1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

//! Top level peer message handling and socket handling logic lives here.
//!
//! Instead of actually servicing sockets ourselves we require that you implement the
//! SocketDescriptor interface and use that to receive actions which you should perform on the
//! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
//! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
//! they should handle, and encoding/sending response messages.

use bitcoin::secp256k1::key::{SecretKey,PublicKey};

use ln::features::InitFeatures;
use ln::msgs;
use ln::msgs::{ChannelMessageHandler, LightningError, RoutingMessageHandler};
use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
use util::ser::{VecWriter, Writeable, Writer};
use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
use ln::wire;
use ln::wire::Encode;
use util::atomic_counter::AtomicCounter;
use util::events::{MessageSendEvent, MessageSendEventsProvider};
use util::logger::Logger;
use routing::network_graph::{NetworkGraph, NetGraphMsgHandler};

use prelude::*;
use io;
use alloc::collections::LinkedList;
use sync::{Arc, Mutex};
use core::{cmp, hash, fmt, mem};
use core::ops::Deref;
use core::convert::Infallible;
#[cfg(feature = "std")] use std::error;

use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
use bitcoin::hashes::{HashEngine, Hash};

/// Handler for BOLT1-compliant messages.
pub trait CustomMessageHandler: wire::CustomMessageReader {
	/// Called with the message type that was received and the buffer to be read.
	/// Can return a `MessageHandlingError` if the message could not be handled.
	fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;

	/// Gets the list of pending messages which were generated by the custom message
	/// handler, clearing the list in the process. The first tuple element must
	/// correspond to the intended recipients node ids. If no connection to one of the
	/// specified node does not exist, the message is simply not sent to it.
	fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
}

/// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
/// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
pub struct IgnoringMessageHandler{}
impl MessageSendEventsProvider for IgnoringMessageHandler {
	fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
}
impl RoutingMessageHandler for IgnoringMessageHandler {
	fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
	fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
	fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
	fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
		Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
	fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
	fn sync_routing_table(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
	fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
	fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
	fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
	fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
}
impl Deref for IgnoringMessageHandler {
	type Target = IgnoringMessageHandler;
	fn deref(&self) -> &Self { self }
}

// Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
// method that takes self for it.
impl wire::Type for Infallible {
	fn type_id(&self) -> u16 {
		unreachable!();
	}
}
impl Writeable for Infallible {
	fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
		unreachable!();
	}
}

impl wire::CustomMessageReader for IgnoringMessageHandler {
	type CustomMessage = Infallible;
	fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
		Ok(None)
	}
}

impl CustomMessageHandler for IgnoringMessageHandler {
	fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
		// Since we always return `None` in the read the handle method should never be called.
		unreachable!();
	}

	fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
}

/// A dummy struct which implements `ChannelMessageHandler` without having any channels.
/// You can provide one of these as the route_handler in a MessageHandler.
pub struct ErroringMessageHandler {
	message_queue: Mutex<Vec<MessageSendEvent>>
}
impl ErroringMessageHandler {
	/// Constructs a new ErroringMessageHandler
	pub fn new() -> Self {
		Self { message_queue: Mutex::new(Vec::new()) }
	}
	fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
		self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
			action: msgs::ErrorAction::SendErrorMessage {
				msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
			},
			node_id: node_id.clone(),
		});
	}
}
impl MessageSendEventsProvider for ErroringMessageHandler {
	fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
		let mut res = Vec::new();
		mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
		res
	}
}
impl ChannelMessageHandler for ErroringMessageHandler {
	// Any messages which are related to a specific channel generate an error message to let the
	// peer know we don't care about channels.
	fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
	}
	fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
	}
	fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
	}
	fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
	}
	fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
	}
	fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
	}
	fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
	}
	fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
	}
	fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
	}
	fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
	}
	fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
	}
	fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
	}
	fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
	}
	fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
	}
	fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
	}
	fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
		ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
	}
	// msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
	fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
	fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
	fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
	fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
}
impl Deref for ErroringMessageHandler {
	type Target = ErroringMessageHandler;
	fn deref(&self) -> &Self { self }
}

/// Provides references to trait impls which handle different types of messages.
pub struct MessageHandler<CM: Deref, RM: Deref> where
		CM::Target: ChannelMessageHandler,
		RM::Target: RoutingMessageHandler {
	/// A message handler which handles messages specific to channels. Usually this is just a
	/// [`ChannelManager`] object or an [`ErroringMessageHandler`].
	///
	/// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
	pub chan_handler: CM,
	/// A message handler which handles messages updating our knowledge of the network channel
	/// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
	/// [`IgnoringMessageHandler`].
	///
	/// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
	pub route_handler: RM,
}

/// Provides an object which can be used to send data to and which uniquely identifies a connection
/// to a remote host. You will need to be able to generate multiple of these which meet Eq and
/// implement Hash to meet the PeerManager API.
///
/// For efficiency, Clone should be relatively cheap for this type.
///
/// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
/// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
/// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
/// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
/// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
/// to simply use another value which is guaranteed to be globally unique instead.
pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
	/// Attempts to send some data from the given slice to the peer.
	///
	/// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
	/// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
	/// called and further write attempts may occur until that time.
	///
	/// If the returned size is smaller than `data.len()`, a
	/// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
	/// written. Additionally, until a `send_data` event completes fully, no further
	/// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
	/// prevent denial-of-service issues, you should not read or buffer any data from the socket
	/// until then.
	///
	/// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
	/// (indicating that read events should be paused to prevent DoS in the send buffer),
	/// `resume_read` may be set indicating that read events on this descriptor should resume. A
	/// `resume_read` of false carries no meaning, and should not cause any action.
	fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
	/// Disconnect the socket pointed to by this SocketDescriptor.
	///
	/// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
	/// call (doing so is a noop).
	fn disconnect_socket(&mut self);
}

/// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
/// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
/// descriptor.
#[derive(Clone)]
pub struct PeerHandleError {
	/// Used to indicate that we probably can't make any future connections to this peer, implying
	/// we should go ahead and force-close any channels we have with it.
	pub no_connection_possible: bool,
}
impl fmt::Debug for PeerHandleError {
	fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
		formatter.write_str("Peer Sent Invalid Data")
	}
}
impl fmt::Display for PeerHandleError {
	fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
		formatter.write_str("Peer Sent Invalid Data")
	}
}

