1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

//! keysinterface provides keys into rust-lightning and defines some useful enums which describe
//! spendable on-chain outputs which the user owns and is responsible for using just as any other
//! on-chain output which is theirs.

use bitcoin::blockdata::transaction::{Transaction, TxOut, SigHashType};
use bitcoin::blockdata::script::{Script, Builder};
use bitcoin::blockdata::opcodes;
use bitcoin::network::constants::Network;
use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
use bitcoin::util::bip143;

use bitcoin::hashes::{Hash, HashEngine};
use bitcoin::hashes::sha256::HashEngine as Sha256State;
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
use bitcoin::hash_types::WPubkeyHash;

use bitcoin::secp256k1::key::{SecretKey, PublicKey};
use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
use bitcoin::secp256k1;

use util::byte_utils;
use util::ser::{Writeable, Writer, Readable};

use chain::transaction::OutPoint;
use ln::chan_utils;
use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, PreCalculatedTxCreationKeys};
use ln::msgs::UnsignedChannelAnnouncement;

use std::sync::atomic::{AtomicUsize, Ordering};
use std::io::Error;
use ln::msgs::DecodeError;

/// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
/// claim at any point in the future) an event is generated which you must track and be able to
/// spend on-chain. The information needed to do this is provided in this enum, including the
/// outpoint describing which txid and output index is available, the full output which exists at
/// that txid/index, and any keys or other information required to sign.
#[derive(Clone, Debug, PartialEq)]
pub enum SpendableOutputDescriptor {
	/// An output to a script which was provided via KeysInterface, thus you should already know
	/// how to spend it. No keys are provided as rust-lightning was never given any keys - only the
	/// script_pubkey as it appears in the output.
	/// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
	/// on-chain using the payment preimage or after it has timed out.
	StaticOutput {
		/// The outpoint which is spendable
		outpoint: OutPoint,
		/// The output which is referenced by the given outpoint.
		output: TxOut,
	},
	/// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
	///
	/// The witness in the spending input should be:
	/// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
	///
	/// Note that the nSequence field in the spending input must be set to to_self_delay
	/// (which means the transaction is not broadcastable until at least to_self_delay
	/// blocks after the outpoint confirms).
	///
	/// These are generally the result of a "revocable" output to us, spendable only by us unless
	/// it is an output from an old state which we broadcast (which should never happen).
	///
	/// To derive the delayed_payment key which is used to sign for this input, you must pass the
	/// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
	/// ChannelKeys::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
	/// chan_utils::derive_private_key. The public key can be generated without the secret key
	/// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
	/// ChannelKeys::pubkeys().
	///
	/// To derive the revocation_pubkey provided here (which is used in the witness
	/// script generation), you must pass the counterparty revocation_basepoint (which appears in the
	/// call to ChannelKeys::on_accept) and the provided per_commitment point
	/// to chan_utils::derive_public_revocation_key.
	///
	/// The witness script which is hashed and included in the output script_pubkey may be
	/// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
	/// (derived as above), and the to_self_delay contained here to
	/// chan_utils::get_revokeable_redeemscript.
	//
	// TODO: we need to expose utility methods in KeyManager to do all the relevant derivation.
	DynamicOutputP2WSH {
		/// The outpoint which is spendable
		outpoint: OutPoint,
		/// Per commitment point to derive delayed_payment_key by key holder
		per_commitment_point: PublicKey,
		/// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
		/// the witness_script.
		to_self_delay: u16,
		/// The output which is referenced by the given outpoint
		output: TxOut,
		/// The channel keys state used to proceed to derivation of signing key. Must
		/// be pass to KeysInterface::derive_channel_keys.
		key_derivation_params: (u64, u64),
		/// The revocation_pubkey used to derive witnessScript
		revocation_pubkey: PublicKey
	},
	/// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
	/// corresponds to the public key in ChannelKeys::pubkeys().payment_point).
	/// The witness in the spending input, is, thus, simply:
	/// <BIP 143 signature> <payment key>
	///
	/// These are generally the result of our counterparty having broadcast the current state,
	/// allowing us to claim the non-HTLC-encumbered outputs immediately.
	StaticOutputCounterpartyPayment {
		/// The outpoint which is spendable
		outpoint: OutPoint,
		/// The output which is reference by the given outpoint
		output: TxOut,
		/// The channel keys state used to proceed to derivation of signing key. Must
		/// be pass to KeysInterface::derive_channel_keys.
		key_derivation_params: (u64, u64),
	}
}

