1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

//! A very simple serialization framework which is used to serialize/deserialize messages as well
//! as ChannelsManagers and ChannelMonitors.

use prelude::*;
use io::{self, Read, Write};
use io_extras::{copy, sink};
use core::hash::Hash;
use sync::Mutex;
use core::cmp;

use bitcoin::secp256k1::Signature;
use bitcoin::secp256k1::key::{PublicKey, SecretKey};
use bitcoin::secp256k1::constants::{PUBLIC_KEY_SIZE, SECRET_KEY_SIZE, COMPACT_SIGNATURE_SIZE};
use bitcoin::blockdata::script::Script;
use bitcoin::blockdata::transaction::{OutPoint, Transaction, TxOut};
use bitcoin::consensus;
use bitcoin::consensus::Encodable;
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
use bitcoin::hash_types::{Txid, BlockHash};
use core::marker::Sized;
use ln::msgs::DecodeError;
use ln::{PaymentPreimage, PaymentHash, PaymentSecret};

use util::byte_utils::{be48_to_array, slice_to_be48};

/// serialization buffer size
pub const MAX_BUF_SIZE: usize = 64 * 1024;

/// A trait that is similar to std::io::Write but has one extra function which can be used to size
/// buffers being written into.
/// An impl is provided for any type that also impls std::io::Write which simply ignores size
/// hints.
///
/// (C-not exported) as we only export serialization to/from byte arrays instead
pub trait Writer {
	/// Writes the given buf out. See std::io::Write::write_all for more
	fn write_all(&mut self, buf: &[u8]) -> Result<(), io::Error>;
	/// Hints that data of the given size is about the be written. This may not always be called
	/// prior to data being written and may be safely ignored.
	fn size_hint(&mut self, size: usize);
}

impl<W: Write> Writer for W {
	#[inline]
	fn write_all(&mut self, buf: &[u8]) -> Result<(), io::Error> {
		<Self as io::Write>::write_all(self, buf)
	}
	#[inline]
	fn size_hint(&mut self, _size: usize) { }
}

pub(crate) struct WriterWriteAdaptor<'a, W: Writer + 'a>(pub &'a mut W);
impl<'a, W: Writer + 'a> Write for WriterWriteAdaptor<'a, W> {
	#[inline]
	fn write_all(&mut self, buf: &[u8]) -> Result<(), io::Error> {
		self.0.write_all(buf)
	}
	#[inline]
	fn write(&mut self, buf: &[u8]) -> Result<usize, io::Error> {
		self.0.write_all(buf)?;
		Ok(buf.len())
	}
	#[inline]
	fn flush(&mut self) -> Result<(), io::Error> {
		Ok(())
	}
}

pub(crate) struct VecWriter(pub Vec<u8>);
impl Writer for VecWriter {
	#[inline]
	fn write_all(&mut self, buf: &[u8]) -> Result<(), io::Error> {
		self.0.extend_from_slice(buf);
		Ok(())
	}
	#[inline]
	fn size_hint(&mut self, size: usize) {
		self.0.reserve_exact(size);
	}
}

/// Writer that only tracks the amount of data written - useful if you need to calculate the length
/// of some data when serialized but don't yet need the full data.
pub(crate) struct LengthCalculatingWriter(pub usize);
impl Writer for LengthCalculatingWriter {
	#[inline]
	fn write_all(&mut self, buf: &[u8]) -> Result<(), io::Error> {
		self.0 += buf.len();
		Ok(())
	}
	#[inline]
	fn size_hint(&mut self, _size: usize) {}
}

/// Essentially std::io::Take but a bit simpler and with a method to walk the underlying stream
/// forward to ensure we always consume exactly the fixed length specified.
pub(crate) struct FixedLengthReader<R: Read> {
	read: R,
	bytes_read: u64,
	total_bytes: u64,
}
impl<R: Read> FixedLengthReader<R> {
	pub fn new(read: R, total_bytes: u64) -> Self {
		Self { read, bytes_read: 0, total_bytes }
	}

	#[inline]
	pub fn bytes_remain(&mut self) -> bool {
		self.bytes_read != self.total_bytes
	}

