1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
use std::mem::MaybeUninit;

/// Convert degrees to radians
///
/// ```
/// use libh3::degs_to_rads;
/// assert_eq!(2.413790355508158, degs_to_rads(138.3));
/// ```
pub fn degs_to_rads(degrees: f64) -> f64 {
    unsafe {
        return libh3_sys::degsToRads(degrees);
    }
}

/// Convert radians to degrees
///
/// ```
/// use libh3::rads_to_degs;
/// assert_eq!(138.3, rads_to_degs(2.413790355508158));
/// ```
pub fn rads_to_degs(radians: f64) -> f64 {
    unsafe {
        return libh3_sys::radsToDegs(radians);
    }
}

/// Represent a coordinate
#[derive(Debug)]
pub struct GeoCoord {
    // The latitute of the coordinate, typcially this should be specified using
    // radians but it is easy to convert using [degs_to_rads](degs_to_rads)
    pub lat: f64,
    // The longitude of the coordinate, typcially this should be specified using
    // radians but it is easy to convert using [degs_to_rads](degs_to_rads)
    pub lon: f64,
}

impl GeoCoord {
    /// Create a new GeoCoord representing a coordinate
    ///
    /// # Arguments
    ///
    /// * `lat` - The latitude of the coordinate
    /// * `long` - The longitude of the coordinate
    ///
    pub fn new(lat: f64, lon: f64) -> GeoCoord {
        GeoCoord { lat, lon }
    }
}

impl From<&GeoCoord> for libh3_sys::GeoCoord {
    fn from(coord: &GeoCoord) -> Self {
        return libh3_sys::GeoCoord {
            lat: coord.lat,
            lon: coord.lon,
        };
    }
}

/// A H3 index value a unique address of a hexagon or more unlikely
/// a pentagon.
pub type H3Index = libh3_sys::H3Index;

/// A resolution that ranges from 0 to 15.
///
/// See the [resolution table](https://h3geo.org/#/documentation/core-library/resolution-table) for
/// the sizes of resolution.
pub type Resolution = u8;

/// Return the edge length of a hexagon at a particular resolution in kilometers.
///
/// ```
/// use libh3::edge_length_km;
/// assert_eq!(edge_length_km(5), 8.544408276);
/// ```
pub fn edge_length_km(resolution: Resolution) -> f64 {
    unsafe {
        return libh3_sys::edgeLengthKm(resolution as i32);
    }
}

/// Return the number of hexagons at a particular resolution.
///
/// ```
/// use libh3::num_hexagons;
/// assert_eq!(num_hexagons(5), 2016842);
/// ```
pub fn num_hexagons(resolution: Resolution) -> u64 {
    unsafe {
        return libh3_sys::numHexagons(resolution as i32) as u64;
    }
}

/// Return the edge length of a hexagon at a particular resolution in meters.
///
/// ```
/// use libh3::edge_length_m;
/// assert_eq!(edge_length_m(5), 8544.408276);
/// ```
pub fn edge_length_m(resolution: Resolution) -> f64 {
    unsafe {
        return libh3_sys::edgeLengthM(resolution as i32);
    }
}

/// Convert a GeoCoord to a H3 index.
///
/// ```
/// use libh3::{GeoCoord, degs_to_rads, geo_to_h3};
/// let coords = GeoCoord {
///   lat: degs_to_rads(40.689167),
///   lon: degs_to_rads(-74.044444),
/// };
///
/// let v = geo_to_h3(&coords, 10);
/// assert_eq!(v.unwrap(), 0x8a2a1072b59ffff);
/// ```
pub fn geo_to_h3(coord: &GeoCoord, resolution: Resolution) -> Result<H3Index, ()> {
    unsafe {
        return match libh3_sys::geoToH3(&libh3_sys::GeoCoord::from(coord), resolution as i32) {
            0 => Err(()),
            x => Ok(x),
        };
    }
}

