1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#![feature(map_first_last)]
#![feature(half_open_range_patterns)]

/*!
 * This library serves as an event interpretation library.
 * To use, you will need to take the raw events you recieve
 * on your platform and adapt it to a compatible input
 * interface. You are expected to call get_pan() once on every frame.
 * It expects an estimation of the next frametime as well as how
 * long until the current frame will be rendered. This allows overshoot
 * calculation to take place.
 */

extern crate num;
use std::f64;

mod circular_backqueue;

mod interpolate;

mod ranged_map;

use std::ops;
use interpolate::Interpolator;

type Timestamp = u64;

//#[macro_use]
//extern crate smart_default;

// configs

//// Determines how much "smoothing" happens, at a direct cost to responsiveness to an action
//// A large number means more past events will be counted in the current velocity,
//// which avoids skipping over or being "hitched" by anomalies, but also means
//// that changes to velocity after the initial touch are responded to slower
//const MAX_EVENTS_CONSIDERED: u32 = 5;

//// Determines whether the prior config (MAX_EVENTS_CONSIDERED) is used.
//// If false, no smoothing occurs and the velocity is simply the most recent event
//// Equivalent to setting MAX_EVENTS_CONSIDERED to 1, but allows a performance shortcut
//const ENABLE_VELOCITY_SMOOTHING: bool = true;

//const FLING_FRICTION_FACTOR: f64 = 0.998;

//const PAN_ACCELERATION_FACTOR_TOUCHPAD: f64 = 1.34;

//// Used to specify over what window (in number of frames) the ratio of input events to frames
//// should be derived. The ratio is then used to interpolate/extrapolate input events
const SAMPLE_OVER_X_FRAMES: usize = 10;

//// The granularity through which displacement is integrated from the velocity function (sampled
//// with velocity_at(f64))
//const INTEGRATION_DX: f64 = 0.07;

//// Degree of polynomial used to interpolate velocity
//const VELOCITY_POLYNOMIAL_DEGREE: usize = 4;

//type Millis = f64;

/// Represents a single scrollview and tracks all state related to it.
//#[derive(Default)]
pub struct Scrollview {
    content_height: u64,
    content_width: u64,
    viewport_height: u64,
    viewport_width: u64,

    current_source: Source,

    //frametime: Millis,
    //time_to_pageflip: Millis,

    //current_timestamp: u64,

    //interpolation_ratio: f64,

    input_per_frame_log: circular_backqueue::ForgetfulLogQueue<u32>,

    x: Interpolator,
    y: Interpolator,
}

/// Describes a vector in terms of its 2 2d axis magnitudes,
/// used often to describe transforms and offsets
#[derive(Copy)]
#[derive(Clone)]
#[derive(Default)]
pub struct AxisVector<T> where T: num::Num, T: PartialOrd, T: Copy {
    pub x: T,
    pub y: T,

    x_threshold: T,
    y_threshold: T,
    
    decaying: bool,
}

impl<T> AxisVector<T> where T: num::Num, T: PartialOrd, T: Copy {
    /*fn difference(self, other: AxisVector<T>) -> AxisVector<T> {
        AxisVector {
            x: self.x - other.x,
            y: self.y - other.y,
            ..self
        }
    }

    fn replace(&mut self, axis: Axis, magnitude: T) {
        match axis {
            Axis::Horizontal => self.x = magnitude,
            Axis::Vertical => self.y = magnitude,
        }
    }

    fn get_at(&self, axis: Axis) -> T {
        match axis {
            Axis::Horizontal => self.x,
            Axis::Vertical => self.y
        }
    }

    fn update(&mut self, axis: Axis, magnitude: T) {
        match axis {
            Axis::Horizontal => self.x = magnitude + self.x,
            Axis::Vertical => self.y = magnitude + self.y,
        }
    }*/
}

impl AxisVector<f64> {
    pub fn scale(&self, scalar: f64) -> AxisVector<f64> {
        AxisVector {
            x: self.x * scalar,
            y: self.y * scalar,
            ..self.clone()
        }
    }
}

// TODO: consider naming, doing pythagorean add on + may make more sense, with alternative op to
// simply add elems
impl<T> ops::Add<AxisVector<T>> for AxisVector<T> where T: num::Num, T: PartialOrd, T: Copy {
    type Output = AxisVector<T>;

    fn add(self, rhs: AxisVector<T>) -> AxisVector<T> {
        AxisVector {
            x: self.x + rhs.x,
            y: self.y + rhs.y,
            ..self