#[cfg(feature = "std")]
impl error::Error for PeerHandleError {
	fn description(&self) -> &str {
		"Peer Sent Invalid Data"
	}
}

enum InitSyncTracker{
	NoSyncRequested,
	ChannelsSyncing(u64),
	NodesSyncing(PublicKey),
}

/// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
/// forwarding gossip messages to peers altogether.
const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;

/// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
/// we have fewer than this many messages in the outbound buffer again.
/// We also use this as the target number of outbound gossip messages to keep in the write buffer,
/// refilled as we send bytes.
const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
/// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
/// the peer.
const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;

/// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
/// the socket receive buffer before receiving the ping.
///
/// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
/// including any network delays, outbound traffic, or the same for messages from other peers.
///
/// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
/// per connected peer to respond to a ping, as long as they send us at least one message during
/// each tick, ensuring we aren't actually just disconnected.
/// With a timer tick interval of five seconds, this translates to about 30 seconds per connected
/// peer.
///
/// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
/// two connected peers, assuming most LDK-running systems have at least two cores.
const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 6;

/// This is the minimum number of messages we expect a peer to be able to handle within one timer
/// tick. Once we have sent this many messages since the last ping, we send a ping right away to
/// ensures we don't just fill up our send buffer and leave the peer with too many messages to
/// process before the next ping.
const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;

struct Peer {
	channel_encryptor: PeerChannelEncryptor,
	their_node_id: Option<PublicKey>,
	their_features: Option<InitFeatures>,

	pending_outbound_buffer: LinkedList<Vec<u8>>,
	pending_outbound_buffer_first_msg_offset: usize,
	awaiting_write_event: bool,

	pending_read_buffer: Vec<u8>,
	pending_read_buffer_pos: usize,
	pending_read_is_header: bool,

	sync_status: InitSyncTracker,

	msgs_sent_since_pong: usize,
	awaiting_pong_timer_tick_intervals: i8,
	received_message_since_timer_tick: bool,
}

impl Peer {
	/// Returns true if the channel announcements/updates for the given channel should be
	/// forwarded to this peer.
	/// If we are sending our routing table to this peer and we have not yet sent channel
	/// announcements/updates for the given channel_id then we will send it when we get to that
	/// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
	/// sent the old versions, we should send the update, and so return true here.
	fn should_forward_channel_announcement(&self, channel_id: u64)->bool{
		match self.sync_status {
			InitSyncTracker::NoSyncRequested => true,
			InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
			InitSyncTracker::NodesSyncing(_) => true,
		}
	}

	/// Similar to the above, but for node announcements indexed by node_id.
	fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
		match self.sync_status {
			InitSyncTracker::NoSyncRequested => true,
			InitSyncTracker::ChannelsSyncing(_) => false,
			InitSyncTracker::NodesSyncing(pk) => pk < node_id,
		}
	}
}

struct PeerHolder<Descriptor: SocketDescriptor> {
	peers: HashMap<Descriptor, Peer>,
	/// Only add to this set when noise completes:
	node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
}

/// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
/// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
/// lifetimes). Other times you can afford a reference, which is more efficient, in which case
/// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
/// issues such as overly long function definitions.
pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<NetworkGraph>, Arc<C>, Arc<L>>>, Arc<L>, Arc<IgnoringMessageHandler>>;

/// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
/// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
/// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
/// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
/// But if this is not necessary, using a reference is more efficient. Defining these type aliases
/// helps with issues such as long function definitions.
pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g NetworkGraph, &'h C, &'f L>, &'f L, IgnoringMessageHandler>;

/// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
/// socket events into messages which it passes on to its [`MessageHandler`].
///
/// Locks are taken internally, so you must never assume that reentrancy from a
/// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
///
/// Calls to [`read_event`] will decode relevant messages and pass them to the
/// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
/// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
/// [`PeerManager`] functions related to the same connection must occur only in serial, making new
/// calls only after previous ones have returned.
///
/// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
/// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
/// essentially you should default to using a SimpleRefPeerManager, and use a
/// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
/// you're using lightning-net-tokio.
///
/// [`read_event`]: PeerManager::read_event
pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> where
		CM::Target: ChannelMessageHandler,
		RM::Target: RoutingMessageHandler,
		L::Target: Logger,
		CMH::Target: CustomMessageHandler {
	message_handler: MessageHandler<CM, RM>,
	peers: Mutex<PeerHolder<Descriptor>>,
	our_node_secret: SecretKey,
	ephemeral_key_midstate: Sha256Engine,
	custom_message_handler: CMH,

	peer_counter: AtomicCounter,

	logger: L,
}

enum MessageHandlingError {
	PeerHandleError(PeerHandleError),
	LightningError(LightningError),
}

impl From<PeerHandleError> for MessageHandlingError {
	fn from(error: PeerHandleError) -> Self {
		MessageHandlingError::PeerHandleError(error)
	}
}

impl From<LightningError> for MessageHandlingError {
	fn from(error: LightningError) -> Self {
		MessageHandlingError::LightningError(error)
	}
}

macro_rules! encode_msg {
	($msg: expr) => {{
		let mut buffer = VecWriter(Vec::new());
		wire::write($msg, &mut buffer).unwrap();
		buffer.0
	}}
}

impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
		CM::Target: ChannelMessageHandler,
		L::Target: Logger {
	/// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
	/// handler is used and network graph messages are ignored.
	///
	/// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
	/// cryptographically secure random bytes.
	///
	/// (C-not exported) as we can't export a PeerManager with a dummy route handler
	pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
		Self::new(MessageHandler {
			chan_handler: channel_message_handler,
			route_handler: IgnoringMessageHandler{},
		}, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
	}
}

impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringMessageHandler> where
		RM::Target: RoutingMessageHandler,
		L::Target: Logger {
	/// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
	/// handler is used and messages related to channels will be ignored (or generate error
	/// messages). Note that some other lightning implementations time-out connections after some
	/// time if no channel is built with the peer.
	///
	/// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
	/// cryptographically secure random bytes.
	///
	/// (C-not exported) as we can't export a PeerManager with a dummy channel handler
	pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
		Self::new(MessageHandler {
			chan_handler: ErroringMessageHandler::new(),
			route_handler: routing_message_handler,
		}, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
	}
}

/// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
/// This works around `format!()` taking a reference to each argument, preventing
/// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
/// due to lifetime errors.
struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
impl core::fmt::Display for OptionalFromDebugger<'_> {
	fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
		if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
	}
}

impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, L, CMH> where
		CM::Target: ChannelMessageHandler,
		RM::Target: RoutingMessageHandler,
		L::Target: Logger,
		CMH::Target: CustomMessageHandler {
	/// Constructs a new PeerManager with the given message handlers and node_id secret key
	/// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
	/// cryptographically secure random bytes.
	pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
		let mut ephemeral_key_midstate = Sha256::engine();
		ephemeral_key_midstate.input(ephemeral_random_data);

		PeerManager {
			message_handler,
			peers: Mutex::new(PeerHolder {
				peers: HashMap::new(),
				node_id_to_descriptor: HashMap::new()
			}),
			our_node_secret,
			ephemeral_key_midstate,
			peer_counter: AtomicCounter::new(),
			logger,
			custom_message_handler,
		}
	}

	/// Get the list of node ids for peers which have completed the initial handshake.
	///
	/// For outbound connections, this will be the same as the their_node_id parameter passed in to
	/// new_outbound_connection, however entries will only appear once the initial handshake has
	/// completed and we are sure the remote peer has the private key for the given node_id.
	pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
		let peers = self.peers.lock().unwrap();
		peers.peers.values().filter_map(|p| {
			if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
				return None;
			}
			p.their_node_id
		}).collect()
	}

	fn get_ephemeral_key(&self) -> SecretKey {
		let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
		let counter = self.peer_counter.get_increment();
		ephemeral_hash.input(&counter.to_le_bytes());
		SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
	}

	/// Indicates a new outbound connection has been established to a node with the given node_id.
	/// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
	/// descriptor but must disconnect the connection immediately.
	///
	/// Returns a small number of bytes to send to the remote node (currently always 50).
	///
	/// Panics if descriptor is duplicative with some other descriptor which has not yet been
	/// [`socket_disconnected()`].
	///
	/// [`socket_disconnected()`]: PeerManager::socket_disconnected
	pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result<Vec<u8>, PeerHandleError> {
		let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
		let res = peer_encryptor.get_act_one().to_vec();
		let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes

		let mut peers = self.peers.lock().unwrap();
		if peers.peers.insert(descriptor, Peer {
			channel_encryptor: peer_encryptor,
			their_node_id: None,
			their_features: None,

			pending_outbound_buffer: LinkedList::new(),
			pending_outbound_buffer_first_msg_offset: 0,
			awaiting_write_event: false,

			pending_read_buffer,
			pending_read_buffer_pos: 0,
			pending_read_is_header: false,

			sync_status: InitSyncTracker::NoSyncRequested,

			msgs_sent_since_pong: 0,
			awaiting_pong_timer_tick_intervals: 0,
			received_message_since_timer_tick: false,
		}).is_some() {
			panic!("PeerManager driver duplicated descriptors!");
		};
		Ok(res)
	}

	/// Indicates a new inbound connection has been established.
	///
	/// May refuse the connection by returning an Err, but will never write bytes to the remote end
	/// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
	/// call socket_disconnected for the new descriptor but must disconnect the connection
	/// immediately.
	///
	/// Panics if descriptor is duplicative with some other descriptor which has not yet been
	/// [`socket_disconnected()`].
	///
	/// [`socket_disconnected()`]: PeerManager::socket_disconnected
	pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> {
		let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
		let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes

		let mut peers = self.peers.lock().unwrap();
		if peers.peers.insert(descriptor, Peer {
			channel_encryptor: peer_encryptor,
			their_node_id: None,
			their_features: None,

			pending_outbound_buffer: LinkedList::new(),
			pending_outbound_buffer_first_msg_offset: 0,
			awaiting_write_event: false,

			pending_read_buffer,
			pending_read_buffer_pos: 0,
			pending_read_is_header: false,

			sync_status: InitSyncTracker::NoSyncRequested,

			msgs_sent_since_pong: 0,
			awaiting_pong_timer_tick_intervals: 0,
			received_message_since_timer_tick: false,
		}).is_some() {
			panic!("PeerManager driver duplicated descriptors!");
		};
		Ok(())
	}

	fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
		while !peer.awaiting_write_event {
			if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE && peer.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK {
				match peer.sync_status {
					InitSyncTracker::NoSyncRequested => {},
					InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
						let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
						let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
						for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
							self.enqueue_message(peer, announce);
							if let &Some(ref update_a) = update_a_option {
								self.enqueue_message(peer, update_a);
							}
							if let &Some(ref update_b) = update_b_option {
								self.enqueue_message(peer, update_b);
							}
							peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
						}
						if all_messages.is_empty() || all_messages.len() != steps as usize {
							peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
						}
					},
					InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
						let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
						let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
						for msg in all_messages.iter() {
							self.enqueue_message(peer, msg);
							peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
						}
						if all_messages.is_empty() || all_messages.len() != steps as usize {
							peer.sync_status = InitSyncTracker::NoSyncRequested;
						}
					},
					InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
					InitSyncTracker::NodesSyncing(key) => {
						let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
						let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
						for msg in all_messages.iter() {
							self.enqueue_message(peer, msg);
							peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
						}
						if all_messages.is_empty() || all_messages.len() != steps as usize {
							peer.sync_status = InitSyncTracker::NoSyncRequested;
						}
					},
				}
			}
			if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
				self.maybe_send_extra_ping(peer);
			}

			if {
				let next_buff = match peer.pending_outbound_buffer.front() {
					None => return,
					Some(buff) => buff,
				};

				let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
				let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
				let data_sent = descriptor.send_data(pending, should_be_reading);
				peer.pending_outbound_buffer_first_msg_offset += data_sent;
				if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
			} {
				peer.pending_outbound_buffer_first_msg_offset = 0;
				peer.pending_outbound_buffer.pop_front();
			} else {
				peer.awaiting_write_event = true;
			}
		}
	}

