1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
//! keysinterface provides keys into rust-lightning and defines some useful enums which describe
//! spendable on-chain outputs which the user owns and is responsible for using just as any other
//! on-chain output which is theirs.

use bitcoin::blockdata::transaction::{Transaction, OutPoint, TxOut};
use bitcoin::blockdata::script::{Script, Builder};
use bitcoin::blockdata::opcodes;
use bitcoin::network::constants::Network;
use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
use bitcoin::util::bip143;

use bitcoin_hashes::{Hash, HashEngine};
use bitcoin_hashes::sha256::HashEngine as Sha256State;
use bitcoin_hashes::sha256::Hash as Sha256;
use bitcoin_hashes::sha256d::Hash as Sha256dHash;
use bitcoin_hashes::hash160::Hash as Hash160;

use secp256k1::key::{SecretKey, PublicKey};
use secp256k1::{Secp256k1, Signature, Signing};
use secp256k1;

use util::byte_utils;
use util::logger::Logger;
use util::ser::{Writeable, Writer, Readable};

use ln::chan_utils;
use ln::chan_utils::{TxCreationKeys, HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, LocalCommitmentTransaction};
use ln::msgs;

use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::io::Error;
use ln::msgs::DecodeError;

/// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
/// claim at any point in the future) an event is generated which you must track and be able to
/// spend on-chain. The information needed to do this is provided in this enum, including the
/// outpoint describing which txid and output index is available, the full output which exists at
/// that txid/index, and any keys or other information required to sign.
#[derive(Clone, PartialEq)]
pub enum SpendableOutputDescriptor {
	/// An output to a script which was provided via KeysInterface, thus you should already know
	/// how to spend it. No keys are provided as rust-lightning was never given any keys - only the
	/// script_pubkey as it appears in the output.
	/// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
	/// on-chain using the payment preimage or after it has timed out.
	StaticOutput {
		/// The outpoint which is spendable
		outpoint: OutPoint,
		/// The output which is referenced by the given outpoint.
		output: TxOut,
	},
	/// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
	/// The private key which should be used to sign the transaction is provided, as well as the
	/// full witness redeemScript which is hashed in the output script_pubkey.
	/// The witness in the spending input should be:
	/// <BIP 143 signature generated with the given key> <empty vector> (MINIMALIF standard rule)
	/// <witness_script as provided>
	/// Note that the nSequence field in the input must be set to_self_delay (which corresponds to
	/// the transaction not being broadcastable until at least to_self_delay blocks after the input
	/// confirms).
	/// These are generally the result of a "revocable" output to us, spendable only by us unless
	/// it is an output from us having broadcast an old state (which should never happen).
	DynamicOutputP2WSH {
		/// The outpoint which is spendable
		outpoint: OutPoint,
		/// The secret key which must be used to sign the spending transaction
		key: SecretKey,
		/// The witness redeemScript which is hashed to create the script_pubkey in the given output
		witness_script: Script,
		/// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
		/// the witness_script.
		to_self_delay: u16,
		/// The output which is referenced by the given outpoint
		output: TxOut,
	},
	/// An output to a P2WPKH, spendable exclusively by the given private key.
	/// The witness in the spending input, is, thus, simply:
	/// <BIP 143 signature generated with the given key> <public key derived from the given key>
	/// These are generally the result of our counterparty having broadcast the current state,
	/// allowing us to claim the non-HTLC-encumbered outputs immediately.
	DynamicOutputP2WPKH {
		/// The outpoint which is spendable
		outpoint: OutPoint,
		/// The secret key which must be used to sign the spending transaction
		key: SecretKey,
		/// The output which is reference by the given outpoint
		output: TxOut,
	}
}