impl Writeable for SpendableOutputDescriptor {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
		match self {
			&SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
				0u8.write(writer)?;
				outpoint.write(writer)?;
				output.write(writer)?;
			},
			&SpendableOutputDescriptor::DynamicOutputP2WSH { ref outpoint, ref per_commitment_point, ref to_self_delay, ref output, ref key_derivation_params, ref revocation_pubkey } => {
				1u8.write(writer)?;
				outpoint.write(writer)?;
				per_commitment_point.write(writer)?;
				to_self_delay.write(writer)?;
				output.write(writer)?;
				key_derivation_params.0.write(writer)?;
				key_derivation_params.1.write(writer)?;
				revocation_pubkey.write(writer)?;
			},
			&SpendableOutputDescriptor::StaticOutputCounterpartyPayment { ref outpoint, ref output, ref key_derivation_params } => {
				2u8.write(writer)?;
				outpoint.write(writer)?;
				output.write(writer)?;
				key_derivation_params.0.write(writer)?;
				key_derivation_params.1.write(writer)?;
			},
		}
		Ok(())
	}
}

impl Readable for SpendableOutputDescriptor {
	fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
		match Readable::read(reader)? {
			0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
				outpoint: Readable::read(reader)?,
				output: Readable::read(reader)?,
			}),
			1u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WSH {
				outpoint: Readable::read(reader)?,
				per_commitment_point: Readable::read(reader)?,
				to_self_delay: Readable::read(reader)?,
				output: Readable::read(reader)?,
				key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
				revocation_pubkey: Readable::read(reader)?,
			}),
			2u8 => Ok(SpendableOutputDescriptor::StaticOutputCounterpartyPayment {
				outpoint: Readable::read(reader)?,
				output: Readable::read(reader)?,
				key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
			}),
			_ => Err(DecodeError::InvalidValue),
		}
	}
}

/// Set of lightning keys needed to operate a channel as described in BOLT 3.
///
/// Signing services could be implemented on a hardware wallet. In this case,
/// the current ChannelKeys would be a front-end on top of a communication
/// channel connected to your secure device and lightning key material wouldn't
/// reside on a hot server. Nevertheless, a this deployment would still need
/// to trust the ChannelManager to avoid loss of funds as this latest component
/// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
///
/// A more secure iteration would be to use hashlock (or payment points) to pair
/// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
/// at the price of more state and computation on the hardware wallet side. In the future,
/// we are looking forward to design such interface.
///
/// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
/// to act, as liveness and breach reply correctness are always going to be hard requirements
/// of LN security model, orthogonal of key management issues.
///
/// If you're implementing a custom signer, you almost certainly want to implement
/// Readable/Writable to serialize out a unique reference to this set of keys so
/// that you can serialize the full ChannelManager object.
///
// (TODO: We shouldn't require that, and should have an API to get them at deser time, due mostly
// to the possibility of reentrancy issues by calling the user's code during our deserialization
// routine).
// TODO: We should remove Clone by instead requesting a new ChannelKeys copy when we create
// ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
pub trait ChannelKeys : Send+Clone {
	/// Gets the per-commitment point for a specific commitment number
	///
	/// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
	fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey;
	/// Gets the commitment secret for a specific commitment number as part of the revocation process
	///
	/// An external signer implementation should error here if the commitment was already signed
	/// and should refuse to sign it in the future.
	///
	/// May be called more than once for the same index.
	///
	/// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
	/// TODO: return a Result so we can signal a validation error
	fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
	/// Gets the holder's channel public keys and basepoints
	fn pubkeys(&self) -> &ChannelPublicKeys;
	/// Gets arbitrary identifiers describing the set of keys which are provided back to you in
	/// some SpendableOutputDescriptor types. These should be sufficient to identify this
	/// ChannelKeys object uniquely and lookup or re-derive its keys.
	fn key_derivation_params(&self) -> (u64, u64);

	/// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
	///
	/// Note that if signing fails or is rejected, the channel will be force-closed.
	//
	// TODO: Document the things someone using this interface should enforce before signing.
	// TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
	// making the callee generate it via some util function we expose)!
	fn sign_counterparty_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u32, commitment_tx: &Transaction, keys: &PreCalculatedTxCreationKeys, htlcs: &[&HTLCOutputInCommitment], secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;

