1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

use prelude::*;

use ln::msgs::LightningError;
use ln::msgs;

use bitcoin::hashes::{Hash, HashEngine, Hmac, HmacEngine};
use bitcoin::hashes::sha256::Hash as Sha256;

use bitcoin::secp256k1::Secp256k1;
use bitcoin::secp256k1::key::{PublicKey,SecretKey};
use bitcoin::secp256k1::ecdh::SharedSecret;
use bitcoin::secp256k1;

use util::chacha20poly1305rfc::ChaCha20Poly1305RFC;
use bitcoin::hashes::hex::ToHex;

/// Maximum Lightning message data length according to
/// [BOLT-8](https://github.com/lightningnetwork/lightning-rfc/blob/v1.0/08-transport.md#lightning-message-specification)
/// and [BOLT-1](https://github.com/lightningnetwork/lightning-rfc/blob/master/01-messaging.md#lightning-message-format):
pub const LN_MAX_MSG_LEN: usize = ::core::u16::MAX as usize; // Must be equal to 65535

// Sha256("Noise_XK_secp256k1_ChaChaPoly_SHA256")
const NOISE_CK: [u8; 32] = [0x26, 0x40, 0xf5, 0x2e, 0xeb, 0xcd, 0x9e, 0x88, 0x29, 0x58, 0x95, 0x1c, 0x79, 0x42, 0x50, 0xee, 0xdb, 0x28, 0x00, 0x2c, 0x05, 0xd7, 0xdc, 0x2e, 0xa0, 0xf1, 0x95, 0x40, 0x60, 0x42, 0xca, 0xf1];
// Sha256(NOISE_CK || "lightning")
const NOISE_H: [u8; 32] = [0xd1, 0xfb, 0xf6, 0xde, 0xe4, 0xf6, 0x86, 0xf1, 0x32, 0xfd, 0x70, 0x2c, 0x4a, 0xbf, 0x8f, 0xba, 0x4b, 0xb4, 0x20, 0xd8, 0x9d, 0x2a, 0x04, 0x8a, 0x3c, 0x4f, 0x4c, 0x09, 0x2e, 0x37, 0xb6, 0x76];

pub enum NextNoiseStep {
	ActOne,
	ActTwo,
	ActThree,
	NoiseComplete,
}

#[derive(PartialEq)]
enum NoiseStep {
	PreActOne,
	PostActOne,
	PostActTwo,
	// When done swap noise_state for NoiseState::Finished
}

struct BidirectionalNoiseState {
	h: [u8; 32],
	ck: [u8; 32],
}
enum DirectionalNoiseState {
	Outbound {
		ie: SecretKey,
	},
	Inbound {
		ie: Option<PublicKey>, // filled in if state >= PostActOne
		re: Option<SecretKey>, // filled in if state >= PostActTwo
		temp_k2: Option<[u8; 32]>, // filled in if state >= PostActTwo
	}
}
enum NoiseState {
	InProgress {
		state: NoiseStep,
		directional_state: DirectionalNoiseState,
		bidirectional_state: BidirectionalNoiseState,
	},
	Finished {
		sk: [u8; 32],
		sn: u64,
		sck: [u8; 32],
		rk: [u8; 32],
		rn: u64,
		rck: [u8; 32],
	}
}

pub struct PeerChannelEncryptor {
	secp_ctx: Secp256k1<secp256k1::SignOnly>,
	their_node_id: Option<PublicKey>, // filled in for outbound, or inbound after noise_state is Finished

	noise_state: NoiseState,
}

impl PeerChannelEncryptor {
	pub fn new_outbound(their_node_id: PublicKey, ephemeral_key: SecretKey) -> PeerChannelEncryptor {
		let secp_ctx = Secp256k1::signing_only();

		let mut sha = Sha256::engine();
		sha.input(&NOISE_H);
		sha.input(&their_node_id.serialize()[..]);
		let h = Sha256::from_engine(sha).into_inner();

