1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// Copyright (c) 2021 Marco Boneberger
// Licensed under the EUPL-1.2-or-later

//! Contains model library types.
use nalgebra::Matrix4;

use crate::model::model_library::ModelLibrary;
use crate::robot::robot_state::RobotState;
use crate::FrankaResult;
use std::fmt;
use std::path::Path;

pub(crate) mod library_downloader;
mod model_library;

/// Enumerates the seven joints, the flange, and the end effector of a robot.
#[allow(non_camel_case_types)]
pub enum Frame {
    kJoint1,
    kJoint2,
    kJoint3,
    kJoint4,
    kJoint5,
    kJoint6,
    kJoint7,
    kFlange,
    kEndEffector,
    kStiffness,
}

impl fmt::Display for Frame {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Frame::kJoint1 => {
                write!(f, "Joint 1")
            }
            Frame::kJoint2 => {
                write!(f, "Joint 2")
            }
            Frame::kJoint3 => {
                write!(f, "Joint 3")
            }
            Frame::kJoint4 => {
                write!(f, "Joint 4")
            }
            Frame::kJoint5 => {
                write!(f, "Joint 5")
            }
            Frame::kJoint6 => {
                write!(f, "Joint 6")
            }
            Frame::kJoint7 => {
                write!(f, "Joint 7")
            }
            Frame::kFlange => {
                write!(f, "Flange")
            }
            Frame::kEndEffector => {
                write!(f, "End-Effector")
            }
            Frame::kStiffness => {
                write!(f, "Stiffness")
            }
        }
    }
}

/// Calculates poses of joints and dynamic properties of the robot.
pub struct Model {
    library: ModelLibrary,
}