	/// Create a signature for a holder's commitment transaction. This will only ever be called with
	/// the same holder_commitment_tx (or a copy thereof), though there are currently no guarantees
	/// that it will not be called multiple times.
	/// An external signer implementation should check that the commitment has not been revoked.
	//
	// TODO: Document the things someone using this interface should enforce before signing.
	// TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
	fn sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, holder_commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;

	/// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
	/// transactions which will be broadcasted later, after the channel has moved on to a newer
	/// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
	/// get called once.
	#[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
	fn unsafe_sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, holder_commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;

	/// Create a signature for each HTLC transaction spending a holder's commitment transaction.
	///
	/// Unlike sign_holder_commitment, this may be called multiple times with *different*
	/// holder_commitment_tx values. While this will never be called with a revoked
	/// holder_commitment_tx, it is possible that it is called with the second-latest
	/// holder_commitment_tx (only if we haven't yet revoked it) if some watchtower/secondary
	/// ChannelMonitor decided to broadcast before it had been updated to the latest.
	///
	/// Either an Err should be returned, or a Vec with one entry for each HTLC which exists in
	/// holder_commitment_tx. For those HTLCs which have transaction_output_index set to None
	/// (implying they were considered dust at the time the commitment transaction was negotiated),
	/// a corresponding None should be included in the return value. All other positions in the
	/// return value must contain a signature.
	fn sign_holder_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, holder_commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()>;

	/// Create a signature for the given input in a transaction spending an HTLC or commitment
	/// transaction output when our counterparty broadcasts an old state.
	///
	/// A justice transaction may claim multiples outputs at the same time if timelocks are
	/// similar, but only a signature for the input at index `input` should be signed for here.
	/// It may be called multiples time for same output(s) if a fee-bump is needed with regards
	/// to an upcoming timelock expiration.
	///
	/// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
	///
	/// per_commitment_key is revocation secret which was provided by our counterparty when they
	/// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
	/// not allow the spending of any funds by itself (you need our holder revocation_secret to do
	/// so).
	///
	/// htlc holds HTLC elements (hash, timelock) if the output being spent is a HTLC output, thus
	/// changing the format of the witness script (which is committed to in the BIP 143
	/// signatures).
	fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;

	/// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
	/// transaction, either offered or received.
	///
	/// Such a transaction may claim multiples offered outputs at same time if we know the
	/// preimage for each when we create it, but only the input at index `input` should be
	/// signed for here. It may be called multiple times for same output(s) if a fee-bump is
	/// needed with regards to an upcoming timelock expiration.
	///
	/// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
	/// outputs.
	///
	/// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
	///
	/// Per_commitment_point is the dynamic point corresponding to the channel state
	/// detected onchain. It has been generated by our counterparty and is used to derive
	/// channel state keys, which are then included in the witness script and committed to in the
	/// BIP 143 signature.
	fn sign_counterparty_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;

	/// Create a signature for a (proposed) closing transaction.
	///
	/// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
	/// chosen to forgo their output as dust.
	fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;

	/// Signs a channel announcement message with our funding key, proving it comes from one
	/// of the channel participants.
	///
	/// Note that if this fails or is rejected, the channel will not be publicly announced and
	/// our counterparty may (though likely will not) close the channel on us for violating the
	/// protocol.
	fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;

	/// Set the counterparty channel basepoints and counterparty_selected/holder_selected_contest_delay.
	/// This is done immediately on incoming channels and as soon as the channel is accepted on outgoing channels.
	///
	/// We bind holder_selected_contest_delay late here for API convenience.
	///
	/// Will be called before any signatures are applied.
	fn on_accept(&mut self, channel_points: &ChannelPublicKeys, counterparty_selected_contest_delay: u16, holder_selected_contest_delay: u16);
}

/// A trait to describe an object which can get user secrets and key material.
pub trait KeysInterface: Send + Sync {
	/// A type which implements ChannelKeys which will be returned by get_channel_keys.
	type ChanKeySigner : ChannelKeys;