		PeerChannelEncryptor {
			their_node_id: Some(their_node_id),
			secp_ctx,
			noise_state: NoiseState::InProgress {
				state: NoiseStep::PreActOne,
				directional_state: DirectionalNoiseState::Outbound {
					ie: ephemeral_key,
				},
				bidirectional_state: BidirectionalNoiseState {
					h,
					ck: NOISE_CK,
				},
			}
		}
	}

	pub fn new_inbound(our_node_secret: &SecretKey) -> PeerChannelEncryptor {
		let secp_ctx = Secp256k1::signing_only();

		let mut sha = Sha256::engine();
		sha.input(&NOISE_H);
		let our_node_id = PublicKey::from_secret_key(&secp_ctx, our_node_secret);
		sha.input(&our_node_id.serialize()[..]);
		let h = Sha256::from_engine(sha).into_inner();

		PeerChannelEncryptor {
			their_node_id: None,
			secp_ctx,
			noise_state: NoiseState::InProgress {
				state: NoiseStep::PreActOne,
				directional_state: DirectionalNoiseState::Inbound {
					ie: None,
					re: None,
					temp_k2: None,
				},
				bidirectional_state: BidirectionalNoiseState {
					h,
					ck: NOISE_CK,
				},
			}
		}
	}

	#[inline]
	fn encrypt_with_ad(res: &mut[u8], n: u64, key: &[u8; 32], h: &[u8], plaintext: &[u8]) {
		let mut nonce = [0; 12];
		nonce[4..].copy_from_slice(&n.to_le_bytes()[..]);

		let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
		let mut tag = [0; 16];
		chacha.encrypt(plaintext, &mut res[0..plaintext.len()], &mut tag);
		res[plaintext.len()..].copy_from_slice(&tag);
	}

	#[inline]
	fn decrypt_with_ad(res: &mut[u8], n: u64, key: &[u8; 32], h: &[u8], cyphertext: &[u8]) -> Result<(), LightningError> {
		let mut nonce = [0; 12];
		nonce[4..].copy_from_slice(&n.to_le_bytes()[..]);

		let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h);
		if !chacha.decrypt(&cyphertext[0..cyphertext.len() - 16], res, &cyphertext[cyphertext.len() - 16..]) {
			return Err(LightningError{err: "Bad MAC".to_owned(), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
		}
		Ok(())
	}

	fn hkdf_extract_expand(salt: &[u8], ikm: &[u8]) -> ([u8; 32], [u8; 32]) {
		let mut hmac = HmacEngine::<Sha256>::new(salt);
		hmac.input(ikm);
		let prk = Hmac::from_engine(hmac).into_inner();
		let mut hmac = HmacEngine::<Sha256>::new(&prk[..]);
		hmac.input(&[1; 1]);
		let t1 = Hmac::from_engine(hmac).into_inner();
		let mut hmac = HmacEngine::<Sha256>::new(&prk[..]);
		hmac.input(&t1);
		hmac.input(&[2; 1]);
		(t1, Hmac::from_engine(hmac).into_inner())
	}

	#[inline]
	fn hkdf(state: &mut BidirectionalNoiseState, ss: SharedSecret) -> [u8; 32] {
		let (t1, t2) = Self::hkdf_extract_expand(&state.ck, &ss[..]);
		state.ck = t1;
		t2
	}

	#[inline]
	fn outbound_noise_act<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, state: &mut BidirectionalNoiseState, our_key: &SecretKey, their_key: &PublicKey) -> ([u8; 50], [u8; 32]) {
		let our_pub = PublicKey::from_secret_key(secp_ctx, &our_key);

		let mut sha = Sha256::engine();
		sha.input(&state.h);
		sha.input(&our_pub.serialize()[..]);
		state.h = Sha256::from_engine(sha).into_inner();

		let ss = SharedSecret::new(&their_key, &our_key);
		let temp_k = PeerChannelEncryptor::hkdf(state, ss);

		let mut res = [0; 50];
		res[1..34].copy_from_slice(&our_pub.serialize()[..]);
		PeerChannelEncryptor::encrypt_with_ad(&mut res[34..], 0, &temp_k, &state.h, &[0; 0]);

		let mut sha = Sha256::engine();
		sha.input(&state.h);
		sha.input(&res[34..]);
		state.h = Sha256::from_engine(sha).into_inner();

