1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
//! Pure Rust implementation of the secp256k1 curve and fast ECDSA
//! signatures. The secp256k1 curve is used excusively in Bitcoin and
//! Ethereum alike cryptocurrencies.

#![deny(unused_import_braces, unused_imports,
        unused_comparisons, unused_must_use,
        unused_variables, non_shorthand_field_patterns,
        unreachable_code, unused_parens)]

#![no_std]
extern crate hmac_drbg;
extern crate typenum;
extern crate digest;
extern crate sha2;
extern crate rand;
#[macro_use]
extern crate arrayref;

#[macro_use]
mod field;
#[macro_use]
mod group;
mod scalar;
mod ecmult;
mod ecdsa;
mod ecdh;
mod error;
mod der;

use hmac_drbg::HmacDRBG;
use sha2::Sha256;
use typenum::U32;

use field::Field;
use group::{Affine, Jacobian};
use scalar::Scalar;

use ecmult::{ECMULT_CONTEXT, ECMULT_GEN_CONTEXT};

use rand::Rng;

pub use error::Error;

/// Curve related structs.
pub mod curve {
    pub use field::Field;
    pub use group::{Affine, Jacobian, AffineStorage, AFFINE_G, CURVE_B};
    pub use scalar::Scalar;

    pub use ecmult::{ECMultContext, ECMultGenContext,
                     ECMULT_CONTEXT, ECMULT_GEN_CONTEXT};
}

/// Utilities to manipulate the secp256k1 curve parameters.
pub mod util {
    pub const TAG_PUBKEY_EVEN: u8 = 0x02;
    pub const TAG_PUBKEY_ODD: u8 = 0x03;
    pub const TAG_PUBKEY_UNCOMPRESSED: u8 = 0x04;
    pub const TAG_PUBKEY_HYBRID_EVEN: u8 = 0x06;
    pub const TAG_PUBKEY_HYBRID_ODD: u8 = 0x07;

    pub use group::{AFFINE_INFINITY, JACOBIAN_INFINITY,
                    set_table_gej_var, globalz_set_table_gej};
    pub use ecmult::{WINDOW_A, WINDOW_G, ECMULT_TABLE_SIZE_A, ECMULT_TABLE_SIZE_G,
                     odd_multiples_table};

    pub use der::SignatureArray;
}

#[derive(Debug, Clone, Eq, PartialEq)]
/// Public key on a secp256k1 curve.
pub struct PublicKey(Affine);
#[derive(Debug, Clone, Eq, PartialEq)]
/// Secret key (256-bit) on a secp256k1 curve.
pub struct SecretKey(Scalar);
#[derive(Debug, Clone, Eq, PartialEq)]
/// An ECDSA signature.
pub struct Signature {
    pub r: Scalar,
    pub s: Scalar
}
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
/// Tag used for public key recovery from signatures.
pub struct RecoveryId(u8);
#[derive(Debug, Clone, Eq, PartialEq)]
/// Hashed message input to an ECDSA signature.
pub struct Message(pub Scalar);
#[derive(Debug, Clone, Eq, PartialEq)]
/// Shared secret using ECDH.
pub struct SharedSecret([u8; 32]);

impl PublicKey {
    pub fn from_secret_key(seckey: &SecretKey) -> PublicKey {
        let mut pj = Jacobian::default();
        ECMULT_GEN_CONTEXT.ecmult_gen(&mut pj, &seckey.0);
        let mut p = Affine::default();
        p.set_gej(&pj);
        PublicKey(p)
    }

    pub fn parse_slice(p: &[u8], compressed: Option<bool>) -> Result<PublicKey, Error> {
        let compressed = match (p.len(), compressed) {
            (65, None) => false,
            (33, None) => true,
            (65, Some(false)) => false,
            (33, Some(true)) => true,
            _ => return Err(Error::InvalidInputLength),
        };

        if compressed {
            let mut a = [0; 33];
            a.copy_from_slice(p);
            Self::parse_compressed(&a)
        } else {
            let mut a = [0; 65];
            a.copy_from_slice(p);
            Self::parse(&a)
        }
    }

    pub fn parse(p: &[u8; 65]) -> Result<PublicKey, Error> {
        use util::{TAG_PUBKEY_UNCOMPRESSED, TAG_PUBKEY_HYBRID_EVEN, TAG_PUBKEY_HYBRID_ODD};