	/// Get node secret key (aka node_id or network_key)
	fn get_node_secret(&self) -> SecretKey;
	/// Get destination redeemScript to encumber static protocol exit points.
	fn get_destination_script(&self) -> Script;
	/// Get shutdown_pubkey to use as PublicKey at channel closure
	fn get_shutdown_pubkey(&self) -> PublicKey;
	/// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
	/// restarted with some stale data!
	fn get_channel_keys(&self, inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner;
	/// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
	/// onion packets and for temporary channel IDs. There is no requirement that these be
	/// persisted anywhere, though they must be unique across restarts.
	fn get_secure_random_bytes(&self) -> [u8; 32];
}

#[derive(Clone)]
/// Holds late-bound channel data.
/// This data is available after the channel is known to be accepted, either
/// when receiving an open_channel for an inbound channel or when
/// receiving accept_channel for an outbound channel.
struct AcceptedChannelData {
	/// Counterparty public keys and base points
	counterparty_channel_pubkeys: ChannelPublicKeys,
	/// The contest_delay value specified by our counterparty and applied on holder-broadcastable
	/// transactions, ie the amount of time that we have to wait to recover our funds if we
	/// broadcast a transaction. You'll likely want to pass this to the
	/// ln::chan_utils::build*_transaction functions when signing holder's transactions.
	counterparty_selected_contest_delay: u16,
	/// The contest_delay value specified by us and applied on transactions broadcastable
	/// by our counterparty, ie the amount of time that they have to wait to recover their funds
	/// if they broadcast a transaction.
	holder_selected_contest_delay: u16,
}

#[derive(Clone)]
/// A simple implementation of ChannelKeys that just keeps the private keys in memory.
pub struct InMemoryChannelKeys {
	/// Private key of anchor tx
	pub funding_key: SecretKey,
	/// Holder secret key for blinded revocation pubkey
	pub revocation_base_key: SecretKey,
	/// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
	pub payment_key: SecretKey,
	/// Holder secret key used in HTLC tx
	pub delayed_payment_base_key: SecretKey,
	/// Holder htlc secret key used in commitment tx htlc outputs
	pub htlc_base_key: SecretKey,
	/// Commitment seed
	pub commitment_seed: [u8; 32],
	/// Holder public keys and basepoints
	pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
	/// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
	accepted_channel_data: Option<AcceptedChannelData>,
	/// The total value of this channel
	channel_value_satoshis: u64,
	/// Key derivation parameters
	key_derivation_params: (u64, u64),
}

impl InMemoryChannelKeys {
	/// Create a new InMemoryChannelKeys
	pub fn new<C: Signing>(
		secp_ctx: &Secp256k1<C>,
		funding_key: SecretKey,
		revocation_base_key: SecretKey,
		payment_key: SecretKey,
		delayed_payment_base_key: SecretKey,
		htlc_base_key: SecretKey,
		commitment_seed: [u8; 32],
		channel_value_satoshis: u64,
		key_derivation_params: (u64, u64)) -> InMemoryChannelKeys {
		let holder_channel_pubkeys =
			InMemoryChannelKeys::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
			                                     &payment_key, &delayed_payment_base_key,
			                                     &htlc_base_key);
		InMemoryChannelKeys {
			funding_key,
			revocation_base_key,
			payment_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			channel_value_satoshis,
			holder_channel_pubkeys,
			accepted_channel_data: None,
			key_derivation_params,
		}
	}

	fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
	                               funding_key: &SecretKey,
	                               revocation_base_key: &SecretKey,
	                               payment_key: &SecretKey,
	                               delayed_payment_base_key: &SecretKey,
	                               htlc_base_key: &SecretKey) -> ChannelPublicKeys {
		let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
		ChannelPublicKeys {
			funding_pubkey: from_secret(&funding_key),
			revocation_basepoint: from_secret(&revocation_base_key),
			payment_point: from_secret(&payment_key),
			delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
			htlc_basepoint: from_secret(&htlc_base_key),
		}
	}

	/// Counterparty pubkeys.
	/// Will panic if on_accept wasn't called.
	pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.accepted_channel_data.as_ref().unwrap().counterparty_channel_pubkeys }

	/// The contest_delay value specified by our counterparty and applied on holder-broadcastable
	/// transactions, ie the amount of time that we have to wait to recover our funds if we
	/// broadcast a transaction. You'll likely want to pass this to the
	/// ln::chan_utils::build*_transaction functions when signing holder's transactions.
	/// Will panic if on_accept wasn't called.
	pub fn counterparty_selected_contest_delay(&self) -> u16 { self.accepted_channel_data.as_ref().unwrap().counterparty_selected_contest_delay }