		(res, temp_k)
	}

	#[inline]
	fn inbound_noise_act(state: &mut BidirectionalNoiseState, act: &[u8], our_key: &SecretKey) -> Result<(PublicKey, [u8; 32]), LightningError> {
		assert_eq!(act.len(), 50);

		if act[0] != 0 {
			return Err(LightningError{err: format!("Unknown handshake version number {}", act[0]), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
		}

		let their_pub = match PublicKey::from_slice(&act[1..34]) {
			Err(_) => return Err(LightningError{err: format!("Invalid public key {}", &act[1..34].to_hex()), action: msgs::ErrorAction::DisconnectPeer{ msg: None }}),
			Ok(key) => key,
		};

		let mut sha = Sha256::engine();
		sha.input(&state.h);
		sha.input(&their_pub.serialize()[..]);
		state.h = Sha256::from_engine(sha).into_inner();

		let ss = SharedSecret::new(&their_pub, &our_key);
		let temp_k = PeerChannelEncryptor::hkdf(state, ss);

		let mut dec = [0; 0];
		PeerChannelEncryptor::decrypt_with_ad(&mut dec, 0, &temp_k, &state.h, &act[34..])?;

		let mut sha = Sha256::engine();
		sha.input(&state.h);
		sha.input(&act[34..]);
		state.h = Sha256::from_engine(sha).into_inner();

		Ok((their_pub, temp_k))
	}

	pub fn get_act_one(&mut self) -> [u8; 50] {
		match self.noise_state {
			NoiseState::InProgress { ref mut state, ref directional_state, ref mut bidirectional_state } =>
				match directional_state {
					&DirectionalNoiseState::Outbound { ref ie } => {
						if *state != NoiseStep::PreActOne {
							panic!("Requested act at wrong step");
						}

						let (res, _) = PeerChannelEncryptor::outbound_noise_act(&self.secp_ctx, bidirectional_state, &ie, &self.their_node_id.unwrap());
						*state = NoiseStep::PostActOne;
						res
					},
					_ => panic!("Wrong direction for act"),
				},
			_ => panic!("Cannot get act one after noise handshake completes"),
		}
	}

	pub fn process_act_one_with_keys(&mut self, act_one: &[u8], our_node_secret: &SecretKey, our_ephemeral: SecretKey) -> Result<[u8; 50], LightningError> {
		assert_eq!(act_one.len(), 50);

		match self.noise_state {
			NoiseState::InProgress { ref mut state, ref mut directional_state, ref mut bidirectional_state } =>
				match directional_state {
					&mut DirectionalNoiseState::Inbound { ref mut ie, ref mut re, ref mut temp_k2 } => {
						if *state != NoiseStep::PreActOne {
							panic!("Requested act at wrong step");
						}

						let (their_pub, _) = PeerChannelEncryptor::inbound_noise_act(bidirectional_state, act_one, &our_node_secret)?;
						ie.get_or_insert(their_pub);

						re.get_or_insert(our_ephemeral);

						let (res, temp_k) = PeerChannelEncryptor::outbound_noise_act(&self.secp_ctx, bidirectional_state, &re.unwrap(), &ie.unwrap());
						*temp_k2 = Some(temp_k);
						*state = NoiseStep::PostActTwo;
						Ok(res)
					},
					_ => panic!("Wrong direction for act"),
				},
			_ => panic!("Cannot get act one after noise handshake completes"),
		}
	}

	pub fn process_act_two(&mut self, act_two: &[u8], our_node_secret: &SecretKey) -> Result<([u8; 66], PublicKey), LightningError> {
		assert_eq!(act_two.len(), 50);

		let final_hkdf;
		let ck;
		let res: [u8; 66] = match self.noise_state {
			NoiseState::InProgress { ref state, ref directional_state, ref mut bidirectional_state } =>
				match directional_state {
					&DirectionalNoiseState::Outbound { ref ie } => {
						if *state != NoiseStep::PostActOne {
							panic!("Requested act at wrong step");
						}

						let (re, temp_k2) = PeerChannelEncryptor::inbound_noise_act(bidirectional_state, act_two, &ie)?;

						let mut res = [0; 66];
						let our_node_id = PublicKey::from_secret_key(&self.secp_ctx, &our_node_secret);