/// Convert a H3 index value to a GeoCoord
///
/// ```
/// use libh3::h3_to_geo;
/// let r = h3_to_geo(0x8a2a1072b59ffff);
/// assert_eq!(r.lat, 0.7101643819054542);
/// assert_eq!(r.lon, -1.2923191206954798);
/// ```
pub fn h3_to_geo(h3: H3Index) -> GeoCoord {
    let mut result: libh3_sys::GeoCoord = unsafe { MaybeUninit::uninit().assume_init() };
    unsafe {
        libh3_sys::h3ToGeo(h3, &mut result);
    }
    return GeoCoord::new(result.lat, result.lon);
}

type GeoBoundary = Vec<GeoCoord>;

/// Convert a H3 index value to a GeoBoundary which are a
/// vector of points that describe a H3 Index's boundary
///
/// ```
/// use libh3::h3_to_geo_boundary;
/// let foo = h3_to_geo_boundary(0x8a2a1072b59ffff);
/// assert_eq!(foo.len(), 6);
/// ```
pub fn h3_to_geo_boundary(h3: H3Index) -> GeoBoundary {
    unsafe {
        let mut boundary_result: libh3_sys::GeoBoundary = MaybeUninit::uninit().assume_init();
        libh3_sys::h3ToGeoBoundary(h3, &mut boundary_result);
        let mut result = Vec::with_capacity(boundary_result.numVerts as usize);
        for i in 0..boundary_result.numVerts as usize {
            result.push(GeoCoord::new(
                boundary_result.verts[i].lat,
                boundary_result.verts[i].lon,
            ));
        }
        return result;
    }
}

/// Return the resolution of a H3 index
///
/// ```
/// use libh3::{GeoCoord, degs_to_rads, geo_to_h3, h3_get_resolution };
/// let coords = GeoCoord::new(
///   degs_to_rads(40.689167),
///   degs_to_rads(-74.044444),
/// );
///
/// let v = geo_to_h3(&coords, 10);
/// assert_eq!(h3_get_resolution(v.unwrap()), 10);
/// ````
pub fn h3_get_resolution(h3: H3Index) -> Resolution {
    unsafe {
        return libh3_sys::h3GetResolution(h3) as Resolution;
    }
}

/// Determine if H3 index is valid
///
/// ```
/// use libh3::{GeoCoord, degs_to_rads, geo_to_h3, h3_is_valid};
/// let coords = GeoCoord {
///   lat: degs_to_rads(40.689167),
///   lon: degs_to_rads(-74.044444),
/// };
///
/// let v = geo_to_h3(&coords, 10);
/// assert_eq!(h3_is_valid(v.unwrap()),true);
/// ```
pub fn h3_is_valid(h3: H3Index) -> bool {
    unsafe {
        return match libh3_sys::h3IsValid(h3) {
            0 => false,
            _ => true,
        };
    }
}

/// Determine if two H3 indexes are neighbors
///
/// ```
/// use libh3::{GeoCoord, degs_to_rads, geo_to_h3, h3_indexes_are_neighbors};
/// let coords = GeoCoord {
///   lat: degs_to_rads(40.689167),
///   lon: degs_to_rads(-74.044444),
/// };
///
/// let v = geo_to_h3(&coords, 10);
/// assert_eq!(h3_indexes_are_neighbors(v.unwrap(), v.unwrap()), false);
/// ```
pub fn h3_indexes_are_neighbors(origin: H3Index, destination: H3Index) -> bool {
    unsafe {
        return match libh3_sys::h3IndexesAreNeighbors(origin, destination) {
            0 => false,
            _ => true,
        };
    }
}

/// Determine the area of a hexagon at a particular resolution.
///
/// ```
/// use libh3::{ hex_area_km_2};
/// assert_eq!(hex_area_km_2(10), 0.0150475);
/// ```
pub fn hex_area_km_2(resolution: i32) -> f64 {
    unsafe {
        return libh3_sys::hexAreaKm2(resolution);
    }
}