impl Writeable for SpendableOutputDescriptor {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
		match self {
			&SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
				0u8.write(writer)?;
				outpoint.write(writer)?;
				output.write(writer)?;
			},
			&SpendableOutputDescriptor::DynamicOutputP2WSH { ref outpoint, ref key, ref witness_script, ref to_self_delay, ref output } => {
				1u8.write(writer)?;
				outpoint.write(writer)?;
				key.write(writer)?;
				witness_script.write(writer)?;
				to_self_delay.write(writer)?;
				output.write(writer)?;
			},
			&SpendableOutputDescriptor::DynamicOutputP2WPKH { ref outpoint, ref key, ref output } => {
				2u8.write(writer)?;
				outpoint.write(writer)?;
				key.write(writer)?;
				output.write(writer)?;
			},
		}
		Ok(())
	}
}

impl Readable for SpendableOutputDescriptor {
	fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
		match Readable::read(reader)? {
			0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
				outpoint: Readable::read(reader)?,
				output: Readable::read(reader)?,
			}),
			1u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WSH {
				outpoint: Readable::read(reader)?,
				key: Readable::read(reader)?,
				witness_script: Readable::read(reader)?,
				to_self_delay: Readable::read(reader)?,
				output: Readable::read(reader)?,
			}),
			2u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WPKH {
				outpoint: Readable::read(reader)?,
				key: Readable::read(reader)?,
				output: Readable::read(reader)?,
			}),
			_ => Err(DecodeError::InvalidValue),
		}
	}
}

/// A trait to describe an object which can get user secrets and key material.
pub trait KeysInterface: Send + Sync {
	/// A type which implements ChannelKeys which will be returned by get_channel_keys.
	type ChanKeySigner : ChannelKeys;

	/// Get node secret key (aka node_id or network_key)
	fn get_node_secret(&self) -> SecretKey;
	/// Get destination redeemScript to encumber static protocol exit points.
	fn get_destination_script(&self) -> Script;
	/// Get shutdown_pubkey to use as PublicKey at channel closure
	fn get_shutdown_pubkey(&self) -> PublicKey;
	/// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
	/// restarted with some stale data!
	fn get_channel_keys(&self, inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner;
	/// Get a secret and PRNG seed for construting an onion packet
	fn get_onion_rand(&self) -> (SecretKey, [u8; 32]);
	/// Get a unique temporary channel id. Channels will be referred to by this until the funding
	/// transaction is created, at which point they will use the outpoint in the funding
	/// transaction.
	fn get_channel_id(&self) -> [u8; 32];
}

/// Set of lightning keys needed to operate a channel as described in BOLT 3.
///
/// Signing services could be implemented on a hardware wallet. In this case,
/// the current ChannelKeys would be a front-end on top of a communication
/// channel connected to your secure device and lightning key material wouldn't
/// reside on a hot server. Nevertheless, a this deployment would still need
/// to trust the ChannelManager to avoid loss of funds as this latest component
/// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
///
/// A more secure iteration would be to use hashlock (or payment points) to pair
/// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
/// at the price of more state and computation on the hardware wallet side. In the future,
/// we are looking forward to design such interface.
///
/// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
/// to act, as liveness and breach reply correctness are always going to be hard requirements
/// of LN security model, orthogonal of key management issues.
///
/// If you're implementing a custom signer, you almost certainly want to implement
/// Readable/Writable to serialize out a unique reference to this set of keys so
/// that you can serialize the full ChannelManager object.
///
// (TODO: We shouldn't require that, and should have an API to get them at deser time, due mostly
// to the possibility of reentrancy issues by calling the user's code during our deserialization
// routine).
// TODO: We should remove Clone by instead requesting a new ChannelKeys copy when we create
// ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
pub trait ChannelKeys : Send+Clone {
	/// Gets the private key for the anchor tx
	fn funding_key<'a>(&'a self) -> &'a SecretKey;
	/// Gets the local secret key for blinded revocation pubkey
	fn revocation_base_key<'a>(&'a self) -> &'a SecretKey;
	/// Gets the local secret key used in to_remote output of remote commitment tx
	/// (and also as part of obscured commitment number)
	fn payment_base_key<'a>(&'a self) -> &'a SecretKey;
	/// Gets the local secret key used in HTLC-Success/HTLC-Timeout txn and to_local output
	fn delayed_payment_base_key<'a>(&'a self) -> &'a SecretKey;
	/// Gets the local htlc secret key used in commitment tx htlc outputs
	fn htlc_base_key<'a>(&'a self) -> &'a SecretKey;
	/// Gets the commitment seed
	fn commitment_seed<'a>(&'a self) -> &'a [u8; 32];
	/// Gets the local channel public keys and basepoints
	fn pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys;