						PeerChannelEncryptor::encrypt_with_ad(&mut res[1..50], 1, &temp_k2, &bidirectional_state.h, &our_node_id.serialize()[..]);

						let mut sha = Sha256::engine();
						sha.input(&bidirectional_state.h);
						sha.input(&res[1..50]);
						bidirectional_state.h = Sha256::from_engine(sha).into_inner();

						let ss = SharedSecret::new(&re, our_node_secret);
						let temp_k = PeerChannelEncryptor::hkdf(bidirectional_state, ss);

						PeerChannelEncryptor::encrypt_with_ad(&mut res[50..], 0, &temp_k, &bidirectional_state.h, &[0; 0]);
						final_hkdf = Self::hkdf_extract_expand(&bidirectional_state.ck, &[0; 0]);
						ck = bidirectional_state.ck.clone();
						res
					},
					_ => panic!("Wrong direction for act"),
				},
			_ => panic!("Cannot get act one after noise handshake completes"),
		};

		let (sk, rk) = final_hkdf;
		self.noise_state = NoiseState::Finished {
			sk,
			sn: 0,
			sck: ck.clone(),
			rk,
			rn: 0,
			rck: ck,
		};

		Ok((res, self.their_node_id.unwrap().clone()))
	}

	pub fn process_act_three(&mut self, act_three: &[u8]) -> Result<PublicKey, LightningError> {
		assert_eq!(act_three.len(), 66);

		let final_hkdf;
		let ck;
		match self.noise_state {
			NoiseState::InProgress { ref state, ref directional_state, ref mut bidirectional_state } =>
				match directional_state {
					&DirectionalNoiseState::Inbound { ie: _, ref re, ref temp_k2 } => {
						if *state != NoiseStep::PostActTwo {
							panic!("Requested act at wrong step");
						}
						if act_three[0] != 0 {
							return Err(LightningError{err: format!("Unknown handshake version number {}", act_three[0]), action: msgs::ErrorAction::DisconnectPeer{ msg: None }});
						}

						let mut their_node_id = [0; 33];
						PeerChannelEncryptor::decrypt_with_ad(&mut their_node_id, 1, &temp_k2.unwrap(), &bidirectional_state.h, &act_three[1..50])?;
						self.their_node_id = Some(match PublicKey::from_slice(&their_node_id) {
							Ok(key) => key,
							Err(_) => return Err(LightningError{err: format!("Bad node_id from peer, {}", &their_node_id.to_hex()), action: msgs::ErrorAction::DisconnectPeer{ msg: None }}),
						});

						let mut sha = Sha256::engine();
						sha.input(&bidirectional_state.h);
						sha.input(&act_three[1..50]);
						bidirectional_state.h = Sha256::from_engine(sha).into_inner();

						let ss = SharedSecret::new(&self.their_node_id.unwrap(), &re.unwrap());
						let temp_k = PeerChannelEncryptor::hkdf(bidirectional_state, ss);

						PeerChannelEncryptor::decrypt_with_ad(&mut [0; 0], 0, &temp_k, &bidirectional_state.h, &act_three[50..])?;
						final_hkdf = Self::hkdf_extract_expand(&bidirectional_state.ck, &[0; 0]);
						ck = bidirectional_state.ck.clone();
					},
					_ => panic!("Wrong direction for act"),
				},
			_ => panic!("Cannot get act one after noise handshake completes"),
		}

		let (rk, sk) = final_hkdf;
		self.noise_state = NoiseState::Finished {
			sk,
			sn: 0,
			sck: ck.clone(),
			rk,
			rn: 0,
			rck: ck,
		};

		Ok(self.their_node_id.unwrap().clone())
	}

	/// Encrypts the given message, returning the encrypted version
	/// panics if msg.len() > 65535 or Noise handshake has not finished.
	pub fn encrypt_message(&mut self, msg: &[u8]) -> Vec<u8> {
		if msg.len() > LN_MAX_MSG_LEN {
			panic!("Attempted to encrypt message longer than 65535 bytes!");
		}

		let mut res = Vec::with_capacity(msg.len() + 16*2 + 2);
		res.resize(msg.len() + 16*2 + 2, 0);

		match self.noise_state {
			NoiseState::Finished { ref mut sk, ref mut sn, ref mut sck, rk: _, rn: _, rck: _ } => {
				if *sn >= 1000 {
					let (new_sck, new_sk) = Self::hkdf_extract_expand(sck, sk);
					*sck = new_sck;
					*sk = new_sk;
					*sn = 0;
				}

