1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
//! A very simple serialization framework which is used to serialize/deserialize messages as well
//! as ChannelsManagers and ChannelMonitors.

use std::result::Result;
use std::io::{Read, Write};
use std::collections::HashMap;
use std::hash::Hash;
use std::sync::Mutex;
use std::cmp;

use secp256k1::Signature;
use secp256k1::key::{PublicKey, SecretKey};
use bitcoin::blockdata::script::Script;
use bitcoin::blockdata::transaction::{OutPoint, Transaction, TxOut};
use bitcoin::consensus;
use bitcoin::consensus::Encodable;
use bitcoin_hashes::sha256d::Hash as Sha256dHash;
use std::marker::Sized;
use ln::msgs::DecodeError;
use ln::channelmanager::{PaymentPreimage, PaymentHash, PaymentSecret};
use util::byte_utils;

use util::byte_utils::{be64_to_array, be48_to_array, be32_to_array, be16_to_array, slice_to_be16, slice_to_be32, slice_to_be48, slice_to_be64};

const MAX_BUF_SIZE: usize = 64 * 1024;

/// A trait that is similar to std::io::Write but has one extra function which can be used to size
/// buffers being written into.
/// An impl is provided for any type that also impls std::io::Write which simply ignores size
/// hints.
pub trait Writer {
	/// Writes the given buf out. See std::io::Write::write_all for more
	fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error>;
	/// Hints that data of the given size is about the be written. This may not always be called
	/// prior to data being written and may be safely ignored.
	fn size_hint(&mut self, size: usize);
}

impl<W: Write> Writer for W {
	#[inline]
	fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
		<Self as ::std::io::Write>::write_all(self, buf)
	}
	#[inline]
	fn size_hint(&mut self, _size: usize) { }
}

pub(crate) struct WriterWriteAdaptor<'a, W: Writer + 'a>(pub &'a mut W);
impl<'a, W: Writer + 'a> Write for WriterWriteAdaptor<'a, W> {
	fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
		self.0.write_all(buf)
	}
	fn write(&mut self, buf: &[u8]) -> Result<usize, ::std::io::Error> {
		self.0.write_all(buf)?;
		Ok(buf.len())
	}
	fn flush(&mut self) -> Result<(), ::std::io::Error> {
		Ok(())
	}
}

pub(crate) struct VecWriter(pub Vec<u8>);
impl Writer for VecWriter {
	fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
		self.0.extend_from_slice(buf);
		Ok(())
	}
	fn size_hint(&mut self, size: usize) {
		self.0.reserve_exact(size);
	}
}

/// Writer that only tracks the amount of data written - useful if you need to calculate the length
/// of some data when serialized but don't yet need the full data.
pub(crate) struct LengthCalculatingWriter(pub usize);
impl Writer for LengthCalculatingWriter {
	#[inline]
	fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
		self.0 += buf.len();
		Ok(())
	}
	#[inline]
	fn size_hint(&mut self, _size: usize) {}
}

/// Essentially std::io::Take but a bit simpler and with a method to walk the underlying stream
/// forward to ensure we always consume exactly the fixed length specified.
pub(crate) struct FixedLengthReader<R: Read> {
	read: R,
	bytes_read: u64,
	total_bytes: u64,
}
impl<R: Read> FixedLengthReader<R> {
	pub fn new(read: R, total_bytes: u64) -> Self {
		Self { read, bytes_read: 0, total_bytes }
	}

	pub fn bytes_remain(&mut self) -> bool {
		self.bytes_read != self.total_bytes
	}

	pub fn eat_remaining(&mut self) -> Result<(), DecodeError> {
		::std::io::copy(self, &mut ::std::io::sink()).unwrap();
		if self.bytes_read != self.total_bytes {
			Err(DecodeError::ShortRead)
		} else {
			Ok(())
		}
	}
}
impl<R: Read> Read for FixedLengthReader<R> {
	fn read(&mut self, dest: &mut [u8]) -> Result<usize, ::std::io::Error> {
		if self.total_bytes == self.bytes_read {
			Ok(0)
		} else {
			let read_len = cmp::min(dest.len() as u64, self.total_bytes - self.bytes_read);
			match self.read.read(&mut dest[0..(read_len as usize)]) {
				Ok(v) => {
					self.bytes_read += v as u64;
					Ok(v)
				},
				Err(e) => Err(e),
			}
		}
	}
}