        if !(p[0] == TAG_PUBKEY_UNCOMPRESSED || p[0] == TAG_PUBKEY_HYBRID_EVEN || p[0] == TAG_PUBKEY_HYBRID_ODD) {
            return Err(Error::InvalidPublicKey);
        }
        let mut x = Field::default();
        let mut y = Field::default();
        if !x.set_b32(array_ref!(p, 1, 32)) {
            return Err(Error::InvalidPublicKey);
        }
        if !y.set_b32(array_ref!(p, 33, 32)) {
            return Err(Error::InvalidPublicKey);
        }
        let mut elem = Affine::default();
        elem.set_xy(&x, &y);
        if (p[0] == TAG_PUBKEY_HYBRID_EVEN || p[0] == TAG_PUBKEY_HYBRID_ODD) &&
            (y.is_odd() != (p[0] == TAG_PUBKEY_HYBRID_ODD))
        {
            return Err(Error::InvalidPublicKey);
        }
        if elem.is_infinity() {
            return Err(Error::InvalidPublicKey);
        }
        if elem.is_valid_var() {
            return Ok(PublicKey(elem));
        } else {
            return Err(Error::InvalidPublicKey);
        }
    }

    pub fn parse_compressed(p: &[u8; 33]) -> Result<PublicKey, Error> {
        use util::{TAG_PUBKEY_EVEN, TAG_PUBKEY_ODD};

        if !(p[0] == TAG_PUBKEY_EVEN || p[0] == TAG_PUBKEY_ODD) {
            return Err(Error::InvalidPublicKey);
        }
        let mut x = Field::default();
        if !x.set_b32(array_ref!(p, 1, 32)) {
            return Err(Error::InvalidPublicKey);
        }
        let mut elem = Affine::default();
        elem.set_xo_var(&x, p[0] == TAG_PUBKEY_ODD);
        if elem.is_infinity() {
            return Err(Error::InvalidPublicKey);
        }
        if elem.is_valid_var() {
            return Ok(PublicKey(elem));
        } else {
            return Err(Error::InvalidPublicKey);
        }
    }

    pub fn serialize(&self) -> [u8; 65] {
        use util::TAG_PUBKEY_UNCOMPRESSED;

        debug_assert!(!self.0.is_infinity());

        let mut ret = [0u8; 65];
        let mut elem = self.0.clone();

        elem.x.normalize_var();
        elem.y.normalize_var();
        elem.x.fill_b32(array_mut_ref!(ret, 1, 32));
        elem.y.fill_b32(array_mut_ref!(ret, 33, 32));
        ret[0] = TAG_PUBKEY_UNCOMPRESSED;

        ret
    }

    pub fn serialize_compressed(&self) -> [u8; 33] {
        use util::{TAG_PUBKEY_ODD, TAG_PUBKEY_EVEN};

        debug_assert!(!self.0.is_infinity());

        let mut ret = [0u8; 33];
        let mut elem = self.0.clone();

        elem.x.normalize_var();
        elem.y.normalize_var();
        elem.x.fill_b32(array_mut_ref!(ret, 1, 32));
        ret[0] = if elem.y.is_odd() {
            TAG_PUBKEY_ODD
        } else {
            TAG_PUBKEY_EVEN
        };

        ret
    }

    pub fn tweak_add_assign(&mut self, tweak: &SecretKey) -> Result<(), Error> {
        let mut r = Jacobian::default();
        let a = Jacobian::from_ge(&self.0);
        let one = Scalar::from_int(1);
        ECMULT_CONTEXT.ecmult(&mut r, &a, &one, &tweak.0);

        if r.is_infinity() {
            return Err(Error::TweakOutOfRange);
        }

        self.0.set_gej(&r);
        Ok(())
    }

    pub fn tweak_mul_assign(&mut self, tweak: &SecretKey) -> Result<(), Error> {
        if tweak.0.is_zero() {
            return Err(Error::TweakOutOfRange);
        }

        let mut r = Jacobian::default();
        let zero = Scalar::from_int(0);
        let pt = Jacobian::from_ge(&self.0);
        ECMULT_CONTEXT.ecmult(&mut r, &pt, &tweak.0, &zero);

        self.0.set_gej(&r);
        Ok(())
    }

    pub fn combine(keys: &[PublicKey]) -> Result<Self, Error> {
        let mut qj = Jacobian::default();
        qj.set_infinity();