	#[inline]
	pub fn eat_remaining(&mut self) -> Result<(), DecodeError> {
		copy(self, &mut sink()).unwrap();
		if self.bytes_read != self.total_bytes {
			Err(DecodeError::ShortRead)
		} else {
			Ok(())
		}
	}
}
impl<R: Read> Read for FixedLengthReader<R> {
	#[inline]
	fn read(&mut self, dest: &mut [u8]) -> Result<usize, io::Error> {
		if self.total_bytes == self.bytes_read {
			Ok(0)
		} else {
			let read_len = cmp::min(dest.len() as u64, self.total_bytes - self.bytes_read);
			match self.read.read(&mut dest[0..(read_len as usize)]) {
				Ok(v) => {
					self.bytes_read += v as u64;
					Ok(v)
				},
				Err(e) => Err(e),
			}
		}
	}
}

/// A Read which tracks whether any bytes have been read at all. This allows us to distinguish
/// between "EOF reached before we started" and "EOF reached mid-read".
pub(crate) struct ReadTrackingReader<R: Read> {
	read: R,
	pub have_read: bool,
}
impl<R: Read> ReadTrackingReader<R> {
	pub fn new(read: R) -> Self {
		Self { read, have_read: false }
	}
}
impl<R: Read> Read for ReadTrackingReader<R> {
	#[inline]
	fn read(&mut self, dest: &mut [u8]) -> Result<usize, io::Error> {
		match self.read.read(dest) {
			Ok(0) => Ok(0),
			Ok(len) => {
				self.have_read = true;
				Ok(len)
			},
			Err(e) => Err(e),
		}
	}
}

/// A trait that various rust-lightning types implement allowing them to be written out to a Writer
///
/// (C-not exported) as we only export serialization to/from byte arrays instead
pub trait Writeable {
	/// Writes self out to the given Writer
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error>;

	/// Writes self out to a Vec<u8>
	fn encode(&self) -> Vec<u8> {
		let mut msg = VecWriter(Vec::new());
		self.write(&mut msg).unwrap();
		msg.0
	}

	/// Writes self out to a Vec<u8>
	fn encode_with_len(&self) -> Vec<u8> {
		let mut msg = VecWriter(Vec::new());
		0u16.write(&mut msg).unwrap();
		self.write(&mut msg).unwrap();
		let len = msg.0.len();
		msg.0[..2].copy_from_slice(&(len as u16 - 2).to_be_bytes());
		msg.0
	}

	/// Gets the length of this object after it has been serialized. This can be overridden to
	/// optimize cases where we prepend an object with its length.
	// Note that LLVM optimizes this away in most cases! Check that it isn't before you override!
	#[inline]
	fn serialized_length(&self) -> usize {
		let mut len_calc = LengthCalculatingWriter(0);
		self.write(&mut len_calc).expect("No in-memory data may fail to serialize");
		len_calc.0
	}
}

impl<'a, T: Writeable> Writeable for &'a T {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> { (*self).write(writer) }
}

/// A trait that various rust-lightning types implement allowing them to be read in from a Read
///
/// (C-not exported) as we only export serialization to/from byte arrays instead
pub trait Readable
	where Self: Sized
{
	/// Reads a Self in from the given Read
	fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError>;
}

/// A trait that various higher-level rust-lightning types implement allowing them to be read in
/// from a Read given some additional set of arguments which is required to deserialize.
///
/// (C-not exported) as we only export serialization to/from byte arrays instead
pub trait ReadableArgs<P>
	where Self: Sized
{
	/// Reads a Self in from the given Read
	fn read<R: Read>(reader: &mut R, params: P) -> Result<Self, DecodeError>;
}

/// A trait that various rust-lightning types implement allowing them to (maybe) be read in from a Read
///
/// (C-not exported) as we only export serialization to/from byte arrays instead
pub trait MaybeReadable
	where Self: Sized
{
	/// Reads a Self in from the given Read
	fn read<R: Read>(reader: &mut R) -> Result<Option<Self>, DecodeError>;
}

impl<T: Readable> MaybeReadable for T {
	#[inline]
	fn read<R: Read>(reader: &mut R) -> Result<Option<T>, DecodeError> {
		Ok(Some(Readable::read(reader)?))
	}
}

pub(crate) struct OptionDeserWrapper<T: Readable>(pub Option<T>);
impl<T: Readable> Readable for OptionDeserWrapper<T> {
	#[inline]
	fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
		Ok(Self(Some(Readable::read(reader)?)))
	}
}