/// A Read which tracks whether any bytes have been read at all. This allows us to distinguish
/// between "EOF reached before we started" and "EOF reached mid-read".
pub(crate) struct ReadTrackingReader<R: Read> {
	read: R,
	pub have_read: bool,
}
impl<R: Read> ReadTrackingReader<R> {
	pub fn new(read: R) -> Self {
		Self { read, have_read: false }
	}
}
impl<R: Read> Read for ReadTrackingReader<R> {
	fn read(&mut self, dest: &mut [u8]) -> Result<usize, ::std::io::Error> {
		match self.read.read(dest) {
			Ok(0) => Ok(0),
			Ok(len) => {
				self.have_read = true;
				Ok(len)
			},
			Err(e) => Err(e),
		}
	}
}

/// A trait that various rust-lightning types implement allowing them to be written out to a Writer
pub trait Writeable {
	/// Writes self out to the given Writer
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error>;

	/// Writes self out to a Vec<u8>
	fn encode(&self) -> Vec<u8> {
		let mut msg = VecWriter(Vec::new());
		self.write(&mut msg).unwrap();
		msg.0
	}

	/// Writes self out to a Vec<u8>
	fn encode_with_len(&self) -> Vec<u8> {
		let mut msg = VecWriter(Vec::new());
		0u16.write(&mut msg).unwrap();
		self.write(&mut msg).unwrap();
		let len = msg.0.len();
		msg.0[..2].copy_from_slice(&byte_utils::be16_to_array(len as u16 - 2));
		msg.0
	}
}

impl<'a, T: Writeable> Writeable for &'a T {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> { (*self).write(writer) }
}

/// A trait that various rust-lightning types implement allowing them to be read in from a Read
pub trait Readable
	where Self: Sized
{
	/// Reads a Self in from the given Read
	fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError>;
}

/// A trait that various higher-level rust-lightning types implement allowing them to be read in
/// from a Read given some additional set of arguments which is required to deserialize.
pub trait ReadableArgs<P>
	where Self: Sized
{
	/// Reads a Self in from the given Read
	fn read<R: Read>(reader: &mut R, params: P) -> Result<Self, DecodeError>;
}

/// A trait that various rust-lightning types implement allowing them to (maybe) be read in from a Read
pub trait MaybeReadable
	where Self: Sized
{
	/// Reads a Self in from the given Read
	fn read<R: Read>(reader: &mut R) -> Result<Option<Self>, DecodeError>;
}

pub(crate) struct U48(pub u64);
impl Writeable for U48 {
	#[inline]
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
		writer.write_all(&be48_to_array(self.0))
	}
}
impl Readable for U48 {
	#[inline]
	fn read<R: Read>(reader: &mut R) -> Result<U48, DecodeError> {
		let mut buf = [0; 6];
		reader.read_exact(&mut buf)?;
		Ok(U48(slice_to_be48(&buf)))
	}
}