#[allow(non_snake_case)]
impl Model {
    /// Creates a new Model instance from the shared object of the Model for offline usage.
    ///
    /// If you just want to use the model to control the Robot you should use
    /// [`Robot::load_model`](`crate::Robot::load_model`).
    ///
    /// If you do not have the model you can use the download_model example to download the model
    /// # Arguments
    /// * `model_filename` - Path to the model.
    /// * `libm_filename` - Path to libm.so.6 . You probably do not need to specify the path as it
    /// it should be detected automatically. However if you get panics for unresolved symbols or libm could
    /// not be found you have to specify the path. On most Ubuntu systems it is in
    /// ```text
    /// /lib/x86_64-linux-gnu/libm.so.6
    /// ```
    /// It maybe has a different name on your machine but it is not the "libm.so". You can
    /// verify that it is the correct libm by checking:
    /// ```bash
    ///  nm -D /lib/x86_64-linux-gnu/libm.so.6 | grep sincos
    /// ```
    /// # Errors
    ///  * ModelException
    /// # libm FAQ
    /// What is libm? - Libm is the Math library of the C Standard Library. It is what you get when
    /// you include <math.h> in C
    ///
    /// Why do we need it? - Because the model is not self contained and relies on some functions from libm
    ///
    /// How does the libfranka embed libm? They are not including <math.h> - Apparently it gets somehow included when using \<array> ¯\_(ツ)_/¯
    pub fn new<S: AsRef<Path>>(
        model_filename: S,
        libm_filename: Option<&Path>,
    ) -> FrankaResult<Self> {
        Ok(Model {
            library: ModelLibrary::new(model_filename.as_ref(), libm_filename)?,
        })
    }
    /// Gets the 4x4 pose matrix for the given frame in base frame.
    ///
    /// The pose is represented as a 4x4 matrix in column-major format.
    /// # Arguments
    /// * `frame` - The desired frame.
    /// * `q` - Joint position.
    /// * `F_T_EE` - End effector in flange frame.
    /// * `EE_T_K` - Stiffness frame K in the end effector frame.
    /// # Return
    /// Vectorized 4x4 pose matrix, column-major.
    pub fn pose(
        &self,
        frame: &Frame,
        q: &[f64; 7],
        F_T_EE: &[f64; 16],
        EE_T_K: &[f64; 16],
    ) -> [f64; 16] {
        let mut output = [0.; 16];
        match frame {
            Frame::kJoint1 => self.library.joint1(q, &mut output),
            Frame::kJoint2 => self.library.joint2(q, &mut output),
            Frame::kJoint3 => self.library.joint3(q, &mut output),
            Frame::kJoint4 => self.library.joint4(q, &mut output),
            Frame::kJoint5 => self.library.joint5(q, &mut output),
            Frame::kJoint6 => self.library.joint6(q, &mut output),
            Frame::kJoint7 => self.library.joint7(q, &mut output),
            Frame::kFlange => self.library.flange(q, &mut output),
            Frame::kEndEffector => self.library.ee(q, F_T_EE, &mut output),
            Frame::kStiffness => {
                let tmp: Matrix4<f64> =
                    Matrix4::from_column_slice(F_T_EE) * Matrix4::from_column_slice(EE_T_K);
                let mut stiffness_f_t_ee = [0.; 16];
                tmp.iter()
                    .enumerate()
                    .for_each(|(i, &x)| stiffness_f_t_ee[i] = x);
                self.library.ee(q, &stiffness_f_t_ee, &mut output)
            }
        }
        output
    }
    /// Gets the 4x4 pose matrix for the given frame in base frame.
    ///
    /// The pose is represented as a 4x4 matrix in column-major format.
    /// # Arguments
    /// * `frame` - The desired frame.
    /// * `robot_state` - State from which the pose should be calculated.
    /// # Return
    /// Vectorized 4x4 pose matrix, column-major.
    pub fn pose_from_state(&self, frame: &Frame, robot_state: &RobotState) -> [f64; 16] {
        self.pose(
            frame,
            &robot_state.q,
            &robot_state.F_T_EE,
            &robot_state.EE_T_K,
        )
    }
    /// Gets the 6x7 Jacobian for the given frame, relative to that frame.
    ///
    /// The Jacobian is represented as a 6x7 matrix in column-major format.
    /// # Arguments
    /// * `frame` - The desired frame.
    /// * `q` - Joint position.
    /// * `F_T_EE` - End effector in flange frame.
    /// * `EE_T_K` - Stiffness frame K in the end effector frame.
    /// # Return
    /// Vectorized 6x7 Jacobian, column-major.
    pub fn body_jacobian(
        &self,
        frame: &Frame,
        q: &[f64; 7],
        F_T_EE: &[f64; 16],
        EE_T_K: &[f64; 16],
    ) -> [f64; 42] {
        let mut output = [0.; 42];
        match frame {
            Frame::kJoint1 => self.library.body_jacobian_joint1(&mut output),
            Frame::kJoint2 => self.library.body_jacobian_joint2(q, &mut output),
            Frame::kJoint3 => self.library.body_jacobian_joint3(q, &mut output),
            Frame::kJoint4 => self.library.body_jacobian_joint4(q, &mut output),
            Frame::kJoint5 => self.library.body_jacobian_joint5(q, &mut output),
            Frame::kJoint6 => self.library.body_jacobian_joint6(q, &mut output),
            Frame::kJoint7 => self.library.body_jacobian_joint7(q, &mut output),
            Frame::kFlange => self.library.body_jacobian_flange(q, &mut output),
            Frame::kEndEffector => self.library.body_jacobian_ee(q, F_T_EE, &mut output),
            Frame::kStiffness => {
                let tmp: Matrix4<f64> =
                    Matrix4::from_column_slice(F_T_EE) * Matrix4::from_column_slice(EE_T_K);
                let mut stiffness_f_t_ee = [0.; 16];
                tmp.iter()
                    .enumerate()
                    .for_each(|(i, &x)| stiffness_f_t_ee[i] = x);
                self.library
                    .body_jacobian_ee(q, &stiffness_f_t_ee, &mut output)
            }
        }
        output
    }