/// Wrapper to write each element of a Vec with no length prefix
pub(crate) struct VecWriteWrapper<'a, T: Writeable>(pub &'a Vec<T>);
impl<'a, T: Writeable> Writeable for VecWriteWrapper<'a, T> {
	#[inline]
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
		for ref v in self.0.iter() {
			v.write(writer)?;
		}
		Ok(())
	}
}

/// Wrapper to read elements from a given stream until it reaches the end of the stream.
pub(crate) struct VecReadWrapper<T>(pub Vec<T>);
impl<T: MaybeReadable> Readable for VecReadWrapper<T> {
	#[inline]
	fn read<R: Read>(mut reader: &mut R) -> Result<Self, DecodeError> {
		let mut values = Vec::new();
		loop {
			let mut track_read = ReadTrackingReader::new(&mut reader);
			match MaybeReadable::read(&mut track_read) {
				Ok(Some(v)) => { values.push(v); },
				Ok(None) => { },
				// If we failed to read any bytes at all, we reached the end of our TLV
				// stream and have simply exhausted all entries.
				Err(ref e) if e == &DecodeError::ShortRead && !track_read.have_read => break,
				Err(e) => return Err(e),
			}
		}
		Ok(Self(values))
	}
}

pub(crate) struct U48(pub u64);
impl Writeable for U48 {
	#[inline]
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
		writer.write_all(&be48_to_array(self.0))
	}
}
impl Readable for U48 {
	#[inline]
	fn read<R: Read>(reader: &mut R) -> Result<U48, DecodeError> {
		let mut buf = [0; 6];
		reader.read_exact(&mut buf)?;
		Ok(U48(slice_to_be48(&buf)))
	}
}

/// Lightning TLV uses a custom variable-length integer called BigSize. It is similar to Bitcoin's
/// variable-length integers except that it is serialized in big-endian instead of little-endian.
///
/// Like Bitcoin's variable-length integer, it exhibits ambiguity in that certain values can be
/// encoded in several different ways, which we must check for at deserialization-time. Thus, if
/// you're looking for an example of a variable-length integer to use for your own project, move
/// along, this is a rather poor design.
pub(crate) struct BigSize(pub u64);
impl Writeable for BigSize {
	#[inline]
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
		match self.0 {
			0...0xFC => {
				(self.0 as u8).write(writer)
			},
			0xFD...0xFFFF => {
				0xFDu8.write(writer)?;
				(self.0 as u16).write(writer)
			},
			0x10000...0xFFFFFFFF => {
				0xFEu8.write(writer)?;
				(self.0 as u32).write(writer)
			},
			_ => {
				0xFFu8.write(writer)?;
				(self.0 as u64).write(writer)
			},
		}
	}
}
impl Readable for BigSize {
	#[inline]
	fn read<R: Read>(reader: &mut R) -> Result<BigSize, DecodeError> {
		let n: u8 = Readable::read(reader)?;
		match n {
			0xFF => {
				let x: u64 = Readable::read(reader)?;
				if x < 0x100000000 {
					Err(DecodeError::InvalidValue)
				} else {
					Ok(BigSize(x))
				}
			}
			0xFE => {
				let x: u32 = Readable::read(reader)?;
				if x < 0x10000 {
					Err(DecodeError::InvalidValue)
				} else {
					Ok(BigSize(x as u64))
				}
			}
			0xFD => {
				let x: u16 = Readable::read(reader)?;
				if x < 0xFD {
					Err(DecodeError::InvalidValue)
				} else {
					Ok(BigSize(x as u64))
				}
			}
			n => Ok(BigSize(n as u64))
		}
	}
}