	/// Indicates that there is room to write data to the given socket descriptor.
	///
	/// May return an Err to indicate that the connection should be closed.
	///
	/// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
	/// returning. Thus, be very careful with reentrancy issues! The invariants around calling
	/// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
	/// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
	/// sufficient!
	///
	/// [`send_data`]: SocketDescriptor::send_data
	/// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
	pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
		let mut peers = self.peers.lock().unwrap();
		match peers.peers.get_mut(descriptor) {
			None => {
				// This is most likely a simple race condition where the user found that the socket
				// was writeable, then we told the user to `disconnect_socket()`, then they called
				// this method. Return an error to make sure we get disconnected.
				return Err(PeerHandleError { no_connection_possible: false });
			},
			Some(peer) => {
				peer.awaiting_write_event = false;
				self.do_attempt_write_data(descriptor, peer);
			}
		};
		Ok(())
	}

	/// Indicates that data was read from the given socket descriptor.
	///
	/// May return an Err to indicate that the connection should be closed.
	///
	/// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
	/// Thus, however, you should call [`process_events`] after any `read_event` to generate
	/// [`send_data`] calls to handle responses.
	///
	/// If `Ok(true)` is returned, further read_events should not be triggered until a
	/// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
	/// send buffer).
	///
	/// [`send_data`]: SocketDescriptor::send_data
	/// [`process_events`]: PeerManager::process_events
	pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
		match self.do_read_event(peer_descriptor, data) {
			Ok(res) => Ok(res),
			Err(e) => {
				log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
				self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
				Err(e)
			}
		}
	}

	/// Append a message to a peer's pending outbound/write buffer
	fn enqueue_encoded_message(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
		peer.msgs_sent_since_pong += 1;
		peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
	}

	/// Append a message to a peer's pending outbound/write buffer
	fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
		let mut buffer = VecWriter(Vec::with_capacity(2048));
		wire::write(message, &mut buffer).unwrap(); // crash if the write failed

		if is_gossip_msg(message.type_id()) {
			log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
		} else {
			log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
		}
		self.enqueue_encoded_message(peer, &buffer.0);
	}

	fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
		let pause_read = {
			let mut peers_lock = self.peers.lock().unwrap();
			let peers = &mut *peers_lock;
			let mut msgs_to_forward = Vec::new();
			let mut peer_node_id = None;
			let pause_read = match peers.peers.get_mut(peer_descriptor) {
				None => {
					// This is most likely a simple race condition where the user read some bytes
					// from the socket, then we told the user to `disconnect_socket()`, then they
					// called this method. Return an error to make sure we get disconnected.
					return Err(PeerHandleError { no_connection_possible: false });
				},
				Some(peer) => {
					assert!(peer.pending_read_buffer.len() > 0);
					assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);

					let mut read_pos = 0;
					while read_pos < data.len() {
						{
							let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
							peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
							read_pos += data_to_copy;
							peer.pending_read_buffer_pos += data_to_copy;
						}

						if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
							peer.pending_read_buffer_pos = 0;

							macro_rules! try_potential_handleerror {
								($thing: expr) => {
									match $thing {
										Ok(x) => x,
										Err(e) => {
											match e.action {
												msgs::ErrorAction::DisconnectPeer { msg: _ } => {
													//TODO: Try to push msg
													log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
													return Err(PeerHandleError{ no_connection_possible: false });
												},
												msgs::ErrorAction::IgnoreAndLog(level) => {
													log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
													continue
												},
												msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
												msgs::ErrorAction::IgnoreError => {
													log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
													continue;
												},
												msgs::ErrorAction::SendErrorMessage { msg } => {
													log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
													self.enqueue_message(peer, &msg);
													continue;
												},
												msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
													log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err);
													self.enqueue_message(peer, &msg);
													continue;
												},
											}
										}
									}
								}
							}

							macro_rules! insert_node_id {
								() => {
									match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
										hash_map::Entry::Occupied(_) => {
											log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
											peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
											return Err(PeerHandleError{ no_connection_possible: false })
										},
										hash_map::Entry::Vacant(entry) => {
											log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
											entry.insert(peer_descriptor.clone())
										},
									};
								}
							}

							let next_step = peer.channel_encryptor.get_noise_step();
							match next_step {
								NextNoiseStep::ActOne => {
									let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
									peer.pending_outbound_buffer.push_back(act_two);
									peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
								},
								NextNoiseStep::ActTwo => {
									let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
									peer.pending_outbound_buffer.push_back(act_three.to_vec());
									peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
									peer.pending_read_is_header = true;

									peer.their_node_id = Some(their_node_id);
									insert_node_id!();
									let features = InitFeatures::known();
									let resp = msgs::Init { features };
									self.enqueue_message(peer, &resp);
									peer.awaiting_pong_timer_tick_intervals = 0;
								},
								NextNoiseStep::ActThree => {
									let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
									peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
									peer.pending_read_is_header = true;
									peer.their_node_id = Some(their_node_id);
									insert_node_id!();
									let features = InitFeatures::known();
									let resp = msgs::Init { features };
									self.enqueue_message(peer, &resp);
									peer.awaiting_pong_timer_tick_intervals = 0;
								},
								NextNoiseStep::NoiseComplete => {
									if peer.pending_read_is_header {
										let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
										peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
										peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
										if msg_len < 2 { // Need at least the message type tag
											return Err(PeerHandleError{ no_connection_possible: false });
										}
										peer.pending_read_is_header = false;
									} else {
										let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
										assert!(msg_data.len() >= 2);

										// Reset read buffer
										peer.pending_read_buffer = [0; 18].to_vec();
										peer.pending_read_is_header = true;

										let mut reader = io::Cursor::new(&msg_data[..]);
										let message_result = wire::read(&mut reader, &*self.custom_message_handler);
										let message = match message_result {
											Ok(x) => x,
											Err(e) => {
												match e {
													// Note that to avoid recursion we never call
													// `do_attempt_write_data` from here, causing
													// the messages enqueued here to not actually
													// be sent before the peer is disconnected.
													(msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
														log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
														continue;
													}
													(msgs::DecodeError::UnsupportedCompression, _) => {
														log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
														self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
														continue;
													}
													(_, Some(ty)) if is_gossip_msg(ty) => {
														log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
														self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() });
														continue;
													}
													(msgs::DecodeError::UnknownRequiredFeature, ty) => {
														log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
														self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
														return Err(PeerHandleError { no_connection_possible: false });
													}
													(msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
													(msgs::DecodeError::InvalidValue, _) => {
														log_debug!(self.logger, "Got an invalid value while deserializing message");
														return Err(PeerHandleError { no_connection_possible: false });
													}
													(msgs::DecodeError::ShortRead, _) => {
														log_debug!(self.logger, "Deserialization failed due to shortness of message");
														return Err(PeerHandleError { no_connection_possible: false });
													}
													(msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
													(msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
												}
											}
										};