        }
    }
}

#[derive(Copy)]
#[derive(Clone)]
pub enum Axis {
    Horizontal,
    Vertical,
}

/// Pass along with any events to indicate what kind of device the event came from
#[derive(Copy)]
#[derive(Clone)]
pub enum Source {
    /// Device type is unknown, assume nothing (very suboptimal to actually use this, should only
    /// be used when device type can not be feasibly deduced, and even then may not be the best
    /// choice)
    Undefined,
    /// Device is a touchscreen, hint to avoid acceleration, but perform tracking prediction
    Touchscreen,
    /// Device is a touchpad, hint to accelerate input, and perform tracking prediction
    Touchpad,
    /// Device is a mousewheel that reports deltas of around 15 degrees (coarse) and requires
    /// smoothing and mid-delta animation
    Mousewheel,
    /// Device is a mousewheel that reports deltas of less than 15 degrees (usually much less,
    /// indicating that very little/no smoothing needs to be applied)
    PreciseMousewheel,
    /// Do no manual smoothing or acceleration, assume driver already does this or input method
    /// would be strange to use with either
    Passthrough,
    /// Same as passthrough, but input fling events should trigger a kinetic fling animation
    KineticPassthrough,
    /// The device type last used
    Previous,
}

impl Default for Source {
    fn default() -> Self { Source::Undefined }
}

// pub interface
impl Scrollview {
    /// Gives the current best estimate for the position of the content relative to
    /// the viewport in device pixels
    pub fn sample(&mut self, timestamp: Timestamp) -> AxisVector<f64> {
        AxisVector {
            x: self.x.sample(timestamp),
            y: self.y.sample(timestamp),
            ..Default::default()
        }
    }
    /// Create a new scrollview with default settings
    ///
    /// Warning: these settings are unlikely to be
    /// particularly useful, so set_geometry(), set_avg_frametime(), and any
    /// other relevant initialization functions still need to be used
    pub fn new() -> Scrollview {
        Scrollview {
            input_per_frame_log: circular_backqueue::ForgetfulLogQueue::new(SAMPLE_OVER_X_FRAMES),
            content_height: 0,
            content_width: 0,
            viewport_height: 0,
            viewport_width: 0,
            current_source: Source::Undefined,
            //frametime: 0.0,
            //time_to_pageflip: 0.0,
            //current_timestamp: 0,
            //interpolation_ratio: 0.0,
            x: Interpolator::new(false, (0.0, 0.0), 0.0),
            y: Interpolator::new(false, (0.0, 0.0), 0.0),
        }
    }

    /// Deletes/deinitializes the current scrollview
    ///
    /// Primarily intended for ffi use, Scrollview implements Drop
    /// where deinitialization is required, so this is only useful
    /// for ffi use
    ///
    /// NOTE: likely will be removed, not sure why I put this in here to begin with
    pub fn del(_: Scrollview) {}

    /// Set the geometry for the given scrollview
    ///
    /// Can be used both on scrollview initialization and on scrollview resize
    pub fn set_geometry(
        &mut self,
        content_height: u64,
        content_width: u64,
        viewport_height: u64,
        viewport_width: u64,
    ) {
        self.content_height = content_height;
        self.content_width = content_width;
        self.viewport_height = viewport_height;
        self.viewport_width = viewport_width;

        self.x.set_geometry(0.0, (content_width - viewport_width) as f64);
        self.x.set_geometry(0.0, (content_height - viewport_height) as f64);
    }

    /// True if scrollview should continue to be polled
    /// even in absence of events (fling or other 
    /// animation in progress)
    pub fn animating(&self) -> bool {
        //self.current_velocity.decay_active()
        self.x.animating() || self.y.animating()
    }

    /// Enqueue a pan event for the referenced scrollview
    pub fn push_pan(&mut self, axis: Axis, amount: f64, timestamp: Option<u64>) {
        match axis {
            Axis::Horizontal => self.x.signal_pan(timestamp.unwrap(), amount),
            Axis::Vertical => self.y.signal_pan(timestamp.unwrap(), amount),
        }
    }

    /// Enqueue a fling (finger lift at any velocity) for the referenced scrollview
    pub fn push_fling(&mut self, timestamp: Option<u64>) {
        //self.current_velocity.decay_start();
        self.x.signal_fling(timestamp.unwrap());
        self.y.signal_fling(timestamp.unwrap());
    }

    /// Enqueue a scroll interrupt (finger down at any time, gesture start) for the referenced
    /// scrollview
    pub fn push_interrupt(&mut self, timestamp: Option<u64>) {
        //self.pan_log_x.clear();
        //self.pan_log_y.clear();
        //self.current_velocity = AxisVector { x: 0.0, y: 0.0, ..self.current_velocity };
        self.x.signal_interrupt(timestamp.unwrap());
        self.y.signal_interrupt(timestamp.unwrap());
    }

    /// Set what device type is going to be providing any events that follow until the next source
    /// is declared
    pub fn set_source(&mut self, source: Source) {
        self.current_source = source;
    }
}