/// Lightning TLV uses a custom variable-length integer called BigSize. It is similar to Bitcoin's
/// variable-length integers except that it is serialized in big-endian instead of little-endian.
///
/// Like Bitcoin's variable-length integer, it exhibits ambiguity in that certain values can be
/// encoded in several different ways, which we must check for at deserialization-time. Thus, if
/// you're looking for an example of a variable-length integer to use for your own project, move
/// along, this is a rather poor design.
pub(crate) struct BigSize(pub u64);
impl Writeable for BigSize {
	#[inline]
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
		match self.0 {
			0...0xFC => {
				(self.0 as u8).write(writer)
			},
			0xFD...0xFFFF => {
				0xFDu8.write(writer)?;
				(self.0 as u16).write(writer)
			},
			0x10000...0xFFFFFFFF => {
				0xFEu8.write(writer)?;
				(self.0 as u32).write(writer)
			},
			_ => {
				0xFFu8.write(writer)?;
				(self.0 as u64).write(writer)
			},
		}
	}
}
impl Readable for BigSize {
	#[inline]
	fn read<R: Read>(reader: &mut R) -> Result<BigSize, DecodeError> {
		let n: u8 = Readable::read(reader)?;
		match n {
			0xFF => {
				let x: u64 = Readable::read(reader)?;
				if x < 0x100000000 {
					Err(DecodeError::InvalidValue)
				} else {
					Ok(BigSize(x))
				}
			}
			0xFE => {
				let x: u32 = Readable::read(reader)?;
				if x < 0x10000 {
					Err(DecodeError::InvalidValue)
				} else {
					Ok(BigSize(x as u64))
				}
			}
			0xFD => {
				let x: u16 = Readable::read(reader)?;
				if x < 0xFD {
					Err(DecodeError::InvalidValue)
				} else {
					Ok(BigSize(x as u64))
				}
			}
			n => Ok(BigSize(n as u64))
		}
	}
}

/// In TLV we occasionally send fields which only consist of, or potentially end with, a
/// variable-length integer which is simply truncated by skipping high zero bytes. This type
/// encapsulates such integers implementing Readable/Writeable for them.
#[cfg_attr(test, derive(PartialEq, Debug))]
pub(crate) struct HighZeroBytesDroppedVarInt<T>(pub T);

macro_rules! impl_writeable_primitive {
	($val_type:ty, $meth_write:ident, $len: expr, $meth_read:ident) => {
		impl Writeable for $val_type {
			#[inline]
			fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
				writer.write_all(&$meth_write(*self))
			}
		}
		impl Writeable for HighZeroBytesDroppedVarInt<$val_type> {
			#[inline]
			fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
				// Skip any full leading 0 bytes when writing (in BE):
				writer.write_all(&$meth_write(self.0)[(self.0.leading_zeros()/8) as usize..$len])
			}
		}
		impl Readable for $val_type {
			#[inline]
			fn read<R: Read>(reader: &mut R) -> Result<$val_type, DecodeError> {
				let mut buf = [0; $len];
				reader.read_exact(&mut buf)?;
				Ok($meth_read(&buf))
			}
		}
		impl Readable for HighZeroBytesDroppedVarInt<$val_type> {
			#[inline]
			fn read<R: Read>(reader: &mut R) -> Result<HighZeroBytesDroppedVarInt<$val_type>, DecodeError> {
				// We need to accept short reads (read_len == 0) as "EOF" and handle them as simply
				// the high bytes being dropped. To do so, we start reading into the middle of buf
				// and then convert the appropriate number of bytes with extra high bytes out of
				// buf.
				let mut buf = [0; $len*2];
				let mut read_len = reader.read(&mut buf[$len..])?;
				let mut total_read_len = read_len;
				while read_len != 0 && total_read_len != $len {
					read_len = reader.read(&mut buf[($len + total_read_len)..])?;
					total_read_len += read_len;
				}
				if total_read_len == 0 || buf[$len] != 0 {
					let first_byte = $len - ($len - total_read_len);
					Ok(HighZeroBytesDroppedVarInt($meth_read(&buf[first_byte..first_byte + $len])))
				} else {
					// If the encoding had extra zero bytes, return a failure even though we know
					// what they meant (as the TLV test vectors require this)
					Err(DecodeError::InvalidValue)
				}
			}
		}
	}
}

impl_writeable_primitive!(u64, be64_to_array, 8, slice_to_be64);
impl_writeable_primitive!(u32, be32_to_array, 4, slice_to_be32);
impl_writeable_primitive!(u16, be16_to_array, 2, slice_to_be16);

impl Writeable for u8 {
	#[inline]
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
		writer.write_all(&[*self])
	}
}
impl Readable for u8 {
	#[inline]
	fn read<R: Read>(reader: &mut R) -> Result<u8, DecodeError> {
		let mut buf = [0; 1];
		reader.read_exact(&mut buf)?;
		Ok(buf[0])
	}
}

impl Writeable for bool {
	#[inline]
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
		writer.write_all(&[if *self {1} else {0}])
	}
}
impl Readable for bool {
	#[inline]
	fn read<R: Read>(reader: &mut R) -> Result<bool, DecodeError> {
		let mut buf = [0; 1];
		reader.read_exact(&mut buf)?;
		if buf[0] != 0 && buf[0] != 1 {
			return Err(DecodeError::InvalidValue);
		}
		Ok(buf[0] == 1)
	}
}