										match self.handle_message(peer, message) {
											Err(handling_error) => match handling_error {
												MessageHandlingError::PeerHandleError(e) => { return Err(e) },
												MessageHandlingError::LightningError(e) => {
													try_potential_handleerror!(Err(e));
												},
											},
											Ok(Some(msg)) => {
												peer_node_id = Some(peer.their_node_id.expect("After noise is complete, their_node_id is always set"));
												msgs_to_forward.push(msg);
											},
											Ok(None) => {},
										}
									}
								}
							}
						}
					}

					peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE // pause_read
				}
			};

			for msg in msgs_to_forward.drain(..) {
				self.forward_broadcast_msg(peers, &msg, peer_node_id.as_ref());
			}

			pause_read
		};

		Ok(pause_read)
	}

	/// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
	/// Returns the message back if it needs to be broadcasted to all other peers.
	fn handle_message(
		&self,
		peer: &mut Peer,
		message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
	) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
		if is_gossip_msg(message.type_id()) {
			log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
		} else {
			log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap()));
		}

		peer.received_message_since_timer_tick = true;

		// Need an Init as first message
		if let wire::Message::Init(_) = message {
		} else if peer.their_features.is_none() {
			log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
			return Err(PeerHandleError{ no_connection_possible: false }.into());
		}

		let mut should_forward = None;

		match message {
			// Setup and Control messages:
			wire::Message::Init(msg) => {
				if msg.features.requires_unknown_bits() {
					log_debug!(self.logger, "Peer features required unknown version bits");
					return Err(PeerHandleError{ no_connection_possible: true }.into());
				}
				if peer.their_features.is_some() {
					return Err(PeerHandleError{ no_connection_possible: false }.into());
				}

				log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.features);

				if msg.features.initial_routing_sync() {
					peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
				}
				if !msg.features.supports_static_remote_key() {
					log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap()));
					return Err(PeerHandleError{ no_connection_possible: true }.into());
				}

				self.message_handler.route_handler.sync_routing_table(&peer.their_node_id.unwrap(), &msg);

				self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
				peer.their_features = Some(msg.features);
			},
			wire::Message::Error(msg) => {
				let mut data_is_printable = true;
				for b in msg.data.bytes() {
					if b < 32 || b > 126 {
						data_is_printable = false;
						break;
					}
				}

				if data_is_printable {
					log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
				} else {
					log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
				}
				self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
				if msg.channel_id == [0; 32] {
					return Err(PeerHandleError{ no_connection_possible: true }.into());
				}
			},
			wire::Message::Warning(msg) => {
				let mut data_is_printable = true;
				for b in msg.data.bytes() {
					if b < 32 || b > 126 {
						data_is_printable = false;
						break;
					}
				}

				if data_is_printable {
					log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
				} else {
					log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
				}
			},

			wire::Message::Ping(msg) => {
				if msg.ponglen < 65532 {
					let resp = msgs::Pong { byteslen: msg.ponglen };
					self.enqueue_message(peer, &resp);
				}
			},
			wire::Message::Pong(_msg) => {
				peer.awaiting_pong_timer_tick_intervals = 0;
				peer.msgs_sent_since_pong = 0;
			},

			// Channel messages:
			wire::Message::OpenChannel(msg) => {
				self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
			},
			wire::Message::AcceptChannel(msg) => {
				self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
			},

			wire::Message::FundingCreated(msg) => {
				self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
			},
			wire::Message::FundingSigned(msg) => {
				self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
			},
			wire::Message::FundingLocked(msg) => {
				self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
			},

			wire::Message::Shutdown(msg) => {
				self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), peer.their_features.as_ref().unwrap(), &msg);
			},
			wire::Message::ClosingSigned(msg) => {
				self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
			},

			// Commitment messages:
			wire::Message::UpdateAddHTLC(msg) => {
				self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
			},
			wire::Message::UpdateFulfillHTLC(msg) => {
				self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
			},
			wire::Message::UpdateFailHTLC(msg) => {
				self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
			},
			wire::Message::UpdateFailMalformedHTLC(msg) => {
				self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
			},

			wire::Message::CommitmentSigned(msg) => {
				self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
			},
			wire::Message::RevokeAndACK(msg) => {
				self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
			},
			wire::Message::UpdateFee(msg) => {
				self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
			},
			wire::Message::ChannelReestablish(msg) => {
				self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
			},

			// Routing messages:
			wire::Message::AnnouncementSignatures(msg) => {
				self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
			},
			wire::Message::ChannelAnnouncement(msg) => {
				if self.message_handler.route_handler.handle_channel_announcement(&msg)
						.map_err(|e| -> MessageHandlingError { e.into() })? {
					should_forward = Some(wire::Message::ChannelAnnouncement(msg));
				}
			},
			wire::Message::NodeAnnouncement(msg) => {
				if self.message_handler.route_handler.handle_node_announcement(&msg)
						.map_err(|e| -> MessageHandlingError { e.into() })? {
					should_forward = Some(wire::Message::NodeAnnouncement(msg));
				}
			},
			wire::Message::ChannelUpdate(msg) => {
				self.message_handler.chan_handler.handle_channel_update(&peer.their_node_id.unwrap(), &msg);
				if self.message_handler.route_handler.handle_channel_update(&msg)
						.map_err(|e| -> MessageHandlingError { e.into() })? {
					should_forward = Some(wire::Message::ChannelUpdate(msg));
				}
			},
			wire::Message::QueryShortChannelIds(msg) => {
				self.message_handler.route_handler.handle_query_short_channel_ids(&peer.their_node_id.unwrap(), msg)?;
			},
			wire::Message::ReplyShortChannelIdsEnd(msg) => {
				self.message_handler.route_handler.handle_reply_short_channel_ids_end(&peer.their_node_id.unwrap(), msg)?;
			},
			wire::Message::QueryChannelRange(msg) => {
				self.message_handler.route_handler.handle_query_channel_range(&peer.their_node_id.unwrap(), msg)?;
			},
			wire::Message::ReplyChannelRange(msg) => {
				self.message_handler.route_handler.handle_reply_channel_range(&peer.their_node_id.unwrap(), msg)?;
			},
			wire::Message::GossipTimestampFilter(_msg) => {
				// TODO: handle message
			},