    /// Gets the 6x7 Jacobian for the given frame, relative to that frame.
    ///
    /// The Jacobian is represented as a 6x7 matrix in column-major format.
    /// # Arguments
    /// * `frame` - The desired frame.
    /// * `robot_state` - State from which the pose should be calculated.
    /// # Return
    /// Vectorized 6x7 Jacobian, column-major.
    pub fn body_jacobian_from_state(&self, frame: &Frame, robot_state: &RobotState) -> [f64; 42] {
        self.body_jacobian(
            frame,
            &robot_state.q,
            &robot_state.F_T_EE,
            &robot_state.EE_T_K,
        )
    }
    /// Gets the 6x7 Jacobian for the given joint relative to the base frame.
    ///
    /// The Jacobian is represented as a 6x7 matrix in column-major format.
    /// # Arguments
    /// * `frame` - The desired frame.
    /// * `q` - Joint position.
    /// * `F_T_EE` - End effector in flange frame.
    /// * `EE_T_K` - Stiffness frame K in the end effector frame.
    /// # Return
    /// Vectorized 6x7 Jacobian, column-major.
    pub fn zero_jacobian(
        &self,
        frame: &Frame,
        q: &[f64; 7],
        F_T_EE: &[f64; 16],
        EE_T_K: &[f64; 16],
    ) -> [f64; 42] {
        let mut output = [0.; 42];
        match frame {
            Frame::kJoint1 => self.library.zero_jacobian_joint1(&mut output),
            Frame::kJoint2 => self.library.zero_jacobian_joint2(q, &mut output),
            Frame::kJoint3 => self.library.zero_jacobian_joint3(q, &mut output),
            Frame::kJoint4 => self.library.zero_jacobian_joint4(q, &mut output),
            Frame::kJoint5 => self.library.zero_jacobian_joint5(q, &mut output),
            Frame::kJoint6 => self.library.zero_jacobian_joint6(q, &mut output),
            Frame::kJoint7 => self.library.zero_jacobian_joint7(q, &mut output),
            Frame::kFlange => self.library.zero_jacobian_flange(q, &mut output),
            Frame::kEndEffector => self.library.zero_jacobian_ee(q, F_T_EE, &mut output),
            Frame::kStiffness => {
                let tmp: Matrix4<f64> =
                    Matrix4::from_column_slice(F_T_EE) * Matrix4::from_column_slice(EE_T_K);
                let mut stiffness_f_t_ee = [0.; 16];
                tmp.iter()
                    .enumerate()
                    .for_each(|(i, &x)| stiffness_f_t_ee[i] = x);
                self.library
                    .zero_jacobian_ee(q, &stiffness_f_t_ee, &mut output)
            }
        }
        output
    }
    /// Gets the 6x7 Jacobian for the given joint relative to the base frame.
    ///
    /// The Jacobian is represented as a 6x7 matrix in column-major format.
    /// # Arguments
    /// * `frame` - The desired frame.
    /// * `robot_state` - State from which the pose should be calculated.
    /// # Return
    /// Vectorized 6x7 Jacobian, column-major.
    pub fn zero_jacobian_from_state(&self, frame: &Frame, robot_state: &RobotState) -> [f64; 42] {
        self.zero_jacobian(
            frame,
            &robot_state.q,
            &robot_state.F_T_EE,
            &robot_state.EE_T_K,
        )
    }
    /// Calculates the 7x7 mass matrix. Unit: [kg \times m^2].
    /// # Arguments
    /// * `q` - Joint position.
    /// * `I_total` - Inertia of the attached total load including end effector, relative to
    /// center of mass, given as vectorized 3x3 column-major matrix. Unit: [kg * m^2].
    /// * `m_total` - Weight of the attached total load including end effector. Unit: \[kg\].
    /// * `F_x_Ctotal` - Translation from flange to center of mass of the attached total load. Unit: \[m\].
    /// # Return
    /// Vectorized 7x7 mass matrix, column-major.
    pub fn mass(
        &self,
        q: &[f64; 7],
        I_total: &[f64; 9],
        m_total: f64,
        F_x_Ctotal: &[f64; 3],
    ) -> [f64; 49] {
        let mut output = [0.; 49];
        self.library
            .mass(q, I_total, &m_total, F_x_Ctotal, &mut output);
        output
    }
    /// Calculates the 7x7 mass matrix. Unit: [kg \times m^2].
    /// # Arguments
    /// * `robot_state` - State from which the mass matrix should be calculated.
    /// # Return
    /// Vectorized 7x7 mass matrix, column-major.
    pub fn mass_from_state(&self, robot_state: &RobotState) -> [f64; 49] {
        self.mass(
            &robot_state.q,
            &robot_state.I_total,
            robot_state.m_total,
            &robot_state.F_x_Ctotal,
        )
    }
    /// Calculates the Coriolis force vector (state-space equation):
    /// ![c= C \times dq](https://latex.codecogs.com/png.latex?c=&space;C&space;\times&space;dq), in \[Nm\].
    /// # Arguments
    /// * `q` - Joint position.
    /// * `dq` - Joint velocity.
    /// * `I_total` - Inertia of the attached total load including end effector, relative to
    /// center of mass, given as vectorized 3x3 column-major matrix. Unit: [kg * m^2].
    /// * `m_total` - Weight of the attached total load including end effector. Unit: \[kg\].
    /// * `F_x_Ctotal` - Translation from flange to center of mass of the attached total load. Unit: \[m\].
    /// # Return
    /// Coriolis force vector.
    pub fn coriolis(
        &self,
        q: &[f64; 7],
        dq: &[f64; 7],
        I_total: &[f64; 9],
        m_total: f64,
        F_x_Ctotal: &[f64; 3],
    ) -> [f64; 7] {
        let mut output = [0.; 7];
        self.library
            .coriolis(&q, &dq, &I_total, &m_total, &F_x_Ctotal, &mut output);
        output
    }