	/// Create a signature for a remote commitment transaction and associated HTLC transactions.
	///
	/// Note that if signing fails or is rejected, the channel will be force-closed.
	//
	// TODO: Document the things someone using this interface should enforce before signing.
	// TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
	// making the callee generate it via some util function we expose)!
	fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u64, commitment_tx: &Transaction, keys: &TxCreationKeys, htlcs: &[&HTLCOutputInCommitment], to_self_delay: u16, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;

	/// Create a signature for a local commitment transaction. This will only ever be called with
	/// the same local_commitment_tx (or a copy thereof), though there are currently no guarantees
	/// that it will not be called multiple times.
	//
	// TODO: Document the things someone using this interface should enforce before signing.
	// TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
	fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;

	/// Same as sign_local_commitment, but exists only for tests to get access to local commitment
	/// transactions which will be broadcasted later, after the channel has moved on to a newer
	/// state. Thus, needs its own method as sign_local_commitment may enforce that we only ever
	/// get called once.
	#[cfg(test)]
	fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;

	/// Create a signature for each HTLC transaction spending a local commitment transaction.
	///
	/// Unlike sign_local_commitment, this may be called multiple times with *different*
	/// local_commitment_tx values. While this will never be called with a revoked
	/// local_commitment_tx, it is possible that it is called with the second-latest
	/// local_commitment_tx (only if we haven't yet revoked it) if some watchtower/secondary
	/// ChannelMonitor decided to broadcast before it had been updated to the latest.
	///
	/// Either an Err should be returned, or a Vec with one entry for each HTLC which exists in
	/// local_commitment_tx. For those HTLCs which have transaction_output_index set to None
	/// (implying they were considered dust at the time the commitment transaction was negotiated),
	/// a corresponding None should be included in the return value. All other positions in the
	/// return value must contain a signature.
	fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()>;

	/// Create a signature for a (proposed) closing transaction.
	///
	/// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
	/// chosen to forgo their output as dust.
	fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;

	/// Signs a channel announcement message with our funding key, proving it comes from one
	/// of the channel participants.
	///
	/// Note that if this fails or is rejected, the channel will not be publicly announced and
	/// our counterparty may (though likely will not) close the channel on us for violating the
	/// protocol.
	fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;

	/// Set the remote channel basepoints.  This is done immediately on incoming channels
	/// and as soon as the channel is accepted on outgoing channels.
	///
	/// Will be called before any signatures are applied.
	fn set_remote_channel_pubkeys(&mut self, channel_points: &ChannelPublicKeys);
}

#[derive(Clone)]
/// A simple implementation of ChannelKeys that just keeps the private keys in memory.
pub struct InMemoryChannelKeys {
	/// Private key of anchor tx
	funding_key: SecretKey,
	/// Local secret key for blinded revocation pubkey
	revocation_base_key: SecretKey,
	/// Local secret key used in commitment tx htlc outputs
	payment_base_key: SecretKey,
	/// Local secret key used in HTLC tx
	delayed_payment_base_key: SecretKey,
	/// Local htlc secret key used in commitment tx htlc outputs
	htlc_base_key: SecretKey,
	/// Commitment seed
	commitment_seed: [u8; 32],
	/// Local public keys and basepoints
	pub(crate) local_channel_pubkeys: ChannelPublicKeys,
	/// Remote public keys and base points
	pub(crate) remote_channel_pubkeys: Option<ChannelPublicKeys>,
	/// The total value of this channel
	channel_value_satoshis: u64,
}