/// Determine if the specified H3 index is a pentagon.
/// ```
/// assert_eq!(libh3::h3_is_pentagon(0x8a2a1072b59ffff), false);
/// ```
pub fn h3_is_pentagon(h3: H3Index) -> bool {
    unsafe {
        return match libh3_sys::h3IsPentagon(h3) {
            0 => false,
            _ => true,
        };
    }
}

/// Get the number of the base cell for a given H3 index
///
/// ```
/// use libh3;
/// assert_eq!(libh3::h3_get_base_cell(0x8a2a1072b59ffff), 21);
/// ```
pub fn h3_get_base_cell(h3: H3Index) -> i32 {
    unsafe {
        return libh3_sys::h3GetBaseCell(h3);
    }
}

/// Get all hexagons in a k-ring around a given center. The order of the hexagons is undefined.
///
/// # Arguments
///
/// * `origin` - The center of the ring.
/// * `radius` - The radis of the ring in hexagons, which is the same resolution as the origin.
///
/// ```
/// let expected_kring = vec![
///   0x8a2a1072b59ffff,
///   0x8a2a1072b597fff,
///   0x8a2a1070c96ffff,
///   0x8a2a1072b4b7fff,
///   0x8a2a1072b4a7fff,
///   0x8a2a1072b58ffff,
///   0x8a2a1072b587fff,
/// ];
/// let r = libh3::k_ring(0x8a2a1072b59ffff, 1);
/// assert_eq!(r, expected_kring);
/// ```
pub fn k_ring(origin: H3Index, radius: i32) -> Vec<H3Index> {
    unsafe {
        let max = libh3_sys::maxKringSize(radius);
        let mut r = Vec::<H3Index>::with_capacity(max as usize);
        libh3_sys::kRing(origin, radius, r.as_mut_ptr());
        r.set_len(max as usize);
        r = r.into_iter().filter(|v| *v != 0).collect();
        return r;
    }
}

/// Get all hexagons in a k-ring around a given center, in an array of arrays
/// ordered by distance from the origin. The order of the hexagons within each ring is undefined.
///
/// # Arguments
///
/// * `origin` - The center of the ring.
/// * `radius` - The radis of the ring in hexagons, which is the same resolution as the origin.
///
/// ```
/// let expected_kring_distances = vec![
///   (0x8a2a1072b59ffff, 0),
///   (0x8a2a1072b597fff, 1),
///   (0x8a2a1070c96ffff, 1),
///   (0x8a2a1072b4b7fff, 1),
///   (0x8a2a1072b4a7fff, 1),
///   (0x8a2a1072b58ffff, 1),
///   (0x8a2a1072b587fff, 1),
/// ];
/// let r = libh3::k_ring_distances(0x8a2a1072b59ffff, 1);
/// assert_eq!(r, expected_kring_distances);
/// ```
pub fn k_ring_distances(origin: H3Index, radius: i32) -> Vec<(H3Index, i32)> {
    unsafe {
        let max = libh3_sys::maxKringSize(radius);
        let mut indexes = Vec::<H3Index>::with_capacity(max as usize);
        let mut distances = Vec::<i32>::with_capacity(max as usize);

        libh3_sys::kRingDistances(origin, radius, indexes.as_mut_ptr(), distances.as_mut_ptr());
        indexes.set_len(max as usize);
        distances.set_len(max as usize);

        return indexes
            .into_iter()
            .zip(distances.into_iter())
            .filter(|v| v.0 != 0)
            .collect::<Vec<(H3Index, i32)>>();
    }
}

pub fn hex_range(origin: H3Index, k: i32) -> (bool, Vec<H3Index>) {
    unsafe {
        let max = libh3_sys::maxKringSize(k);
        let mut r = Vec::<H3Index>::with_capacity(max as usize);
        let distortion = libh3_sys::hexRange(origin, k, r.as_mut_ptr());
        r.set_len(max as usize);
        r = r.into_iter().filter(|v| *v != 0).collect();
        return (distortion == 0, r);
    }
}