    /// Calculates the Coriolis force vector (state-space equation):
    /// ![c= C \times dq](https://latex.codecogs.com/png.latex?c=&space;C&space;\times&space;dq), in \[Nm\].
    /// # Arguments
    /// * `robot_state` - State from which the Coriolis force vector should be calculated.
    /// # Return
    /// Coriolis force vector.
    pub fn coriolis_from_state(&self, robot_state: &RobotState) -> [f64; 7] {
        self.coriolis(
            &robot_state.q,
            &robot_state.dq,
            &robot_state.I_load,
            robot_state.m_total,
            &robot_state.F_x_Ctotal,
        )
    }
    ///  Calculates the gravity vector. Unit: \[Nm\].
    /// # Arguments
    /// * `q` - Joint position.
    /// * `m_total` - Weight of the attached total load including end effector. Unit: \[kg\].
    /// * `F_x_Ctotal` - Translation from flange to center of mass of the attached total load. Unit: \[m\].
    /// * `gravity_earth` - Earth's gravity vector. Unit: [m / s^2]
    /// Default to [0.0, 0.0, -9.81].
    /// # Return
    /// Gravity vector.
    pub fn gravity<'a, Grav: Into<Option<&'a [f64; 3]>>>(
        &self,
        q: &[f64; 7],
        m_total: f64,
        F_x_Ctotal: &[f64; 3],
        gravity_earth: Grav,
    ) -> [f64; 7] {
        let gravity_earth = gravity_earth.into().unwrap_or(&[0., 0., -9.81]);
        let mut output = [0.; 7];
        self.library
            .gravity(q, gravity_earth, &m_total, F_x_Ctotal, &mut output);
        output
    }
    ///  Calculates the gravity vector. Unit: \[Nm\].
    /// # Arguments
    /// * `robot_state` - State from which the gravity vector should be calculated.
    /// * `gravity_earth` - Earth's gravity vector. Unit: [m / s^2]
    /// Default to [0.0, 0.0, -9.81].
    /// # Return
    /// Gravity vector.
    pub fn gravity_from_state<'a, Grav: Into<Option<&'a [f64; 3]>>>(
        &self,
        robot_state: &RobotState,
        gravity_earth: Grav,
    ) -> [f64; 7] {
        self.gravity(
            &robot_state.q,
            robot_state.m_total,
            &robot_state.F_x_Ctotal,
            gravity_earth,
        )
    }
}