	/// The contest_delay value specified by us and applied on transactions broadcastable
	/// by our counterparty, ie the amount of time that they have to wait to recover their funds
	/// if they broadcast a transaction.
	/// Will panic if on_accept wasn't called.
	pub fn holder_selected_contest_delay(&self) -> u16 { self.accepted_channel_data.as_ref().unwrap().holder_selected_contest_delay }
}

impl ChannelKeys for InMemoryChannelKeys {
	fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey {
		let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
		PublicKey::from_secret_key(secp_ctx, &commitment_secret)
	}

	fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
		chan_utils::build_commitment_secret(&self.commitment_seed, idx)
	}

	fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
	fn key_derivation_params(&self) -> (u64, u64) { self.key_derivation_params }

	fn sign_counterparty_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u32, commitment_tx: &Transaction, pre_keys: &PreCalculatedTxCreationKeys, htlcs: &[&HTLCOutputInCommitment], secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
		if commitment_tx.input.len() != 1 { return Err(()); }
		let keys = pre_keys.trust_key_derivation();

		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let accepted_data = self.accepted_channel_data.as_ref().expect("must accept before signing");
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &accepted_data.counterparty_channel_pubkeys.funding_pubkey);

		let commitment_sighash = hash_to_message!(&bip143::SigHashCache::new(commitment_tx).signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
		let commitment_sig = secp_ctx.sign(&commitment_sighash, &self.funding_key);

		let commitment_txid = commitment_tx.txid();

		let mut htlc_sigs = Vec::with_capacity(htlcs.len());
		for ref htlc in htlcs {
			if let Some(_) = htlc.transaction_output_index {
				let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, feerate_per_kw, accepted_data.holder_selected_contest_delay, htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
				let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
				let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]);
				let our_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
					Ok(s) => s,
					Err(_) => return Err(()),
				};
				htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &our_htlc_key));
			}
		}

		Ok((commitment_sig, htlc_sigs))
	}

	fn sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, holder_commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let counterparty_channel_data = self.accepted_channel_data.as_ref().expect("must accept before signing");
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &counterparty_channel_data.counterparty_channel_pubkeys.funding_pubkey);

		Ok(holder_commitment_tx.get_holder_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
	}

	#[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
	fn unsafe_sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, holder_commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let counterparty_channel_pubkeys = &self.accepted_channel_data.as_ref().expect("must accept before signing").counterparty_channel_pubkeys;
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &counterparty_channel_pubkeys.funding_pubkey);

		Ok(holder_commitment_tx.get_holder_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
	}

	fn sign_holder_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, holder_commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()> {
		let counterparty_selected_contest_delay = self.accepted_channel_data.as_ref().unwrap().counterparty_selected_contest_delay;
		holder_commitment_tx.get_htlc_sigs(&self.htlc_base_key, counterparty_selected_contest_delay, secp_ctx)
	}

	fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
		let revocation_key = match chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) {
			Ok(revocation_key) => revocation_key,
			Err(_) => return Err(())
		};
		let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
		let revocation_pubkey = match chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
			Ok(revocation_pubkey) => revocation_pubkey,
			Err(_) => return Err(())
		};
		let witness_script = if let &Some(ref htlc) = htlc {
			let counterparty_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
				Ok(counterparty_htlcpubkey) => counterparty_htlcpubkey,
				Err(_) => return Err(())
			};
			let holder_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
				Ok(holder_htlcpubkey) => holder_htlcpubkey,
				Err(_) => return Err(())
			};
			chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
		} else {
			let counterparty_delayedpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint) {
				Ok(counterparty_delayedpubkey) => counterparty_delayedpubkey,
				Err(_) => return Err(())
			};
			chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
		};
		let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
		let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
		return Ok(secp_ctx.sign(&sighash, &revocation_key))
	}

	fn sign_counterparty_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
		if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
			let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
				if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
					if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
						chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
					} else { return Err(()) }
				} else { return Err(()) }
			} else { return Err(()) };
			let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
			let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
			return Ok(secp_ctx.sign(&sighash, &htlc_key))
		}
		Err(())
	}

	fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
		if closing_tx.input.len() != 1 { return Err(()); }
		if closing_tx.input[0].witness.len() != 0 { return Err(()); }
		if closing_tx.output.len() > 2 { return Err(()); }