/// In TLV we occasionally send fields which only consist of, or potentially end with, a
/// variable-length integer which is simply truncated by skipping high zero bytes. This type
/// encapsulates such integers implementing Readable/Writeable for them.
#[cfg_attr(test, derive(PartialEq, Debug))]
pub(crate) struct HighZeroBytesDroppedVarInt<T>(pub T);

macro_rules! impl_writeable_primitive {
	($val_type:ty, $len: expr) => {
		impl Writeable for $val_type {
			#[inline]
			fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
				writer.write_all(&self.to_be_bytes())
			}
		}
		impl Writeable for HighZeroBytesDroppedVarInt<$val_type> {
			#[inline]
			fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
				// Skip any full leading 0 bytes when writing (in BE):
				writer.write_all(&self.0.to_be_bytes()[(self.0.leading_zeros()/8) as usize..$len])
			}
		}
		impl Readable for $val_type {
			#[inline]
			fn read<R: Read>(reader: &mut R) -> Result<$val_type, DecodeError> {
				let mut buf = [0; $len];
				reader.read_exact(&mut buf)?;
				Ok(<$val_type>::from_be_bytes(buf))
			}
		}
		impl Readable for HighZeroBytesDroppedVarInt<$val_type> {
			#[inline]
			fn read<R: Read>(reader: &mut R) -> Result<HighZeroBytesDroppedVarInt<$val_type>, DecodeError> {
				// We need to accept short reads (read_len == 0) as "EOF" and handle them as simply
				// the high bytes being dropped. To do so, we start reading into the middle of buf
				// and then convert the appropriate number of bytes with extra high bytes out of
				// buf.
				let mut buf = [0; $len*2];
				let mut read_len = reader.read(&mut buf[$len..])?;
				let mut total_read_len = read_len;
				while read_len != 0 && total_read_len != $len {
					read_len = reader.read(&mut buf[($len + total_read_len)..])?;
					total_read_len += read_len;
				}
				if total_read_len == 0 || buf[$len] != 0 {
					let first_byte = $len - ($len - total_read_len);
					let mut bytes = [0; $len];
					bytes.copy_from_slice(&buf[first_byte..first_byte + $len]);
					Ok(HighZeroBytesDroppedVarInt(<$val_type>::from_be_bytes(bytes)))
				} else {
					// If the encoding had extra zero bytes, return a failure even though we know
					// what they meant (as the TLV test vectors require this)
					Err(DecodeError::InvalidValue)
				}
			}
		}
	}
}

impl_writeable_primitive!(u64, 8);
impl_writeable_primitive!(u32, 4);
impl_writeable_primitive!(u16, 2);

impl Writeable for u8 {
	#[inline]
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
		writer.write_all(&[*self])
	}
}
impl Readable for u8 {
	#[inline]
	fn read<R: Read>(reader: &mut R) -> Result<u8, DecodeError> {
		let mut buf = [0; 1];
		reader.read_exact(&mut buf)?;
		Ok(buf[0])
	}
}

impl Writeable for bool {
	#[inline]
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
		writer.write_all(&[if *self {1} else {0}])
	}
}
impl Readable for bool {
	#[inline]
	fn read<R: Read>(reader: &mut R) -> Result<bool, DecodeError> {
		let mut buf = [0; 1];
		reader.read_exact(&mut buf)?;
		if buf[0] != 0 && buf[0] != 1 {
			return Err(DecodeError::InvalidValue);
		}
		Ok(buf[0] == 1)
	}
}

// u8 arrays
macro_rules! impl_array {
	( $size:expr ) => (
		impl Writeable for [u8; $size]
		{
			#[inline]
			fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
				w.write_all(self)
			}
		}

		impl Readable for [u8; $size]
		{
			#[inline]
			fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
				let mut buf = [0u8; $size];
				r.read_exact(&mut buf)?;
				Ok(buf)
			}
		}
	);
}

//TODO: performance issue with [u8; size] with impl_array!()
impl_array!(3); // for rgb
impl_array!(4); // for IPv4
impl_array!(10); // for OnionV2
impl_array!(16); // for IPv6
impl_array!(32); // for channel id & hmac
impl_array!(PUBLIC_KEY_SIZE); // for PublicKey
impl_array!(COMPACT_SIGNATURE_SIZE); // for Signature
impl_array!(1300); // for OnionPacket.hop_data