        for key in keys {
            qj = qj.add_ge(&key.0);
        }

        if qj.is_infinity() {
            return Err(Error::InvalidPublicKey);
        }

        let q = Affine::from_gej(&qj);
        Ok(PublicKey(q))
    }
}

impl Into<Affine> for PublicKey {
    fn into(self) -> Affine {
        self.0
    }
}

impl SecretKey {
    pub fn parse(p: &[u8; 32]) -> Result<SecretKey, Error> {
        let mut elem = Scalar::default();
        if !elem.set_b32(p) && !elem.is_zero() {
            Ok(SecretKey(elem))
        } else {
            Err(Error::InvalidSecretKey)
        }
    }

    pub fn parse_slice(p: &[u8]) -> Result<SecretKey, Error> {
        if p.len() != 32 {
            return Err(Error::InvalidInputLength);
        }

        let mut a = [0; 32];
        a.copy_from_slice(p);
        Self::parse(&a)
    }

    pub fn random<R: Rng>(rng: &mut R) -> SecretKey {
        loop {
            let mut ret = [0u8; 32];
            rng.fill_bytes(&mut ret);

            match Self::parse(&ret) {
                Ok(key) => return key,
                Err(_) => (),
            }
        }
    }

    pub fn serialize(&self) -> [u8; 32] {
        self.0.b32()
    }

    pub fn tweak_add_assign(&mut self, tweak: &SecretKey) -> Result<(), Error> {
        let v = &self.0 + &tweak.0;
        if v.is_zero() {
            return Err(Error::TweakOutOfRange);
        }
        self.0 = v;
        Ok(())
    }

    pub fn tweak_mul_assign(&mut self, tweak: &SecretKey) -> Result<(), Error> {
        if tweak.0.is_zero() {
            return Err(Error::TweakOutOfRange);
        }

        self.0 *= &tweak.0;
        Ok(())
    }

    pub fn inv(&self) -> Self {
        SecretKey(self.0.inv())
    }
}

impl Default for SecretKey {
    fn default() -> SecretKey {
        let mut elem = Scalar::default();
        let overflowed = elem.set_b32(
            &[0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
		      0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
              0x00,0x00,0x00,0x00,0x00,0x01]
        );
        debug_assert!(!overflowed);
        debug_assert!(!elem.is_zero());
        SecretKey(elem)
    }
}

impl Into<Scalar> for SecretKey {
    fn into(self) -> Scalar {
        self.0
    }
}

impl Signature {
    pub fn parse(p: &[u8; 64]) -> Signature {
        let mut r = Scalar::default();
        let mut s = Scalar::default();

        // Okay for signature to overflow
        let _ = r.set_b32(array_ref!(p, 0, 32));
        let _ = s.set_b32(array_ref!(p, 32, 32));

        Signature { r, s }
    }

    pub fn parse_slice(p: &[u8]) -> Result<Signature, Error> {
        if p.len() != 64 {
            return Err(Error::InvalidInputLength);
        }

        let mut a = [0; 64];
        a.copy_from_slice(p);
        Ok(Self::parse(&a))
    }

    pub fn parse_der(p: &[u8]) -> Result<Signature, Error> {
        let mut decoder = der::Decoder::new(p);

        decoder.read_constructed_sequence()?;
        let rlen = decoder.read_len()?;

        if rlen != decoder.remaining_len() {
            return Err(Error::InvalidSignature);
        }

        let r = decoder.read_integer()?;
        let s = decoder.read_integer()?;

        if decoder.remaining_len() != 0 {
            return Err(Error::InvalidSignature);
        }

        Ok(Signature { r, s })
    }

    pub fn serialize(&self) -> [u8; 64] {
        let mut ret = [0u8; 64];
        self.r.fill_b32(array_mut_ref!(ret, 0, 32));
        self.s.fill_b32(array_mut_ref!(ret, 32, 32));
        ret
    }

    pub fn serialize_der(&self) -> der::SignatureArray {
        fn fill_scalar_with_leading_zero(scalar: &Scalar) -> [u8; 33] {
            let mut ret = [0u8; 33];
            scalar.fill_b32(array_mut_ref!(ret, 1, 32));
            ret
        }

        let r_full = fill_scalar_with_leading_zero(&self.r);
        let s_full = fill_scalar_with_leading_zero(&self.s);