				Self::encrypt_with_ad(&mut res[0..16+2], *sn, sk, &[0; 0], &(msg.len() as u16).to_be_bytes());
				*sn += 1;

				Self::encrypt_with_ad(&mut res[16+2..], *sn, sk, &[0; 0], msg);
				*sn += 1;
			},
			_ => panic!("Tried to encrypt a message prior to noise handshake completion"),
		}

		res
	}

	/// Decrypts a message length header from the remote peer.
	/// panics if noise handshake has not yet finished or msg.len() != 18
	pub fn decrypt_length_header(&mut self, msg: &[u8]) -> Result<u16, LightningError> {
		assert_eq!(msg.len(), 16+2);

		match self.noise_state {
			NoiseState::Finished { sk: _, sn: _, sck: _, ref mut rk, ref mut rn, ref mut rck } => {
				if *rn >= 1000 {
					let (new_rck, new_rk) = Self::hkdf_extract_expand(rck, rk);
					*rck = new_rck;
					*rk = new_rk;
					*rn = 0;
				}

				let mut res = [0; 2];
				Self::decrypt_with_ad(&mut res, *rn, rk, &[0; 0], msg)?;
				*rn += 1;
				Ok(u16::from_be_bytes(res))
			},
			_ => panic!("Tried to decrypt a message prior to noise handshake completion"),
		}
	}

	/// Decrypts the given message.
	/// panics if msg.len() > 65535 + 16
	pub fn decrypt_message(&mut self, msg: &[u8]) -> Result<Vec<u8>, LightningError> {
		if msg.len() > LN_MAX_MSG_LEN + 16 {
			panic!("Attempted to decrypt message longer than 65535 + 16 bytes!");
		}

		match self.noise_state {
			NoiseState::Finished { sk: _, sn: _, sck: _, ref rk, ref mut rn, rck: _ } => {
				let mut res = Vec::with_capacity(msg.len() - 16);
				res.resize(msg.len() - 16, 0);
				Self::decrypt_with_ad(&mut res[..], *rn, rk, &[0; 0], msg)?;
				*rn += 1;

				Ok(res)
			},
			_ => panic!("Tried to decrypt a message prior to noise handshake completion"),
		}
	}

	pub fn get_noise_step(&self) -> NextNoiseStep {
		match self.noise_state {
			NoiseState::InProgress {ref state, ..} => {
				match state {
					&NoiseStep::PreActOne => NextNoiseStep::ActOne,
					&NoiseStep::PostActOne => NextNoiseStep::ActTwo,
					&NoiseStep::PostActTwo => NextNoiseStep::ActThree,
				}
			},
			NoiseState::Finished {..} => NextNoiseStep::NoiseComplete,
		}
	}

	pub fn is_ready_for_encryption(&self) -> bool {
		match self.noise_state {
			NoiseState::InProgress {..} => { false },
			NoiseState::Finished {..} => { true }
		}
	}
}

#[cfg(test)]
mod tests {
	use super::LN_MAX_MSG_LEN;

	use bitcoin::secp256k1::key::{PublicKey,SecretKey};

	use hex;

	use ln::peer_channel_encryptor::{PeerChannelEncryptor,NoiseState};

	fn get_outbound_peer_for_initiator_test_vectors() -> PeerChannelEncryptor {
		let their_node_id = PublicKey::from_slice(&hex::decode("028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7").unwrap()[..]).unwrap();

		let mut outbound_peer = PeerChannelEncryptor::new_outbound(their_node_id, SecretKey::from_slice(&hex::decode("1212121212121212121212121212121212121212121212121212121212121212").unwrap()[..]).unwrap());
		assert_eq!(outbound_peer.get_act_one()[..], hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap()[..]);
		outbound_peer
	}

	fn get_inbound_peer_for_test_vectors() -> PeerChannelEncryptor {
		// transport-responder successful handshake
		let our_node_id = SecretKey::from_slice(&hex::decode("2121212121212121212121212121212121212121212121212121212121212121").unwrap()[..]).unwrap();
		let our_ephemeral = SecretKey::from_slice(&hex::decode("2222222222222222222222222222222222222222222222222222222222222222").unwrap()[..]).unwrap();

