1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
use crate::{FromInner, Inner, IntoInner};
use std::borrow::Cow;
use std::ffi::CStr;
use std::ops::{
    Bound, Index, Range, RangeBounds, RangeFrom, RangeFull, RangeInclusive, RangeTo,
    RangeToInclusive,
};
use uv::{uv_buf_init, uv_buf_t};

/// When trying to convert an empty Buf to a string.
#[derive(Debug)]
pub struct EmptyBufError;

impl std::fmt::Display for EmptyBufError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.write_str("The Buf is empty.")
    }
}

impl std::error::Error for EmptyBufError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        None
    }
}

/// Calculates how much space to allocate and the alignment
fn calc_alloc_size_alignment(size: usize) -> crate::Result<(usize, usize)> {
    // this assumes layout.size() <= layout.align() - this is loosely based on the
    // experimental Rust features to create a Layout for an array
    let layout = std::alloc::Layout::new::<std::os::raw::c_char>();
    let alloc_size = layout
        .align()
        .checked_mul(size)
        .ok_or(crate::Error::ENOMEM)?;
    Ok((alloc_size, layout.align()))
}

/// Creates a Layout for the given size
fn layout(size: usize) -> crate::Result<std::alloc::Layout> {
    let (alloc_size, align) = calc_alloc_size_alignment(size)?;
    std::alloc::Layout::from_size_align(alloc_size, align).or(Err(crate::Error::ENOMEM))
}

/// Readonly buffer data type.
#[derive(Clone, Copy)]
pub struct ReadonlyBuf {
    buf: *const uv_buf_t,
}

impl ReadonlyBuf {
    /// Returns true if the internal buffer is initialized
    pub fn is_allocated(&self) -> bool {
        unsafe { !(*self.buf).base.is_null() }
    }

    /// Deallocate the internal buffer, but leave the Buf intact. Even though this is a "readonly"
    /// Buf, the internal storage can still be deallocated. This oddity is an unfortunate
    /// side-effect of the libuv API: for example, StreamHandle::read_start calls the allocate
    /// callback to create a Buf, then passes that Buf to the read callback as a ReadonlyBuf. You
    /// could run dealloc() in the read callback to deallocate the internal buffer - the allocate
    /// callback takes ownership of the actual Buf struct, so you don't need to worry about that.
    pub fn dealloc(&mut self) {
        unsafe {
            if self.is_allocated() {
                let len = (*self.buf).len as _;
                if let Ok(layout) = layout(len) {
                    std::alloc::dealloc((*self.buf).base as _, layout);
                }
            }
        }
    }

    /// Convert the Buf to a CStr. Returns an error if the Buf is empty. Data contained within the
    /// ReadonlyBuf must be null-terminated or this will fail!
    pub fn as_c_str(&self) -> Result<&'_ CStr, EmptyBufError> {
        let ptr: *const uv_buf_t = self.inner();
        unsafe {
            if (*ptr).base.is_null() {
                Err(EmptyBufError)
            } else {
                Ok(CStr::from_ptr((*ptr).base))
            }
        }
    }

    /// Convert the Buf to a string. Returns an error if the Buf is empty. Data contained within
    /// the ReadonlyBuf must be null-terminated or this will fail!
    pub fn to_string_lossy(&self) -> Result<Cow<'_, str>, EmptyBufError> {
        let cstr: &CStr = self.as_c_str()?;
        Ok(cstr.to_string_lossy())
    }

    /// Convert data in the Buf to a &str. Returns an error if the Buf is empty or the data is not
    /// valid utf8. Data does _not_ need to be null-terminated because only the first `len` bytes
    /// will be used to create the string.
    pub fn to_str(&self, len: usize) -> Result<&str, Box<dyn std::error::Error>> {
        let ptr: *const uv_buf_t = self.inner();
        unsafe {
            if (*ptr).base.is_null() {
                Err(Box::new(EmptyBufError))
            } else {
                Ok(std::str::from_utf8(std::slice::from_raw_parts(
                    (*ptr).base as _,
                    len,
                ))?)
            }
        }
    }
}

impl FromInner<*const uv_buf_t> for ReadonlyBuf {
    fn from_inner(buf: *const uv_buf_t) -> ReadonlyBuf {
        ReadonlyBuf { buf }
    }
}

impl Inner<*const uv_buf_t> for ReadonlyBuf {
    fn inner(&self) -> *const uv_buf_t {
        self.buf
    }
}

impl Index<usize> for ReadonlyBuf {
    type Output = u8;

    fn index(&self, index: usize) -> &Self::Output {
        let len = if self.is_allocated() {
            unsafe { (*self.buf).len }
        } else {
            0
        };
        if len <= (index as _) {
            panic!("index {} out of range for Buf of length {}", index, len);
        }
        unsafe { &*((*self.buf).base.add(index) as *const u8) }
    }
}