		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let counterparty_channel_data = self.accepted_channel_data.as_ref().expect("must accept before signing");
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &counterparty_channel_data.counterparty_channel_pubkeys.funding_pubkey);

		let sighash = hash_to_message!(&bip143::SigHashCache::new(closing_tx)
			.signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
		Ok(secp_ctx.sign(&sighash, &self.funding_key))
	}

	fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
		let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
		Ok(secp_ctx.sign(&msghash, &self.funding_key))
	}

	fn on_accept(&mut self, channel_pubkeys: &ChannelPublicKeys, counterparty_selected_contest_delay: u16, holder_selected_contest_delay: u16) {
		assert!(self.accepted_channel_data.is_none(), "Already accepted");
		self.accepted_channel_data = Some(AcceptedChannelData {
			counterparty_channel_pubkeys: channel_pubkeys.clone(),
			counterparty_selected_contest_delay,
			holder_selected_contest_delay,
		});
	}
}

impl_writeable!(AcceptedChannelData, 0,
 { counterparty_channel_pubkeys, counterparty_selected_contest_delay, holder_selected_contest_delay });

impl Writeable for InMemoryChannelKeys {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
		self.funding_key.write(writer)?;
		self.revocation_base_key.write(writer)?;
		self.payment_key.write(writer)?;
		self.delayed_payment_base_key.write(writer)?;
		self.htlc_base_key.write(writer)?;
		self.commitment_seed.write(writer)?;
		self.accepted_channel_data.write(writer)?;
		self.channel_value_satoshis.write(writer)?;
		self.key_derivation_params.0.write(writer)?;
		self.key_derivation_params.1.write(writer)?;

		Ok(())
	}
}

impl Readable for InMemoryChannelKeys {
	fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
		let funding_key = Readable::read(reader)?;
		let revocation_base_key = Readable::read(reader)?;
		let payment_key = Readable::read(reader)?;
		let delayed_payment_base_key = Readable::read(reader)?;
		let htlc_base_key = Readable::read(reader)?;
		let commitment_seed = Readable::read(reader)?;
		let counterparty_channel_data = Readable::read(reader)?;
		let channel_value_satoshis = Readable::read(reader)?;
		let secp_ctx = Secp256k1::signing_only();
		let holder_channel_pubkeys =
			InMemoryChannelKeys::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
			                                     &payment_key, &delayed_payment_base_key,
			                                     &htlc_base_key);
		let params_1 = Readable::read(reader)?;
		let params_2 = Readable::read(reader)?;

		Ok(InMemoryChannelKeys {
			funding_key,
			revocation_base_key,
			payment_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			channel_value_satoshis,
			holder_channel_pubkeys,
			accepted_channel_data: counterparty_channel_data,
			key_derivation_params: (params_1, params_2),
		})
	}
}

/// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
/// and derives keys from that.
///
/// Your node_id is seed/0'
/// ChannelMonitor closes may use seed/1'
/// Cooperative closes may use seed/2'
/// The two close keys may be needed to claim on-chain funds!
pub struct KeysManager {
	secp_ctx: Secp256k1<secp256k1::SignOnly>,
	node_secret: SecretKey,
	destination_script: Script,
	shutdown_pubkey: PublicKey,
	channel_master_key: ExtendedPrivKey,
	channel_child_index: AtomicUsize,
	rand_bytes_master_key: ExtendedPrivKey,
	rand_bytes_child_index: AtomicUsize,

	seed: [u8; 32],
	starting_time_secs: u64,
	starting_time_nanos: u32,
}

impl KeysManager {
	/// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
	/// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
	/// starting_time isn't strictly required to actually be a time, but it must absolutely,
	/// without a doubt, be unique to this instance. ie if you start multiple times with the same
	/// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
	/// simply use the current time (with very high precision).
	///
	/// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
	/// obviously, starting_time should be unique every time you reload the library - it is only
	/// used to generate new ephemeral key data (which will be stored by the individual channel if
	/// necessary).
	///
	/// Note that the seed is required to recover certain on-chain funds independent of
	/// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
	/// channel, and some on-chain during-closing funds.
	///
	/// Note that until the 0.1 release there is no guarantee of backward compatibility between
	/// versions. Once the library is more fully supported, the docs will be updated to include a
	/// detailed description of the guarantee.
	pub fn new(seed: &[u8; 32], network: Network, starting_time_secs: u64, starting_time_nanos: u32) -> Self {
		let secp_ctx = Secp256k1::signing_only();
		match ExtendedPrivKey::new_master(network.clone(), seed) {
			Ok(master_key) => {
				let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
				let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
					Ok(destination_key) => {
						let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
						Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
						              .push_slice(&wpubkey_hash.into_inner())
						              .into_script()
					},
					Err(_) => panic!("Your RNG is busted"),
				};
				let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
					Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
					Err(_) => panic!("Your RNG is busted"),
				};
				let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
				let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");