pub fn hex_range_distances(origin: H3Index, k: i32) -> (bool, Vec<(H3Index, i32)>) {
    unsafe {
        let max = libh3_sys::maxKringSize(k);
        let mut indexes = Vec::<H3Index>::with_capacity(max as usize);
        let mut distances = Vec::<i32>::with_capacity(max as usize);

        let distortion =
            libh3_sys::hexRangeDistances(origin, k, indexes.as_mut_ptr(), distances.as_mut_ptr());
        indexes.set_len(max as usize);
        distances.set_len(max as usize);

        return (
            distortion == 0,
            indexes
                .into_iter()
                .zip(distances.into_iter())
                .filter(|v| v.0 != 0)
                .collect::<Vec<(H3Index, i32)>>(),
        );
    }
}

/// Get the grid distance between two hex indexes. This function may fail
/// to find the distance between two indexes if they are very far apart or
/// on opposite sides of a pentagon.
/// # Arguments
///
/// * `origin` - The starting H3 index
/// * `end` - The ending H3 index
///
/// ```
/// use libh3::h3_distance;
/// assert_eq!(h3_distance(0x8a2a1072b4a7fff, 0x8a2a1072b58ffff), Ok(1));
/// ```
pub fn h3_distance(origin: H3Index, end: H3Index) -> Result<i32, ()> {
    unsafe {
        let r = libh3_sys::h3Distance(origin, end);
        if r < 0 {
            return Err(());
        }
        return Ok(r);
    }
}

/// Get all hexagons with centers contained in a given polygon. The polygon
/// is specified with GeoJson semantics as an array of loops. The first loop
/// is the perimeter of the polygon, and subsequent loops are
/// expected to be holes.
///
/// # Arguments
///
/// * `polygon` - The vector of polygons.
/// * `resolution` - The resolution of the generated hexagons
///
/// ```
/// use libh3::{polyfill, GeoCoord};
/// /// Some vertexes around San Francisco
/// let sf_verts = vec![
///   (0.659966917655, -2.1364398519396),
///   (0.6595011102219, -2.1359434279405),
///   (0.6583348114025, -2.1354884206045),
///   (0.6581220034068, -2.1382437718946),
///   (0.6594479998527, -2.1384597563896),
///   (0.6599990002976, -2.1376771158464),
/// ]
/// .iter()
/// .map(|v| GeoCoord::new(v.0, v.1))
/// .collect();
///
/// let h = polyfill(&vec![sf_verts], 9);
/// assert_eq!(h.len(), 7057);
/// ```
pub fn polyfill(polygon: &Vec<Vec<GeoCoord>>, resolution: Resolution) -> Vec<H3Index> {
    let real_polygon = polygon
        .iter()
        .map(|p| {
            return p.iter().map(libh3_sys::GeoCoord::from).collect();
        })
        .collect::<Vec<Vec<libh3_sys::GeoCoord>>>();

    unsafe {
        let fence = libh3_sys::Geofence {
            numVerts: real_polygon[0].len() as i32,
            verts: real_polygon[0].as_ptr(),
        };

        let holes = real_polygon
            .iter()
            .skip(1)
            .map(|p| libh3_sys::Geofence {
                numVerts: p.len() as i32,
                verts: p.as_ptr(),
            })
            .collect::<Vec<libh3_sys::Geofence>>();

        let p = libh3_sys::GeoPolygon {
            geofence: fence,
            numHoles: (real_polygon.len() - 1) as i32,
            holes: holes.as_ptr(),
        };

        let max = libh3_sys::maxPolyfillSize(&p, resolution as i32);
        let mut r = Vec::<H3Index>::with_capacity(max as usize);
        libh3_sys::polyfill(&p, resolution as i32, r.as_mut_ptr());
        r.set_len(max as usize);
        return r;
    }
}