// u8 arrays
macro_rules! impl_array {
	( $size:expr ) => (
		impl Writeable for [u8; $size]
		{
			#[inline]
			fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
				w.write_all(self)
			}
		}

		impl Readable for [u8; $size]
		{
			#[inline]
			fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
				let mut buf = [0u8; $size];
				r.read_exact(&mut buf)?;
				Ok(buf)
			}
		}
	);
}

//TODO: performance issue with [u8; size] with impl_array!()
impl_array!(3); // for rgb
impl_array!(4); // for IPv4
impl_array!(10); // for OnionV2
impl_array!(16); // for IPv6
impl_array!(32); // for channel id & hmac
impl_array!(33); // for PublicKey
impl_array!(64); // for Signature
impl_array!(1300); // for OnionPacket.hop_data

// HashMap
impl<K, V> Writeable for HashMap<K, V>
	where K: Writeable + Eq + Hash,
	      V: Writeable
{
	#[inline]
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
	(self.len() as u16).write(w)?;
		for (key, value) in self.iter() {
			key.write(w)?;
			value.write(w)?;
		}
		Ok(())
	}
}

impl<K, V> Readable for HashMap<K, V>
	where K: Readable + Eq + Hash,
	      V: Readable
{
	#[inline]
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let len: u16 = Readable::read(r)?;
		let mut ret = HashMap::with_capacity(len as usize);
		for _ in 0..len {
			ret.insert(K::read(r)?, V::read(r)?);
		}
		Ok(ret)
	}
}

// Vectors
impl Writeable for Vec<u8> {
	#[inline]
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		(self.len() as u16).write(w)?;
		w.write_all(&self)
	}
}

impl Readable for Vec<u8> {
	#[inline]
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let len: u16 = Readable::read(r)?;
		let mut ret = Vec::with_capacity(len as usize);
		ret.resize(len as usize, 0);
		r.read_exact(&mut ret)?;
		Ok(ret)
	}
}
impl Writeable for Vec<Signature> {
	#[inline]
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		(self.len() as u16).write(w)?;
		for e in self.iter() {
			e.write(w)?;
		}
		Ok(())
	}
}

impl Readable for Vec<Signature> {
	#[inline]
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let len: u16 = Readable::read(r)?;
		let byte_size = (len as usize)
		                .checked_mul(33)
		                .ok_or(DecodeError::BadLengthDescriptor)?;
		if byte_size > MAX_BUF_SIZE {
			return Err(DecodeError::BadLengthDescriptor);
		}
		let mut ret = Vec::with_capacity(len as usize);
		for _ in 0..len { ret.push(Signature::read(r)?); }
		Ok(ret)
	}
}

impl Writeable for Script {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		(self.len() as u16).write(w)?;
		w.write_all(self.as_bytes())
	}
}

impl Readable for Script {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let len = <u16 as Readable>::read(r)? as usize;
		let mut buf = vec![0; len];
		r.read_exact(&mut buf)?;
		Ok(Script::from(buf))
	}
}

impl Writeable for PublicKey {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		self.serialize().write(w)
	}
}

impl Readable for PublicKey {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let buf: [u8; 33] = Readable::read(r)?;
		match PublicKey::from_slice(&buf) {
			Ok(key) => Ok(key),
			Err(_) => return Err(DecodeError::InvalidValue),
		}
	}
}

impl Writeable for SecretKey {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		let mut ser = [0; 32];
		ser.copy_from_slice(&self[..]);
		ser.write(w)
	}
}

impl Readable for SecretKey {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let buf: [u8; 32] = Readable::read(r)?;
		match SecretKey::from_slice(&buf) {
			Ok(key) => Ok(key),
			Err(_) => return Err(DecodeError::InvalidValue),
		}
	}
}