impl InMemoryChannelKeys {
	/// Create a new InMemoryChannelKeys
	pub fn new<C: Signing>(
		secp_ctx: &Secp256k1<C>,
		funding_key: SecretKey,
		revocation_base_key: SecretKey,
		payment_base_key: SecretKey,
		delayed_payment_base_key: SecretKey,
		htlc_base_key: SecretKey,
		commitment_seed: [u8; 32],
		channel_value_satoshis: u64) -> InMemoryChannelKeys {
		let local_channel_pubkeys =
			InMemoryChannelKeys::make_local_keys(secp_ctx, &funding_key, &revocation_base_key,
			                                     &payment_base_key, &delayed_payment_base_key,
			                                     &htlc_base_key);
		InMemoryChannelKeys {
			funding_key,
			revocation_base_key,
			payment_base_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			channel_value_satoshis,
			local_channel_pubkeys,
			remote_channel_pubkeys: None,
		}
	}

	fn make_local_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
	                               funding_key: &SecretKey,
	                               revocation_base_key: &SecretKey,
	                               payment_base_key: &SecretKey,
	                               delayed_payment_base_key: &SecretKey,
	                               htlc_base_key: &SecretKey) -> ChannelPublicKeys {
		let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
		ChannelPublicKeys {
			funding_pubkey: from_secret(&funding_key),
			revocation_basepoint: from_secret(&revocation_base_key),
			payment_basepoint: from_secret(&payment_base_key),
			delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
			htlc_basepoint: from_secret(&htlc_base_key),
		}
	}
}

impl ChannelKeys for InMemoryChannelKeys {
	fn funding_key(&self) -> &SecretKey { &self.funding_key }
	fn revocation_base_key(&self) -> &SecretKey { &self.revocation_base_key }
	fn payment_base_key(&self) -> &SecretKey { &self.payment_base_key }
	fn delayed_payment_base_key(&self) -> &SecretKey { &self.delayed_payment_base_key }
	fn htlc_base_key(&self) -> &SecretKey { &self.htlc_base_key }
	fn commitment_seed(&self) -> &[u8; 32] { &self.commitment_seed }
	fn pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys { &self.local_channel_pubkeys }

	fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u64, commitment_tx: &Transaction, keys: &TxCreationKeys, htlcs: &[&HTLCOutputInCommitment], to_self_delay: u16, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
		if commitment_tx.input.len() != 1 { return Err(()); }

		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);

		let commitment_sighash = hash_to_message!(&bip143::SighashComponents::new(&commitment_tx).sighash_all(&commitment_tx.input[0], &channel_funding_redeemscript, self.channel_value_satoshis)[..]);
		let commitment_sig = secp_ctx.sign(&commitment_sighash, &self.funding_key);

		let commitment_txid = commitment_tx.txid();

		let mut htlc_sigs = Vec::with_capacity(htlcs.len());
		for ref htlc in htlcs {
			if let Some(_) = htlc.transaction_output_index {
				let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, feerate_per_kw, to_self_delay, htlc, &keys.a_delayed_payment_key, &keys.revocation_key);
				let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
				let htlc_sighash = hash_to_message!(&bip143::SighashComponents::new(&htlc_tx).sighash_all(&htlc_tx.input[0], &htlc_redeemscript, htlc.amount_msat / 1000)[..]);
				let our_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
					Ok(s) => s,
					Err(_) => return Err(()),
				};
				htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &our_htlc_key));
			}
		}

		Ok((commitment_sig, htlc_sigs))
	}

	fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);

		Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
	}

	#[cfg(test)]
	fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);

		Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
	}

	fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()> {
		local_commitment_tx.get_htlc_sigs(&self.htlc_base_key, local_csv, secp_ctx)
	}

	fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
		if closing_tx.input.len() != 1 { return Err(()); }
		if closing_tx.input[0].witness.len() != 0 { return Err(()); }
		if closing_tx.output.len() > 2 { return Err(()); }

		let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
		let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
		let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);

		let sighash = hash_to_message!(&bip143::SighashComponents::new(closing_tx)
			.sighash_all(&closing_tx.input[0], &channel_funding_redeemscript, self.channel_value_satoshis)[..]);
		Ok(secp_ctx.sign(&sighash, &self.funding_key))
	}

	fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
		let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
		Ok(secp_ctx.sign(&msghash, &self.funding_key))
	}

	fn set_remote_channel_pubkeys(&mut self, channel_pubkeys: &ChannelPublicKeys) {
		assert!(self.remote_channel_pubkeys.is_none(), "Already set remote channel pubkeys");
		self.remote_channel_pubkeys = Some(channel_pubkeys.clone());
	}
}

impl Writeable for InMemoryChannelKeys {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
		self.funding_key.write(writer)?;
		self.revocation_base_key.write(writer)?;
		self.payment_base_key.write(writer)?;
		self.delayed_payment_base_key.write(writer)?;
		self.htlc_base_key.write(writer)?;
		self.commitment_seed.write(writer)?;
		self.remote_channel_pubkeys.write(writer)?;
		self.channel_value_satoshis.write(writer)?;

		Ok(())
	}
}

impl Readable for InMemoryChannelKeys {
	fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
		let funding_key = Readable::read(reader)?;
		let revocation_base_key = Readable::read(reader)?;
		let payment_base_key = Readable::read(reader)?;
		let delayed_payment_base_key = Readable::read(reader)?;
		let htlc_base_key = Readable::read(reader)?;
		let commitment_seed = Readable::read(reader)?;
		let remote_channel_pubkeys = Readable::read(reader)?;
		let channel_value_satoshis = Readable::read(reader)?;
		let secp_ctx = Secp256k1::signing_only();
		let local_channel_pubkeys =
			InMemoryChannelKeys::make_local_keys(&secp_ctx, &funding_key, &revocation_base_key,
			                                     &payment_base_key, &delayed_payment_base_key,
			                                     &htlc_base_key);

		Ok(InMemoryChannelKeys {
			funding_key,
			revocation_base_key,
			payment_base_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			channel_value_satoshis,
			local_channel_pubkeys,
			remote_channel_pubkeys
		})
	}
}

/// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
/// and derives keys from that.
///
/// Your node_id is seed/0'
/// ChannelMonitor closes may use seed/1'
/// Cooperative closes may use seed/2'
/// The two close keys may be needed to claim on-chain funds!
pub struct KeysManager {
	secp_ctx: Secp256k1<secp256k1::SignOnly>,
	node_secret: SecretKey,
	destination_script: Script,
	shutdown_pubkey: PublicKey,
	channel_master_key: ExtendedPrivKey,
	channel_child_index: AtomicUsize,
	session_master_key: ExtendedPrivKey,
	session_child_index: AtomicUsize,
	channel_id_master_key: ExtendedPrivKey,
	channel_id_child_index: AtomicUsize,

	unique_start: Sha256State,
	logger: Arc<Logger>,
}

impl KeysManager {
	/// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
	/// RNG is busted) this may panic (but more importantly, you will possibly lose funds).
	/// starting_time isn't strictly required to actually be a time, but it must absolutely,
	/// without a doubt, be unique to this instance. ie if you start multiple times with the same
	/// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
	/// simply use the current time (with very high precision).
	///
	/// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
	/// obviously, starting_time should be unique every time you reload the library - it is only
	/// used to generate new ephemeral key data (which will be stored by the individual channel if
	/// necessary).
	///
	/// Note that the seed is required to recover certain on-chain funds independent of
	/// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
	/// channel, and some on-chain during-closing funds.
	///
	/// Note that until the 0.1 release there is no guarantee of backward compatibility between
	/// versions. Once the library is more fully supported, the docs will be updated to include a
	/// detailed description of the guarantee.
	pub fn new(seed: &[u8; 32], network: Network, logger: Arc<Logger>, starting_time_secs: u64, starting_time_nanos: u32) -> KeysManager {
		let secp_ctx = Secp256k1::signing_only();
		match ExtendedPrivKey::new_master(network.clone(), seed) {
			Ok(master_key) => {
				let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
				let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
					Ok(destination_key) => {
						let pubkey_hash160 = Hash160::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.key.serialize()[..]);
						Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
						              .push_slice(&pubkey_hash160.into_inner())
						              .into_script()
					},
					Err(_) => panic!("Your RNG is busted"),
				};
				let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
					Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
					Err(_) => panic!("Your RNG is busted"),
				};
				let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
				let session_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
				let channel_id_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted");