				KeysManager {
					secp_ctx,
					node_secret,
					destination_script,
					shutdown_pubkey,
					channel_master_key,
					channel_child_index: AtomicUsize::new(0),
					rand_bytes_master_key,
					rand_bytes_child_index: AtomicUsize::new(0),

					seed: *seed,
					starting_time_secs,
					starting_time_nanos,
				}
			},
			Err(_) => panic!("Your rng is busted"),
		}
	}
	fn derive_unique_start(&self) -> Sha256State {
		let mut unique_start = Sha256::engine();
		unique_start.input(&byte_utils::be64_to_array(self.starting_time_secs));
		unique_start.input(&byte_utils::be32_to_array(self.starting_time_nanos));
		unique_start.input(&self.seed);
		unique_start
	}
	/// Derive an old set of ChannelKeys for per-channel secrets based on a key derivation
	/// parameters.
	/// Key derivation parameters are accessible through a per-channel secrets
	/// ChannelKeys::key_derivation_params and is provided inside DynamicOuputP2WSH in case of
	/// onchain output detection for which a corresponding delayed_payment_key must be derived.
	pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params_1: u64, params_2: u64) -> InMemoryChannelKeys {
		let chan_id = ((params_1 & 0xFFFF_FFFF_0000_0000) >> 32) as u32;
		let mut unique_start = Sha256::engine();
		unique_start.input(&byte_utils::be64_to_array(params_2));
		unique_start.input(&byte_utils::be32_to_array(params_1 as u32));
		unique_start.input(&self.seed);

		// We only seriously intend to rely on the channel_master_key for true secure
		// entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
		// starting_time provided in the constructor) to be unique.
		let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id).expect("key space exhausted")).expect("Your RNG is busted");
		unique_start.input(&child_privkey.private_key.key[..]);

		let seed = Sha256::from_engine(unique_start).into_inner();

		let commitment_seed = {
			let mut sha = Sha256::engine();
			sha.input(&seed);
			sha.input(&b"commitment seed"[..]);
			Sha256::from_engine(sha).into_inner()
		};
		macro_rules! key_step {
			($info: expr, $prev_key: expr) => {{
				let mut sha = Sha256::engine();
				sha.input(&seed);
				sha.input(&$prev_key[..]);
				sha.input(&$info[..]);
				SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
			}}
		}
		let funding_key = key_step!(b"funding key", commitment_seed);
		let revocation_base_key = key_step!(b"revocation base key", funding_key);
		let payment_key = key_step!(b"payment key", revocation_base_key);
		let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
		let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);

		InMemoryChannelKeys::new(
			&self.secp_ctx,
			funding_key,
			revocation_base_key,
			payment_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			channel_value_satoshis,
			(params_1, params_2),
		)
	}
}

impl KeysInterface for KeysManager {
	type ChanKeySigner = InMemoryChannelKeys;

	fn get_node_secret(&self) -> SecretKey {
		self.node_secret.clone()
	}

	fn get_destination_script(&self) -> Script {
		self.destination_script.clone()
	}

	fn get_shutdown_pubkey(&self) -> PublicKey {
		self.shutdown_pubkey.clone()
	}

	fn get_channel_keys(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner {
		let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
		let ix_and_nanos: u64 = (child_ix as u64) << 32 | (self.starting_time_nanos as u64);
		self.derive_channel_keys(channel_value_satoshis, ix_and_nanos, self.starting_time_secs)
	}

	fn get_secure_random_bytes(&self) -> [u8; 32] {
		let mut sha = self.derive_unique_start();

		let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
		let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
		sha.input(&child_privkey.private_key.key[..]);

		sha.input(b"Unique Secure Random Bytes Salt");
		Sha256::from_engine(sha).into_inner()
	}
}