// HashMap
impl<K, V> Writeable for HashMap<K, V>
	where K: Writeable + Eq + Hash,
	      V: Writeable
{
	#[inline]
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
	(self.len() as u16).write(w)?;
		for (key, value) in self.iter() {
			key.write(w)?;
			value.write(w)?;
		}
		Ok(())
	}
}

impl<K, V> Readable for HashMap<K, V>
	where K: Readable + Eq + Hash,
	      V: Readable
{
	#[inline]
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let len: u16 = Readable::read(r)?;
		let mut ret = HashMap::with_capacity(len as usize);
		for _ in 0..len {
			ret.insert(K::read(r)?, V::read(r)?);
		}
		Ok(ret)
	}
}

// Vectors
impl Writeable for Vec<u8> {
	#[inline]
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		(self.len() as u16).write(w)?;
		w.write_all(&self)
	}
}

impl Readable for Vec<u8> {
	#[inline]
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let len: u16 = Readable::read(r)?;
		let mut ret = Vec::with_capacity(len as usize);
		ret.resize(len as usize, 0);
		r.read_exact(&mut ret)?;
		Ok(ret)
	}
}
impl Writeable for Vec<Signature> {
	#[inline]
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		(self.len() as u16).write(w)?;
		for e in self.iter() {
			e.write(w)?;
		}
		Ok(())
	}
}

impl Readable for Vec<Signature> {
	#[inline]
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let len: u16 = Readable::read(r)?;
		let byte_size = (len as usize)
		                .checked_mul(COMPACT_SIGNATURE_SIZE)
		                .ok_or(DecodeError::BadLengthDescriptor)?;
		if byte_size > MAX_BUF_SIZE {
			return Err(DecodeError::BadLengthDescriptor);
		}
		let mut ret = Vec::with_capacity(len as usize);
		for _ in 0..len { ret.push(Readable::read(r)?); }
		Ok(ret)
	}
}

impl Writeable for Script {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		(self.len() as u16).write(w)?;
		w.write_all(self.as_bytes())
	}
}

impl Readable for Script {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let len = <u16 as Readable>::read(r)? as usize;
		let mut buf = vec![0; len];
		r.read_exact(&mut buf)?;
		Ok(Script::from(buf))
	}
}

impl Writeable for PublicKey {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		self.serialize().write(w)
	}
	#[inline]
	fn serialized_length(&self) -> usize {
		PUBLIC_KEY_SIZE
	}
}

impl Readable for PublicKey {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let buf: [u8; PUBLIC_KEY_SIZE] = Readable::read(r)?;
		match PublicKey::from_slice(&buf) {
			Ok(key) => Ok(key),
			Err(_) => return Err(DecodeError::InvalidValue),
		}
	}
}

impl Writeable for SecretKey {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		let mut ser = [0; SECRET_KEY_SIZE];
		ser.copy_from_slice(&self[..]);
		ser.write(w)
	}
	#[inline]
	fn serialized_length(&self) -> usize {
		SECRET_KEY_SIZE
	}
}

impl Readable for SecretKey {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let buf: [u8; SECRET_KEY_SIZE] = Readable::read(r)?;
		match SecretKey::from_slice(&buf) {
			Ok(key) => Ok(key),
			Err(_) => return Err(DecodeError::InvalidValue),
		}
	}
}

impl Writeable for Sha256dHash {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		w.write_all(&self[..])
	}
}

impl Readable for Sha256dHash {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		use bitcoin::hashes::Hash;

		let buf: [u8; 32] = Readable::read(r)?;
		Ok(Sha256dHash::from_slice(&buf[..]).unwrap())
	}
}

impl Writeable for Signature {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		self.serialize_compact().write(w)
	}
	#[inline]
	fn serialized_length(&self) -> usize {
		COMPACT_SIGNATURE_SIZE
	}
}

impl Readable for Signature {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let buf: [u8; COMPACT_SIGNATURE_SIZE] = Readable::read(r)?;
		match Signature::from_compact(&buf) {
			Ok(sig) => Ok(sig),
			Err(_) => return Err(DecodeError::InvalidValue),
		}
	}
}

impl Writeable for PaymentPreimage {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		self.0.write(w)
	}
}

impl Readable for PaymentPreimage {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let buf: [u8; 32] = Readable::read(r)?;
		Ok(PaymentPreimage(buf))
	}
}