		let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);

		let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
		assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);

		let act_three = hex::decode("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
		// test vector doesn't specify the initiator static key, but it's the same as the one
		// from transport-initiator successful handshake
		assert_eq!(inbound_peer.process_act_three(&act_three[..]).unwrap().serialize()[..], hex::decode("034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa").unwrap()[..]);

		match inbound_peer.noise_state {
			NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
				assert_eq!(sk, hex::decode("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
				assert_eq!(sn, 0);
				assert_eq!(sck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
				assert_eq!(rk, hex::decode("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
				assert_eq!(rn, 0);
				assert_eq!(rck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
			},
			_ => panic!()
		}

		inbound_peer
	}

	#[test]
	fn noise_initiator_test_vectors() {
		let our_node_id = SecretKey::from_slice(&hex::decode("1111111111111111111111111111111111111111111111111111111111111111").unwrap()[..]).unwrap();

		{
			// transport-initiator successful handshake
			let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();

			let act_two = hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
			assert_eq!(outbound_peer.process_act_two(&act_two[..], &our_node_id).unwrap().0[..], hex::decode("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap()[..]);

			match outbound_peer.noise_state {
				NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
					assert_eq!(sk, hex::decode("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
					assert_eq!(sn, 0);
					assert_eq!(sck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
					assert_eq!(rk, hex::decode("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
					assert_eq!(rn, 0);
					assert_eq!(rck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
				},
				_ => panic!()
			}
		}
		{
			// transport-initiator act2 short read test
			// Can't actually test this cause process_act_two requires you pass the right length!
		}
		{
			// transport-initiator act2 bad version test
			let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();

			let act_two = hex::decode("0102466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
			assert!(outbound_peer.process_act_two(&act_two[..], &our_node_id).is_err());
		}

		{
			// transport-initiator act2 bad key serialization test
			let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();

			let act_two = hex::decode("0004466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
			assert!(outbound_peer.process_act_two(&act_two[..], &our_node_id).is_err());
		}

		{
			// transport-initiator act2 bad MAC test
			let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();

			let act_two = hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730af").unwrap().to_vec();
			assert!(outbound_peer.process_act_two(&act_two[..], &our_node_id).is_err());
		}
	}

	#[test]
	fn noise_responder_test_vectors() {
		let our_node_id = SecretKey::from_slice(&hex::decode("2121212121212121212121212121212121212121212121212121212121212121").unwrap()[..]).unwrap();
		let our_ephemeral = SecretKey::from_slice(&hex::decode("2222222222222222222222222222222222222222222222222222222222222222").unwrap()[..]).unwrap();

		{
			let _ = get_inbound_peer_for_test_vectors();
		}
		{
			// transport-responder act1 short read test
			// Can't actually test this cause process_act_one requires you pass the right length!
		}
		{
			// transport-responder act1 bad version test
			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);

			let act_one = hex::decode("01036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
			assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).is_err());
		}
		{
			// transport-responder act1 bad key serialization test
			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);

			let act_one =hex::decode("00046360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
			assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).is_err());
		}
		{
			// transport-responder act1 bad MAC test
			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);

			let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6b").unwrap().to_vec();
			assert!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).is_err());
		}
		{
			// transport-responder act3 bad version test
			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);

			let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
			assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);

			let act_three = hex::decode("01b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
			assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
		}
		{
			// transport-responder act3 short read test
			// Can't actually test this cause process_act_three requires you pass the right length!
		}
		{
			// transport-responder act3 bad MAC for ciphertext test
			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);

			let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
			assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);

			let act_three = hex::decode("00c9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec();
			assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
		}
		{
			// transport-responder act3 bad rs test
			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);

			let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
			assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);

			let act_three = hex::decode("00bfe3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa2235536ad09a8ee351870c2bb7f78b754a26c6cef79a98d25139c856d7efd252c2ae73c").unwrap().to_vec();
			assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
		}
		{
			// transport-responder act3 bad MAC test
			let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id);

			let act_one = hex::decode("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec();
			assert_eq!(inbound_peer.process_act_one_with_keys(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]);

			let act_three = hex::decode("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139bb").unwrap().to_vec();
			assert!(inbound_peer.process_act_three(&act_three[..]).is_err());
		}
	}


