network_key)
	fn get_node_secret(&self) -> SecretKey;
	/// Get destination redeemScript to encumber static protocol exit points.
	fn get_destination_script(&self) -> Script;
	/// Get shutdown_pubkey to use as PublicKey at channel closure
	fn get_shutdown_pubkey(&self) -> PublicKey;
	/// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
	/// restarted with some stale data!
	fn get_channel_keys(&self, inbound: bool) -> ChannelKeys;
	/// Get a secret for construting an onion packet
	fn get_session_key(&self) -> SecretKey;
	/// Get a unique temporary channel id. Channels will be referred to by this until the funding
	/// transaction is created, at which point they will use the outpoint in the funding
	/// transaction.
	fn get_channel_id(&self) -> [u8; 32];
}

/// Set of lightning keys needed to operate a channel as described in BOLT 3
#[derive(Clone)]
pub struct ChannelKeys {
	/// Private key of anchor tx
	pub funding_key: SecretKey,
	/// Local secret key for blinded revocation pubkey
	pub revocation_base_key: SecretKey,
	/// Local secret key used in commitment tx htlc outputs
	pub payment_base_key: SecretKey,
	/// Local secret key used in HTLC tx
	pub delayed_payment_base_key: SecretKey,
	/// Local htlc secret key used in commitment tx htlc outputs
	pub htlc_base_key: SecretKey,
	/// Commitment seed
	pub commitment_seed: [u8; 32],
}

impl_writeable!(ChannelKeys, 0, {
	funding_key,
	revocation_base_key,
	payment_base_key,
	delayed_payment_base_key,
	htlc_base_key,
	commitment_seed
});

/// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
/// and derives keys from that.
///
/// Your node_id is seed/0'
/// ChannelMonitor closes may use seed/1'
/// Cooperative closes may use seed/2'
/// The two close keys may be needed to claim on-chain funds!
pub struct KeysManager {
	secp_ctx: Secp256k1<secp256k1::SignOnly>,
	node_secret: SecretKey,
	destination_script: Script,
	shutdown_pubkey: PublicKey,
	channel_master_key: ExtendedPrivKey,
	channel_child_index: AtomicUsize,
	session_master_key: ExtendedPrivKey,
	session_child_index: AtomicUsize,
	channel_id_master_key: ExtendedPrivKey,
	channel_id_child_index: AtomicUsize,

	logger: Arc<Logger>,
}

impl KeysManager {
	/// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
	/// RNG is busted) this may panic.
	pub fn new(seed: &[u8; 32], network: Network, logger: Arc<Logger>) -> KeysManager {
		let secp_ctx = Secp256k1::signing_only();
		match ExtendedPrivKey::new_master(network.clone(), seed) {
			Ok(master_key) => {
				let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
				let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
					Ok(destination_key) => {
						let pubkey_hash160 = Hash160::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.key.serialize()[..]);
						Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
						              .push_slice(&pubkey_hash160.into_inner())
						              .into_script()
					},
					Err(_) => panic!("Your RNG is busted"),
				};
				let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
					Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
					Err(_) => panic!("Your RNG is busted"),
				};
				let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
				let session_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
				let channel_id_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted");
				KeysManager {
					secp_ctx,
					node_secret,
					destination_script,
					shutdown_pubkey,
					channel_master_key,
					channel_child_index: AtomicUsize::new(0),
					session_master_key,
					session_child_index: AtomicUsize::new(0),
					channel_id_master_key,
					channel_id_child_index: AtomicUsize::new(0),

					logger,
				}
			},
			Err(_) => panic!("Your rng is busted"),
		}
	}
}

impl KeysInterface for KeysManager {
	fn get_node_secret(&self) -> SecretKey {
		self.node_secret.clone()
	}

	fn get_destination_script(&self) -> Script {
		self.destination_script.clone()
	}

	fn get_shutdown_pubkey(&self) -> PublicKey {
		self.shutdown_pubkey.clone()
	}

	fn get_channel_keys(&self, _inbound: bool) -> ChannelKeys {
		// We only seriously intend to rely on the channel_master_key for true secure
		// entropy, everything else just ensures uniqueness. We generally don't expect
		// all clients to have non-broken RNGs here, so we also include the current
		// time as a fallback to get uniqueness.
		let mut sha = Sha256::engine();

		let mut seed = [0u8; 32];
		rng::fill_bytes(&mut seed[..]);
		sha.input(&seed);

		let now = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time went backwards");
		sha.input(&byte_utils::be32_to_array(now.subsec_nanos()));
		sha.input(&byte_utils::be64_to_array(now.as_secs()));

		let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
		let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
		sha.input(&child_privkey.private_key.key[..]);

		seed = Sha256::from_engine(sha).into_inner();

		let commitment_seed = {
			let mut sha = Sha256::engine();
			sha.input(&seed);
			sha.input(&b"commitment seed"[..]);
			Sha256::from_engine(sha).into_inner()
		};
		macro_rules! key_step {
			($info: expr, $prev_key: expr) => {{
				let mut sha = Sha256::engine();
				sha.input(&seed);
				sha.input(&$prev_key[..]);
				sha.input(&$info[..]);
				SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
			}}
		}
		let funding_key = key_step!(b"funding key", commitment_seed);
		let revocation_base_key = key_step!(b"revocation base key", funding_key);
		let payment_base_key = key_step!(b"payment base key", revocation_base_key);
		let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_base_key);
		let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);

		ChannelKeys {
			funding_key,
			revocation_base_key,
			payment_base_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
		}
	}

	fn get_session_key(&self) -> SecretKey {
		let mut sha = Sha256::engine();

		let now = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time went backwards");
		sha.input(&byte_utils::be32_to_array(now.subsec_nanos()));
		sha.input(&byte_utils::be64_to_array(now.as_secs()));

		let child_ix = self.session_child_index.fetch_add(1, Ordering::AcqRel);
		let child_privkey = self.session_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
		sha.input(&child_privkey.private_key.key[..]);
		SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("Your RNG is busted")
	}

	fn get_channel_id(&self) -> [u8; 32] {
		let mut sha = Sha256::engine();

		let now = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time went backwards");
		sha.input(&byte_utils::be32_to_array(now.subsec_nanos()));
		sha.input(&byte_utils::be64_to_array(now.as_secs()));

		let child_ix = self.channel_id_child_index.fetch_add(1, Ordering::AcqRel);
		let child_privkey = self.channel_id_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
		sha.input(&child_privkey.private_key.key[..]);

		(Sha256::from_engine(sha).into_inner())
	}
}