			// Unknown messages:
			wire::Message::Unknown(type_id) if message.is_even() => {
				log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
				// Fail the channel if message is an even, unknown type as per BOLT #1.
				return Err(PeerHandleError{ no_connection_possible: true }.into());
			},
			wire::Message::Unknown(type_id) => {
				log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
			},
			wire::Message::Custom(custom) => {
				self.custom_message_handler.handle_custom_message(custom, &peer.their_node_id.unwrap())?;
			},
		};
		Ok(should_forward)
	}

	fn forward_broadcast_msg(&self, peers: &mut PeerHolder<Descriptor>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
		match msg {
			wire::Message::ChannelAnnouncement(ref msg) => {
				log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
				let encoded_msg = encode_msg!(msg);

				for (_, peer) in peers.peers.iter_mut() {
					if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
							!peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
						continue
					}
					if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
						|| peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
					{
						log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
						continue;
					}
					if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
					   peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
						continue;
					}
					if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
						continue;
					}
					self.enqueue_encoded_message(peer, &encoded_msg);
				}
			},
			wire::Message::NodeAnnouncement(ref msg) => {
				log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
				let encoded_msg = encode_msg!(msg);

				for (_, peer) in peers.peers.iter_mut() {
					if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
							!peer.should_forward_node_announcement(msg.contents.node_id) {
						continue
					}
					if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
						|| peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
					{
						log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
						continue;
					}
					if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
						continue;
					}
					if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
						continue;
					}
					self.enqueue_encoded_message(peer, &encoded_msg);
				}
			},
			wire::Message::ChannelUpdate(ref msg) => {
				log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
				let encoded_msg = encode_msg!(msg);

				for (_, peer) in peers.peers.iter_mut() {
					if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
							!peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
						continue
					}
					if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
						|| peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
					{
						log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
						continue;
					}
					if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
						continue;
					}
					self.enqueue_encoded_message(peer, &encoded_msg);
				}
			},
			_ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
		}
	}

	/// Checks for any events generated by our handlers and processes them. Includes sending most
	/// response messages as well as messages generated by calls to handler functions directly (eg
	/// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
	///
	/// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
	/// issues!
	///
	/// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
	/// or one of the other clients provided in our language bindings.
	///
	/// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
	/// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
	/// [`send_data`]: SocketDescriptor::send_data
	pub fn process_events(&self) {
		{
			// TODO: There are some DoS attacks here where you can flood someone's outbound send
			// buffer by doing things like announcing channels on another node. We should be willing to
			// drop optional-ish messages when send buffers get full!

			let mut peers_lock = self.peers.lock().unwrap();
			let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
			events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
			let peers = &mut *peers_lock;
			macro_rules! get_peer_for_forwarding {
				($node_id: expr) => {
					{
						match peers.node_id_to_descriptor.get($node_id) {
							Some(descriptor) => match peers.peers.get_mut(&descriptor) {
								Some(peer) => {
									if peer.their_features.is_none() {
										continue;
									}
									peer
								},
								None => panic!("Inconsistent peers set state!"),
							},
							None => {
								continue;
							},
						}
					}
				}
			}
			for event in events_generated.drain(..) {
				match event {
					MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
						log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
								log_pubkey!(node_id),
								log_bytes!(msg.temporary_channel_id));
						self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
					},
					MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
						log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
								log_pubkey!(node_id),
								log_bytes!(msg.temporary_channel_id));
						self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
					},
					MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
						log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
								log_pubkey!(node_id),
								log_bytes!(msg.temporary_channel_id),
								log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
						// TODO: If the peer is gone we should generate a DiscardFunding event
						// indicating to the wallet that they should just throw away this funding transaction
						self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
					},
					MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
						log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
								log_pubkey!(node_id),
								log_bytes!(msg.channel_id));
						self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
					},
					MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
						log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
								log_pubkey!(node_id),
								log_bytes!(msg.channel_id));
						self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
					},
					MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
						log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
								log_pubkey!(node_id),
								log_bytes!(msg.channel_id));
						self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
					},
					MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
						log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
								log_pubkey!(node_id),
								update_add_htlcs.len(),
								update_fulfill_htlcs.len(),
								update_fail_htlcs.len(),
								log_bytes!(commitment_signed.channel_id));
						let peer = get_peer_for_forwarding!(node_id);
						for msg in update_add_htlcs {
							self.enqueue_message(peer, msg);
						}
						for msg in update_fulfill_htlcs {
							self.enqueue_message(peer, msg);
						}
						for msg in update_fail_htlcs {
							self.enqueue_message(peer, msg);
						}
						for msg in update_fail_malformed_htlcs {
							self.enqueue_message(peer, msg);
						}
						if let &Some(ref msg) = update_fee {
							self.enqueue_message(peer, msg);
						}
						self.enqueue_message(peer, commitment_signed);
					},
					MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
						log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
								log_pubkey!(node_id),
								log_bytes!(msg.channel_id));
						self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
					},
					MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
						log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
								log_pubkey!(node_id),
								log_bytes!(msg.channel_id));
						self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
					},
					MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
						log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
								log_pubkey!(node_id),
								log_bytes!(msg.channel_id));
						self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
					},
					MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
						log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
								log_pubkey!(node_id),
								log_bytes!(msg.channel_id));
						self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
					},
					MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
						log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
						match self.message_handler.route_handler.handle_channel_announcement(&msg) {
							Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
								self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
							_ => {},
						}
						match self.message_handler.route_handler.handle_channel_update(&update_msg) {
							Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
								self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
							_ => {},
						}
					},
					MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
						log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
						match self.message_handler.route_handler.handle_node_announcement(&msg) {
							Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
								self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
							_ => {},
						}
					},
					MessageSendEvent::BroadcastChannelUpdate { msg } => {
						log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
						match self.message_handler.route_handler.handle_channel_update(&msg) {
							Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
								self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
							_ => {},
						}
					},
					MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
						log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
								log_pubkey!(node_id), msg.contents.short_channel_id);
						let peer = get_peer_for_forwarding!(node_id);
						peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
					},
					MessageSendEvent::HandleError { ref node_id, ref action } => {
						match *action {
							msgs::ErrorAction::DisconnectPeer { ref msg } => {
								if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
									if let Some(mut peer) = peers.peers.remove(&descriptor) {
										if let Some(ref msg) = *msg {
											log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
													log_pubkey!(node_id),
													msg.data);
											self.enqueue_message(&mut peer, msg);
											// This isn't guaranteed to work, but if there is enough free
											// room in the send buffer, put the error message there...
											self.do_attempt_write_data(&mut descriptor, &mut peer);
										} else {
											log_gossip!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
										}
									}
									descriptor.disconnect_socket();
									self.message_handler.chan_handler.peer_disconnected(&node_id, false);
								}
							},
							msgs::ErrorAction::IgnoreAndLog(level) => {
								log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
							},
							msgs::ErrorAction::IgnoreDuplicateGossip => {},
							msgs::ErrorAction::IgnoreError => {
								log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
							},
							msgs::ErrorAction::SendErrorMessage { ref msg } => {
								log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
										log_pubkey!(node_id),
										msg.data);
								self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
							},
							msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
								log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
										log_pubkey!(node_id),
										msg.data);
								self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
							},
						}
					},
					MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
						self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
					},
					MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
						self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
					}
					MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
						log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
							log_pubkey!(node_id),
							msg.short_channel_ids.len(),
							msg.first_blocknum,
							msg.number_of_blocks,
							msg.sync_complete);
						self.enqueue_message(get_peer_for_forwarding!(node_id), msg);
					}
				}
			}