impl Writeable for Sha256dHash {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		w.write_all(&self[..])
	}
}

impl Readable for Sha256dHash {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		use bitcoin_hashes::Hash;

		let buf: [u8; 32] = Readable::read(r)?;
		Ok(Sha256dHash::from_slice(&buf[..]).unwrap())
	}
}

impl Writeable for Signature {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		self.serialize_compact().write(w)
	}
}

impl Readable for Signature {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let buf: [u8; 64] = Readable::read(r)?;
		match Signature::from_compact(&buf) {
			Ok(sig) => Ok(sig),
			Err(_) => return Err(DecodeError::InvalidValue),
		}
	}
}

impl Writeable for PaymentPreimage {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		self.0.write(w)
	}
}

impl Readable for PaymentPreimage {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let buf: [u8; 32] = Readable::read(r)?;
		Ok(PaymentPreimage(buf))
	}
}

impl Writeable for PaymentHash {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		self.0.write(w)
	}
}

impl Readable for PaymentHash {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let buf: [u8; 32] = Readable::read(r)?;
		Ok(PaymentHash(buf))
	}
}

impl Writeable for PaymentSecret {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		self.0.write(w)
	}
}

impl Readable for PaymentSecret {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let buf: [u8; 32] = Readable::read(r)?;
		Ok(PaymentSecret(buf))
	}
}

impl<T: Writeable> Writeable for Option<T> {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		match *self {
			None => 0u8.write(w)?,
			Some(ref data) => {
				let mut len_calc = LengthCalculatingWriter(0);
				data.write(&mut len_calc).expect("No in-memory data may fail to serialize");
				BigSize(len_calc.0 as u64 + 1).write(w)?;
				data.write(w)?;
			}
		}
		Ok(())
	}
}

impl<T: Readable> Readable for Option<T>
{
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		match BigSize::read(r)?.0 {
			0 => Ok(None),
			len => {
				let mut reader = FixedLengthReader::new(r, len - 1);
				Ok(Some(Readable::read(&mut reader)?))
			}
		}
	}
}

impl Writeable for OutPoint {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		self.txid.write(w)?;
		self.vout.write(w)?;
		Ok(())
	}
}

impl Readable for OutPoint {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let txid = Readable::read(r)?;
		let vout = Readable::read(r)?;
		Ok(OutPoint {
			txid,
			vout,
		})
	}
}

macro_rules! impl_consensus_ser {
	($bitcoin_type: ty) => {
		impl Writeable for $bitcoin_type {
			fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
				match self.consensus_encode(WriterWriteAdaptor(writer)) {
					Ok(_) => Ok(()),
					Err(consensus::encode::Error::Io(e)) => Err(e),
					Err(_) => panic!("We shouldn't get a consensus::encode::Error unless our Write generated an std::io::Error"),
				}
			}
		}

		impl Readable for $bitcoin_type {
			fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
				match consensus::encode::Decodable::consensus_decode(r) {
					Ok(t) => Ok(t),
					Err(consensus::encode::Error::Io(ref e)) if e.kind() == ::std::io::ErrorKind::UnexpectedEof => Err(DecodeError::ShortRead),
					Err(consensus::encode::Error::Io(e)) => Err(DecodeError::Io(e)),
					Err(_) => Err(DecodeError::InvalidValue),
				}
			}
		}
	}
}
impl_consensus_ser!(Transaction);
impl_consensus_ser!(TxOut);

impl<T: Readable> Readable for Mutex<T> {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let t: T = Readable::read(r)?;
		Ok(Mutex::new(t))
	}
}
impl<T: Writeable> Writeable for Mutex<T> {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		self.lock().unwrap().write(w)
	}
}

impl<A: Readable, B: Readable> Readable for (A, B) {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let a: A = Readable::read(r)?;
		let b: B = Readable::read(r)?;
		Ok((a, b))
	}
}
impl<A: Writeable, B: Writeable> Writeable for (A, B) {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
		self.0.write(w)?;
		self.1.write(w)
	}
}