impl Writeable for PaymentHash {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		self.0.write(w)
	}
}

impl Readable for PaymentHash {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let buf: [u8; 32] = Readable::read(r)?;
		Ok(PaymentHash(buf))
	}
}

impl Writeable for PaymentSecret {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		self.0.write(w)
	}
}

impl Readable for PaymentSecret {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let buf: [u8; 32] = Readable::read(r)?;
		Ok(PaymentSecret(buf))
	}
}

impl<T: Writeable> Writeable for Box<T> {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		T::write(&**self, w)
	}
}

impl<T: Readable> Readable for Box<T> {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		Ok(Box::new(Readable::read(r)?))
	}
}

impl<T: Writeable> Writeable for Option<T> {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		match *self {
			None => 0u8.write(w)?,
			Some(ref data) => {
				BigSize(data.serialized_length() as u64 + 1).write(w)?;
				data.write(w)?;
			}
		}
		Ok(())
	}
}

impl<T: Readable> Readable for Option<T>
{
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let len: BigSize = Readable::read(r)?;
		match len.0 {
			0 => Ok(None),
			len => {
				let mut reader = FixedLengthReader::new(r, len - 1);
				Ok(Some(Readable::read(&mut reader)?))
			}
		}
	}
}

impl Writeable for Txid {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		w.write_all(&self[..])
	}
}

impl Readable for Txid {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		use bitcoin::hashes::Hash;

		let buf: [u8; 32] = Readable::read(r)?;
		Ok(Txid::from_slice(&buf[..]).unwrap())
	}
}

impl Writeable for BlockHash {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		w.write_all(&self[..])
	}
}

impl Readable for BlockHash {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		use bitcoin::hashes::Hash;

		let buf: [u8; 32] = Readable::read(r)?;
		Ok(BlockHash::from_slice(&buf[..]).unwrap())
	}
}

impl Writeable for OutPoint {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		self.txid.write(w)?;
		self.vout.write(w)?;
		Ok(())
	}
}

impl Readable for OutPoint {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let txid = Readable::read(r)?;
		let vout = Readable::read(r)?;
		Ok(OutPoint {
			txid,
			vout,
		})
	}
}

macro_rules! impl_consensus_ser {
	($bitcoin_type: ty) => {
		impl Writeable for $bitcoin_type {
			fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
				match self.consensus_encode(WriterWriteAdaptor(writer)) {
					Ok(_) => Ok(()),
					Err(e) => Err(e),
				}
			}
		}

		impl Readable for $bitcoin_type {
			fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
				match consensus::encode::Decodable::consensus_decode(r) {
					Ok(t) => Ok(t),
					Err(consensus::encode::Error::Io(ref e)) if e.kind() == io::ErrorKind::UnexpectedEof => Err(DecodeError::ShortRead),
					Err(consensus::encode::Error::Io(e)) => Err(DecodeError::Io(e.kind())),
					Err(_) => Err(DecodeError::InvalidValue),
				}
			}
		}
	}
}
impl_consensus_ser!(Transaction);
impl_consensus_ser!(TxOut);

impl<T: Readable> Readable for Mutex<T> {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let t: T = Readable::read(r)?;
		Ok(Mutex::new(t))
	}
}
impl<T: Writeable> Writeable for Mutex<T> {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		self.lock().unwrap().write(w)
	}
}

impl<A: Readable, B: Readable> Readable for (A, B) {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let a: A = Readable::read(r)?;
		let b: B = Readable::read(r)?;
		Ok((a, b))
	}
}
impl<A: Writeable, B: Writeable> Writeable for (A, B) {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		self.0.write(w)?;
		self.1.write(w)
	}
}

impl<A: Readable, B: Readable, C: Readable> Readable for (A, B, C) {
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let a: A = Readable::read(r)?;
		let b: B = Readable::read(r)?;
		let c: C = Readable::read(r)?;
		Ok((a, b, c))
	}
}
impl<A: Writeable, B: Writeable, C: Writeable> Writeable for (A, B, C) {
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		self.0.write(w)?;
		self.1.write(w)?;
		self.2.write(w)
	}
}