			for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
				self.enqueue_message(get_peer_for_forwarding!(&node_id), &msg);
			}

			for (descriptor, peer) in peers.peers.iter_mut() {
				self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
			}
		}
	}

	/// Indicates that the given socket descriptor's connection is now closed.
	pub fn socket_disconnected(&self, descriptor: &Descriptor) {
		self.disconnect_event_internal(descriptor, false);
	}

	fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
		let mut peers = self.peers.lock().unwrap();
		let peer_option = peers.peers.remove(descriptor);
		match peer_option {
			None => {
				// This is most likely a simple race condition where the user found that the socket
				// was disconnected, then we told the user to `disconnect_socket()`, then they
				// called this method. Either way we're disconnected, return.
			},
			Some(peer) => {
				match peer.their_node_id {
					Some(node_id) => {
						log_trace!(self.logger,
							"Handling disconnection of peer {}, with {}future connection to the peer possible.",
							log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
						peers.node_id_to_descriptor.remove(&node_id);
						self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
					},
					None => {}
				}
			}
		};
	}

	/// Disconnect a peer given its node id.
	///
	/// Set `no_connection_possible` to true to prevent any further connection with this peer,
	/// force-closing any channels we have with it.
	///
	/// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
	/// peer. Thus, be very careful about reentrancy issues.
	///
	/// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
	pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
		let mut peers_lock = self.peers.lock().unwrap();
		if let Some(mut descriptor) = peers_lock.node_id_to_descriptor.remove(&node_id) {
			log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
			peers_lock.peers.remove(&descriptor);
			self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
			descriptor.disconnect_socket();
		}
	}

	/// Disconnects all currently-connected peers. This is useful on platforms where there may be
	/// an indication that TCP sockets have stalled even if we weren't around to time them out
	/// using regular ping/pongs.
	pub fn disconnect_all_peers(&self) {
		let mut peers_lock = self.peers.lock().unwrap();
		let peers = &mut *peers_lock;
		for (mut descriptor, peer) in peers.peers.drain() {
			if let Some(node_id) = peer.their_node_id {
				log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
				peers.node_id_to_descriptor.remove(&node_id);
				self.message_handler.chan_handler.peer_disconnected(&node_id, false);
			}
			descriptor.disconnect_socket();
		}
		debug_assert!(peers.node_id_to_descriptor.is_empty());
	}

	/// This is called when we're blocked on sending additional gossip messages until we receive a
	/// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
	/// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
	fn maybe_send_extra_ping(&self, peer: &mut Peer) {
		if peer.awaiting_pong_timer_tick_intervals == 0 {
			peer.awaiting_pong_timer_tick_intervals = -1;
			let ping = msgs::Ping {
				ponglen: 0,
				byteslen: 64,
			};
			self.enqueue_message(peer, &ping);
		}
	}

	/// Send pings to each peer and disconnect those which did not respond to the last round of
	/// pings.
	///
	/// This may be called on any timescale you want, however, roughly once every five to ten
	/// seconds is preferred. The call rate determines both how often we send a ping to our peers
	/// and how much time they have to respond before we disconnect them.
	///
	/// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
	/// issues!
	///
	/// [`send_data`]: SocketDescriptor::send_data
	pub fn timer_tick_occurred(&self) {
		let mut peers_lock = self.peers.lock().unwrap();
		{
			let peers = &mut *peers_lock;
			let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
			let peers = &mut peers.peers;
			let mut descriptors_needing_disconnect = Vec::new();
			let peer_count = peers.len();

			peers.retain(|descriptor, peer| {
				let mut do_disconnect_peer = false;
				if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
					// The peer needs to complete its handshake before we can exchange messages. We
					// give peers one timer tick to complete handshake, reusing
					// `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
					// for handshake completion.
					if peer.awaiting_pong_timer_tick_intervals != 0 {
						do_disconnect_peer = true;
					} else {
						peer.awaiting_pong_timer_tick_intervals = 1;
						return true;
					}
				}

				if peer.awaiting_pong_timer_tick_intervals == -1 {
					// Magic value set in `maybe_send_extra_ping`.
					peer.awaiting_pong_timer_tick_intervals = 1;
					peer.received_message_since_timer_tick = false;
					return true;
				}

				if do_disconnect_peer
					|| (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
					|| peer.awaiting_pong_timer_tick_intervals as u64 >
						MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peer_count as u64
				{
					descriptors_needing_disconnect.push(descriptor.clone());
					match peer.their_node_id {
						Some(node_id) => {
							log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
							node_id_to_descriptor.remove(&node_id);
							self.message_handler.chan_handler.peer_disconnected(&node_id, false);
						}
						None => {},
					}
					return false;
				}
				peer.received_message_since_timer_tick = false;

				if peer.awaiting_pong_timer_tick_intervals > 0 {
					peer.awaiting_pong_timer_tick_intervals += 1;
					return true;
				}

				peer.awaiting_pong_timer_tick_intervals = 1;
				let ping = msgs::Ping {
					ponglen: 0,
					byteslen: 64,
				};
				self.enqueue_message(peer, &ping);
				self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);

				true
			});

			for mut descriptor in descriptors_needing_disconnect.drain(..) {
				descriptor.disconnect_socket();
			}
		}
	}
}

fn is_gossip_msg(type_id: u16) -> bool {
	match type_id {
		msgs::ChannelAnnouncement::TYPE |
		msgs::ChannelUpdate::TYPE |
		msgs::NodeAnnouncement::TYPE => true,
		_ => false
	}
}