				let mut unique_start = Sha256::engine();
				unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
				unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
				unique_start.input(seed);

				KeysManager {
					secp_ctx,
					node_secret,
					destination_script,
					shutdown_pubkey,
					channel_master_key,
					channel_child_index: AtomicUsize::new(0),
					session_master_key,
					session_child_index: AtomicUsize::new(0),
					channel_id_master_key,
					channel_id_child_index: AtomicUsize::new(0),

					unique_start,
					logger,
				}
			},
			Err(_) => panic!("Your rng is busted"),
		}
	}
}

impl KeysInterface for KeysManager {
	type ChanKeySigner = InMemoryChannelKeys;

	fn get_node_secret(&self) -> SecretKey {
		self.node_secret.clone()
	}

	fn get_destination_script(&self) -> Script {
		self.destination_script.clone()
	}

	fn get_shutdown_pubkey(&self) -> PublicKey {
		self.shutdown_pubkey.clone()
	}

	fn get_channel_keys(&self, _inbound: bool, channel_value_satoshis: u64) -> InMemoryChannelKeys {
		// We only seriously intend to rely on the channel_master_key for true secure
		// entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
		// starting_time provided in the constructor) to be unique.
		let mut sha = self.unique_start.clone();

		let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
		let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
		sha.input(&child_privkey.private_key.key[..]);

		let seed = Sha256::from_engine(sha).into_inner();

		let commitment_seed = {
			let mut sha = Sha256::engine();
			sha.input(&seed);
			sha.input(&b"commitment seed"[..]);
			Sha256::from_engine(sha).into_inner()
		};
		macro_rules! key_step {
			($info: expr, $prev_key: expr) => {{
				let mut sha = Sha256::engine();
				sha.input(&seed);
				sha.input(&$prev_key[..]);
				sha.input(&$info[..]);
				SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
			}}
		}
		let funding_key = key_step!(b"funding key", commitment_seed);
		let revocation_base_key = key_step!(b"revocation base key", funding_key);
		let payment_base_key = key_step!(b"payment base key", revocation_base_key);
		let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_base_key);
		let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);

		InMemoryChannelKeys::new(
			&self.secp_ctx,
			funding_key,
			revocation_base_key,
			payment_base_key,
			delayed_payment_base_key,
			htlc_base_key,
			commitment_seed,
			channel_value_satoshis
		)
	}

	fn get_onion_rand(&self) -> (SecretKey, [u8; 32]) {
		let mut sha = self.unique_start.clone();

		let child_ix = self.session_child_index.fetch_add(1, Ordering::AcqRel);
		let child_privkey = self.session_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
		sha.input(&child_privkey.private_key.key[..]);

		let mut rng_seed = sha.clone();
		// Not exactly the most ideal construction, but the second value will get fed into
		// ChaCha so it is another step harder to break.
		rng_seed.input(b"RNG Seed Salt");
		sha.input(b"Session Key Salt");
		(SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("Your RNG is busted"),
		Sha256::from_engine(rng_seed).into_inner())
	}

	fn get_channel_id(&self) -> [u8; 32] {
		let mut sha = self.unique_start.clone();

		let child_ix = self.channel_id_child_index.fetch_add(1, Ordering::AcqRel);
		let child_privkey = self.channel_id_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
		sha.input(&child_privkey.private_key.key[..]);

		Sha256::from_engine(sha).into_inner()
	}
}