/// Utility function to implement all of the Index<RangeX> traits. Unfortunately, I cannot just
/// impl Index<I: RangeBounds<usize>> for ReadonlyBuf because that precludes an implementation for
/// usize alone.
fn range_from_readonlybuf<I>(buf: &ReadonlyBuf, index: I) -> &[u8]
where
    I: RangeBounds<usize>,
{
    let len = if buf.is_allocated() {
        unsafe { (*buf.buf).len as usize }
    } else {
        0
    };

    let start = match index.start_bound() {
        Bound::Included(i) => *i,
        Bound::Excluded(i) => *i + 1,
        Bound::Unbounded => 0,
    };
    let end = match index.end_bound() {
        Bound::Included(i) => *i + 1,
        Bound::Excluded(i) => *i,
        Bound::Unbounded => len,
    };

    if start > end {
        panic!("Buf index starts at {} but ends at {}", start, end);
    }

    if len <= end {
        panic!("index {} out of range for Buf of length {}", end, len);
    }

    unsafe { std::slice::from_raw_parts((*buf.buf).base.add(start) as *const u8, end - start) }
}

impl Index<Range<usize>> for ReadonlyBuf {
    type Output = [u8];

    fn index(&self, index: Range<usize>) -> &Self::Output {
        range_from_readonlybuf(self, index)
    }
}

impl Index<RangeFrom<usize>> for ReadonlyBuf {
    type Output = [u8];

    fn index(&self, index: RangeFrom<usize>) -> &Self::Output {
        range_from_readonlybuf(self, index)
    }
}

impl Index<RangeFull> for ReadonlyBuf {
    type Output = [u8];

    fn index(&self, index: RangeFull) -> &Self::Output {
        range_from_readonlybuf(self, index)
    }
}

impl Index<RangeInclusive<usize>> for ReadonlyBuf {
    type Output = [u8];

    fn index(&self, index: RangeInclusive<usize>) -> &Self::Output {
        range_from_readonlybuf(self, index)
    }
}

impl Index<RangeTo<usize>> for ReadonlyBuf {
    type Output = [u8];

    fn index(&self, index: RangeTo<usize>) -> &Self::Output {
        range_from_readonlybuf(self, index)
    }
}

impl Index<RangeToInclusive<usize>> for ReadonlyBuf {
    type Output = [u8];

    fn index(&self, index: RangeToInclusive<usize>) -> &Self::Output {
        range_from_readonlybuf(self, index)
    }
}

/// Buffer data type.
#[derive(Clone, Copy)]
pub struct Buf {
    buf: *mut uv_buf_t,
}

impl Buf {
    fn alloc(size: usize) -> crate::Result<*mut std::os::raw::c_char> {
        let layout = layout(size)?;
        let ptr = unsafe { std::alloc::alloc(layout) as *mut std::os::raw::c_char };
        if ptr.is_null() {
            Err(crate::Error::ENOMEM)
        } else {
            Ok(ptr)
        }
    }

    /// Create a new Buf with the given string
    pub fn new(s: &str) -> Result<Buf, Box<dyn std::error::Error>> {
        Buf::new_from_bytes(s.as_bytes())
    }

    /// Create a new Buf from the given byte slice
    pub fn new_from_bytes(bytes: &[u8]) -> Result<Buf, Box<dyn std::error::Error>> {
        let len = bytes.len();
        let buflen = len + 1;
        let base = Buf::alloc(buflen)?;
        unsafe {
            base.copy_from_nonoverlapping(bytes.as_ptr() as _, len);
            base.add(len).write(0);
        }

        let buf = Box::new(unsafe { uv_buf_init(base, buflen as _) });
        Ok(Box::into_raw(buf).into_inner())
    }

    /// Create a Buf with the given capacity - the memory is not initialized
    pub fn with_capacity(size: usize) -> crate::Result<Buf> {
        let base = Buf::alloc(size)?;
        let buf = Box::new(unsafe { uv_buf_init(base, size as _) });
        Ok(Box::into_raw(buf).into_inner())
    }

    /// Create a duplicate of this Buf - if the optional size parameter is None, the new Buf will
    /// have the same size as the existing Buf. Otherwise, the new Buf will have the specified size
    /// and data up to that size, or the size of the original buf, whichever is lower, will be
    /// copied.
    pub fn new_from(other: &impl BufTrait, size: Option<usize>) -> crate::Result<Self> {
        let other = other.readonly();
        if !other.is_allocated() {
            if let Some(s) = size {
                return Buf::with_capacity(s);
            }
            return Ok(Buf {
                buf: std::ptr::null_mut(),
            });
        }

        let len = if let Some(s) = size {
            s
        } else {
            unsafe { (*other.buf).len as _ }
        };

        let mut buf = Buf::with_capacity(len)?;
        buf.copy_from(&other)?;
        Ok(buf)
    }