        fn integer_slice(full: &[u8; 33]) -> &[u8] {
            let mut len = 33;
            while len > 1 &&
                full[full.len() - len] == 0 &&
                full[full.len() - len + 1] < 0x80
            {
                len -= 1;
            }
            &full[(full.len() - len)..]
        }

        let r = integer_slice(&r_full);
        let s = integer_slice(&s_full);

        let mut ret = der::SignatureArray::new(6 + r.len() + s.len());
        {
            let l = ret.as_mut();
            l[0] = 0x30;
            l[1] = 4 + r.len() as u8 + s.len() as u8;
            l[2] = 0x02;
            l[3] = r.len() as u8;
            l[4..(4 + r.len())].copy_from_slice(r);
            l[4 + r.len()] = 0x02;
            l[5 + r.len()] = s.len() as u8;
            l[(6 + r.len())..(6 + r.len() + s.len())].copy_from_slice(s);
        }

        ret
    }
}

impl Message {
    pub fn parse(p: &[u8; 32]) -> Message {
        let mut m = Scalar::default();

        // Okay for message to overflow.
        let _ = m.set_b32(p);

        Message(m)
    }

    pub fn parse_slice(p: &[u8]) -> Result<Message, Error> {
        if p.len() != 32 {
            return Err(Error::InvalidInputLength);
        }

        let mut a = [0; 32];
        a.copy_from_slice(p);
        Ok(Self::parse(&a))
    }

    pub fn serialize(&self) -> [u8; 32] {
        self.0.b32()
    }
}

impl RecoveryId {
    pub fn parse(p: u8) -> Result<RecoveryId, Error> {
        if p < 4 {
            Ok(RecoveryId(p))
        } else {
            Err(Error::InvalidRecoveryId)
        }
    }

    pub fn serialize(&self) -> u8 {
        self.0
    }
}

impl Into<u8> for RecoveryId {
    fn into(self) -> u8 {
        self.0
    }
}

impl Into<i32> for RecoveryId {
    fn into(self) -> i32 {
        self.0 as i32
    }
}

impl SharedSecret {
    pub fn new(pubkey: &PublicKey, seckey: &SecretKey) -> Result<SharedSecret, Error> {
        let inner = match ECMULT_CONTEXT.ecdh_raw(&pubkey.0, &seckey.0) {
            Some(val) => val,
            None => return Err(Error::InvalidSecretKey),
        };

        Ok(SharedSecret(inner))
    }
}

impl AsRef<[u8]> for SharedSecret {
    fn as_ref(&self) -> &[u8] {
        &self.0
    }
}

/// Check signature is a valid message signed by public key.
pub fn verify(message: &Message, signature: &Signature, pubkey: &PublicKey) -> bool {
    ECMULT_CONTEXT.verify_raw(&signature.r, &signature.s, &pubkey.0, &message.0)
}

/// Recover public key from a signed message.
pub fn recover(message: &Message, signature: &Signature, recovery_id: &RecoveryId) -> Result<PublicKey, Error> {
    ECMULT_CONTEXT.recover_raw(&signature.r, &signature.s, recovery_id.0, &message.0).map(|v| PublicKey(v))
}

/// Sign a message using the secret key.
pub fn sign(message: &Message, seckey: &SecretKey) -> Result<(Signature, RecoveryId), Error> {
    let seckey_b32 = seckey.0.b32();
    let message_b32 = message.0.b32();

    let mut drbg = HmacDRBG::<Sha256>::new(&seckey_b32, &message_b32, &[]);
    let generated = drbg.generate::<U32>(None);
    let mut nonce = Scalar::default();
    let mut overflow = nonce.set_b32(array_ref!(generated, 0, 32));

    while overflow || nonce.is_zero() {
        let generated = drbg.generate::<U32>(None);
        overflow = nonce.set_b32(array_ref!(generated, 0, 32));
    }

    let result = ECMULT_GEN_CONTEXT.sign_raw(&seckey.0, &message.0, &nonce);
    #[allow(unused_assignments)]
    {
        nonce = Scalar::default();
    }
    if let Ok((sigr, sigs, recid)) = result {
        return Ok((Signature {
            r: sigr,
            s: sigs,
        }, RecoveryId(recid)));
    } else {
        return Err(result.err().unwrap());
    }
}