	#[test]
	fn message_encryption_decryption_test_vectors() {
		// We use the same keys as the initiator and responder test vectors, so we copy those tests
		// here and use them to encrypt.
		let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();

		{
			let our_node_id = SecretKey::from_slice(&hex::decode("1111111111111111111111111111111111111111111111111111111111111111").unwrap()[..]).unwrap();

			let act_two = hex::decode("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec();
			assert_eq!(outbound_peer.process_act_two(&act_two[..], &our_node_id).unwrap().0[..], hex::decode("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap()[..]);

			match outbound_peer.noise_state {
				NoiseState::Finished { sk, sn, sck, rk, rn, rck } => {
					assert_eq!(sk, hex::decode("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]);
					assert_eq!(sn, 0);
					assert_eq!(sck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
					assert_eq!(rk, hex::decode("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]);
					assert_eq!(rn, 0);
					assert_eq!(rck, hex::decode("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]);
				},
				_ => panic!()
			}
		}

		let mut inbound_peer = get_inbound_peer_for_test_vectors();

		for i in 0..1005 {
			let msg = [0x68, 0x65, 0x6c, 0x6c, 0x6f];
			let res = outbound_peer.encrypt_message(&msg);
			assert_eq!(res.len(), 5 + 2*16 + 2);

			let len_header = res[0..2+16].to_vec();
			assert_eq!(inbound_peer.decrypt_length_header(&len_header[..]).unwrap() as usize, msg.len());
			assert_eq!(inbound_peer.decrypt_message(&res[2+16..]).unwrap()[..], msg[..]);

			if i == 0 {
				assert_eq!(res, hex::decode("cf2b30ddf0cf3f80e7c35a6e6730b59fe802473180f396d88a8fb0db8cbcf25d2f214cf9ea1d95").unwrap());
			} else if i == 1 {
				assert_eq!(res, hex::decode("72887022101f0b6753e0c7de21657d35a4cb2a1f5cde2650528bbc8f837d0f0d7ad833b1a256a1").unwrap());
			} else if i == 500 {
				assert_eq!(res, hex::decode("178cb9d7387190fa34db9c2d50027d21793c9bc2d40b1e14dcf30ebeeeb220f48364f7a4c68bf8").unwrap());
			} else if i == 501 {
				assert_eq!(res, hex::decode("1b186c57d44eb6de4c057c49940d79bb838a145cb528d6e8fd26dbe50a60ca2c104b56b60e45bd").unwrap());
			} else if i == 1000 {
				assert_eq!(res, hex::decode("4a2f3cc3b5e78ddb83dcb426d9863d9d9a723b0337c89dd0b005d89f8d3c05c52b76b29b740f09").unwrap());
			} else if i == 1001 {
				assert_eq!(res, hex::decode("2ecd8c8a5629d0d02ab457a0fdd0f7b90a192cd46be5ecb6ca570bfc5e268338b1a16cf4ef2d36").unwrap());
			}
		}
	}

	#[test]
	fn max_msg_len_limit_value() {
		assert_eq!(LN_MAX_MSG_LEN, 65535);
		assert_eq!(LN_MAX_MSG_LEN, ::core::u16::MAX as usize);
	}

	#[test]
	#[should_panic(expected = "Attempted to encrypt message longer than 65535 bytes!")]
	fn max_message_len_encryption() {
		let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors();
		let msg = [4u8; LN_MAX_MSG_LEN + 1];
		outbound_peer.encrypt_message(&msg);
	}

	#[test]
	#[should_panic(expected = "Attempted to decrypt message longer than 65535 + 16 bytes!")]
	fn max_message_len_decryption() {
		let mut inbound_peer = get_inbound_peer_for_test_vectors();

		// MSG should not exceed LN_MAX_MSG_LEN + 16
		let msg = [4u8; LN_MAX_MSG_LEN + 17];
		inbound_peer.decrypt_message(&msg).unwrap();
	}
}