    /// Returns true if the internal buffer is initialized
    pub fn is_allocated(&self) -> bool {
        unsafe { !(*self.buf).base.is_null() }
    }

    /// Resizes the internal buffer
    pub fn resize(&mut self, size: usize) -> crate::Result<()> {
        if self.is_allocated() {
            let len = unsafe { (*self.buf).len as _ };
            if len != size {
                let (alloc_size, _) = calc_alloc_size_alignment(size)?;
                let layout = layout(len)?;
                let ptr = unsafe { std::alloc::realloc((*self.buf).base as _, layout, alloc_size) };
                if ptr.is_null() {
                    return Err(crate::Error::ENOMEM);
                }
                unsafe {
                    (*self.buf).base = ptr as _;
                    (*self.buf).len = alloc_size as _;
                }
            }
        } else {
            let base = Buf::alloc(size)?;
            unsafe {
                (*self.buf).base = base as _;
                (*self.buf).len = size as _;
            }
        }
        Ok(())
    }

    /// Copies the data from a Buf to this one.
    pub fn copy_from(&mut self, other: &impl BufTrait) -> crate::Result<()> {
        let other = other.readonly();
        if !other.is_allocated() {
            return Ok(());
        }

        let other_len = unsafe { (*other.buf).len as _ };
        if !self.is_allocated() {
            self.resize(other_len)?;
        }

        let my_len = unsafe { (*self.buf).len as usize };
        let len = my_len.min(other_len);
        unsafe {
            (*self.buf)
                .base
                .copy_from_nonoverlapping((*other.buf).base, len)
        };

        Ok(())
    }

    /// Deallocate the internal buffer, but leave the Buf intact.
    pub fn dealloc(&mut self) {
        unsafe {
            if self.is_allocated() {
                let len = (*self.buf).len as _;
                if let Ok(layout) = layout(len) {
                    std::alloc::dealloc((*self.buf).base as _, layout);
                    (*self.buf).base = std::ptr::null_mut();
                    (*self.buf).len = 0;
                }
            }
        }
    }

    /// Deallocates the Buf struct, leaving the internal buffer alone. This is used by alloc_cb.
    pub(crate) fn destroy_container(&mut self) {
        std::mem::drop(unsafe { Box::from_raw(self.buf) });
    }

    /// Deallocates the internal buffer *and* the Buf
    pub fn destroy(&mut self) {
        self.dealloc();
        self.destroy_container();
    }
}

impl FromInner<*mut uv_buf_t> for Buf {
    fn from_inner(buf: *mut uv_buf_t) -> Buf {
        Buf { buf }
    }
}

impl Inner<*mut uv_buf_t> for Buf {
    fn inner(&self) -> *mut uv_buf_t {
        self.buf
    }
}

impl Inner<*const uv_buf_t> for Buf {
    fn inner(&self) -> *const uv_buf_t {
        self.buf
    }
}

impl From<Buf> for ReadonlyBuf {
    fn from(buf: Buf) -> ReadonlyBuf {
        ReadonlyBuf { buf: buf.buf }
    }
}

impl std::convert::TryFrom<&str> for Buf {
    type Error = Box<dyn std::error::Error>;

    fn try_from(s: &str) -> Result<Self, Self::Error> {
        Buf::new(s)
    }
}

pub trait BufTrait {
    fn readonly(&self) -> ReadonlyBuf;
}

impl BufTrait for ReadonlyBuf {
    fn readonly(&self) -> ReadonlyBuf {
        ReadonlyBuf { buf: self.buf }
    }
}

impl BufTrait for Buf {
    fn readonly(&self) -> ReadonlyBuf {
        ReadonlyBuf { buf: self.buf }
    }
}

impl<T> FromInner<&[T]> for (*mut uv_buf_t, usize, usize)
where
    T: BufTrait,
{
    fn from_inner(bufs: &[T]) -> (*mut uv_buf_t, usize, usize) {
        // Buf/ReadonlyBuf objects contain pointers to uv_buf_t objects on the heap. However,
        // functions like uv_write, uv_udf_send, etc expect an array of uv_buf_t objects, *not* an
        // array of pointers. So, we need to create a Vec of copies of the data from the
        // dereferenced pointers.
        let mut bufs: std::mem::ManuallyDrop<Vec<uv::uv_buf_t>> = std::mem::ManuallyDrop::new(
            bufs.iter()
                .map(|b| unsafe { *b.readonly().inner() }.clone())
                .collect(),
        );
        let bufs_ptr = bufs.as_mut_ptr();
        let bufs_len = bufs.len();
        let bufs_capacity = bufs.capacity();
        (bufs_ptr, bufs_len, bufs_capacity)
    }
}