#[cfg(test)]
mod tests {
	use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler};
	use ln::msgs;
	use util::events;
	use util::test_utils;

	use bitcoin::secp256k1::Secp256k1;
	use bitcoin::secp256k1::key::{SecretKey, PublicKey};

	use prelude::*;
	use sync::{Arc, Mutex};
	use core::sync::atomic::Ordering;

	#[derive(Clone)]
	struct FileDescriptor {
		fd: u16,
		outbound_data: Arc<Mutex<Vec<u8>>>,
	}
	impl PartialEq for FileDescriptor {
		fn eq(&self, other: &Self) -> bool {
			self.fd == other.fd
		}
	}
	impl Eq for FileDescriptor { }
	impl core::hash::Hash for FileDescriptor {
		fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
			self.fd.hash(hasher)
		}
	}

	impl SocketDescriptor for FileDescriptor {
		fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
			self.outbound_data.lock().unwrap().extend_from_slice(data);
			data.len()
		}

		fn disconnect_socket(&mut self) {}
	}

	struct PeerManagerCfg {
		chan_handler: test_utils::TestChannelMessageHandler,
		routing_handler: test_utils::TestRoutingMessageHandler,
		logger: test_utils::TestLogger,
	}

	fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
		let mut cfgs = Vec::new();
		for _ in 0..peer_count {
			cfgs.push(
				PeerManagerCfg{
					chan_handler: test_utils::TestChannelMessageHandler::new(),
					logger: test_utils::TestLogger::new(),
					routing_handler: test_utils::TestRoutingMessageHandler::new(),
				}
			);
		}

		cfgs
	}

	fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
		let mut peers = Vec::new();
		for i in 0..peer_count {
			let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
			let ephemeral_bytes = [i as u8; 32];
			let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
			let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
			peers.push(peer);
		}

		peers
	}

	fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
		let secp_ctx = Secp256k1::new();
		let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
		let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
		let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
		let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone()).unwrap();
		peer_a.new_inbound_connection(fd_a.clone()).unwrap();
		assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
		peer_a.process_events();
		assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
		peer_b.process_events();
		assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
		(fd_a.clone(), fd_b.clone())
	}

	#[test]
	fn test_disconnect_peer() {
		// Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
		// push a DisconnectPeer event to remove the node flagged by id
		let cfgs = create_peermgr_cfgs(2);
		let chan_handler = test_utils::TestChannelMessageHandler::new();
		let mut peers = create_network(2, &cfgs);
		establish_connection(&peers[0], &peers[1]);
		assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);

		let secp_ctx = Secp256k1::new();
		let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);

		chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
			node_id: their_id,
			action: msgs::ErrorAction::DisconnectPeer { msg: None },
		});
		assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
		peers[0].message_handler.chan_handler = &chan_handler;

		peers[0].process_events();
		assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
	}

	#[test]
	fn test_timer_tick_occurred() {
		// Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
		let cfgs = create_peermgr_cfgs(2);
		let peers = create_network(2, &cfgs);
		establish_connection(&peers[0], &peers[1]);
		assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);

		// peers[0] awaiting_pong is set to true, but the Peer is still connected
		peers[0].timer_tick_occurred();
		peers[0].process_events();
		assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);

		// Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
		peers[0].timer_tick_occurred();
		peers[0].process_events();
		assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
	}

	#[test]
	fn test_do_attempt_write_data() {
		// Create 2 peers with custom TestRoutingMessageHandlers and connect them.
		let cfgs = create_peermgr_cfgs(2);
		cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
		cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
		let peers = create_network(2, &cfgs);

		// By calling establish_connect, we trigger do_attempt_write_data between
		// the peers. Previously this function would mistakenly enter an infinite loop
		// when there were more channel messages available than could fit into a peer's
		// buffer. This issue would now be detected by this test (because we use custom
		// RoutingMessageHandlers that intentionally return more channel messages
		// than can fit into a peer's buffer).
		let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);

		// Make each peer to read the messages that the other peer just wrote to them. Note that
		// due to the max-messagse-before-ping limits this may take a few iterations to complete.
		for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
			peers[0].process_events();
			let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
			assert!(!b_read_data.is_empty());

			peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
			peers[1].process_events();

			let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
			assert!(!a_read_data.is_empty());
			peers[0].read_event(&mut fd_a, &a_read_data).unwrap();

			peers[1].process_events();
			assert_eq!(fd_b.outbound_data.lock().unwrap().len(), 0, "Until B receives data, it shouldn't send more messages");
		}

		// Check that each peer has received the expected number of channel updates and channel
		// announcements.
		assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
		assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
		assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
		assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
	}

	#[test]
	fn test_handshake_timeout() {
		// Tests that we time out a peer still waiting on handshake completion after a full timer
		// tick.
		let cfgs = create_peermgr_cfgs(2);
		cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
		cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
		let peers = create_network(2, &cfgs);

		let secp_ctx = Secp256k1::new();
		let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
		let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
		let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
		let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone()).unwrap();
		peers[0].new_inbound_connection(fd_a.clone()).unwrap();

		// If we get a single timer tick before completion, that's fine
		assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
		peers[0].timer_tick_occurred();
		assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);

		assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
		peers[0].process_events();
		assert_eq!(peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
		peers[1].process_events();

		// ...but if we get a second timer tick, we should disconnect the peer
		peers[0].timer_tick_occurred();
		assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);

		assert!(peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).is_err());
	}
}