1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
//! Trait and helper adapter definitions.

use {
    ::core::{
        marker::PhantomData,
        ops::Not,
    },
    ::never_say_never::{
        Never as ǃ,
    },
    ::nougat::{
        *,
    },
    crate::{
        higher_kinded_types::{*, Apply as A, HKTItem},
    },
    self::{
        adapters::*,
    }
};

pub use self::{
    r#dyn::LendingIteratorDyn,
};

#[path = "adapters/_mod.rs"]
pub
mod adapters;

/// Functions, extension traits and types allowing direct construction of
/// [`LendingIterator`]s (no need for custom types or implementations!).
#[path = "constructors/_mod.rs"]
pub
mod constructors;

use r#dyn::*;
#[path = "dyn/_mod.rs"]
pub(in crate)
mod r#dyn;

mod impls;

macro_rules! with_cfg_better_docs {( $($rules:tt)* ) => (
    macro_rules! __emit__ { $($rules)* }

    #[cfg(feature = "better-docs")]
    __emit__! {
        true
    }

    #[cfg(not(feature = "better-docs"))]
    __emit__! {
        false
    }
)}
with_cfg_better_docs! {(
    $(true $($if_better_docs:tt)?)?
    $(false $($if_not_better_docs:tt)?)?
) => (


$($($if_better_docs)?
    /// ⚠️ **NEVER NAME THIS TRAIT DIRECTLY** ⚠️
    /// Implementation detail of `#[gat] trait LendingIterator`.
    ///
    ///   - ⚠️ **The exact name of this trait may change within semver-compatible
    ///     releases** ⚠️
    ///
    /// The only reason this trait is even exposed to begin with is because of
    /// the `notable_trait` feature greatly improving the readability of
    /// [`LendingIterator`]'s adapters.
    #[doc(notable_trait)]
    pub trait LendingIteratorඞItem<'next, Bounds = &'next Self> {
        /// The "output" of this whole hand-rolled GAT:
        /// think of `LendingIteratorඞItem<'lt>::T` as of `LendingIterator::Item<'lt>`.
        ///
        /// ⚠️ **NEVER NAME THIS TRAIT OR ASSOC TYPE DIRECTLY** ⚠️ yadda yadda.
        type T;
    }
)?

#[allow(type_alias_bounds)]
/// `generic_associated_types`-agnostic shorthand for
/// <code>\<I as [LendingIterator]\>::Item\<\'lt\></code>
pub
type Item<'lt, I : LendingIterator> =
    Gat!(<I as LendingIterator>::Item<'lt>)
;

/// The meat of the crate. Trait similar to [`Iterator`] but **for the return
/// type of the `fn next(&'_ mut self)` method being allowed to depend on that
/// `'_`**.
///
/// <details open class="custom"><summary><span class="summary-box"><span>Click to hide</span></span></summary>
///
///   - That type is called the `Item<'_>` type, and is a
///     [`generic_associated_type`](#a-generic-associated-type).
///
///   - That difference is crucial both in terms of signature complexity
///     (as this crate's API ought to prove 😅) and borrowing semantics.
///
/// Mainly, when yielded, such `Item<'_>` is still `&mut` borrowing `*self`, so
/// **it won't be possible to further advance the iterator** (or anything else,
/// for that matter), **until the current item is no longer used.**
///
/// That is: **the `Item<'_>`s yielded by a [`LendingIterator`] cannot
/// coëxist!**
///
///   - this will thus impose serious usability limitations on it (_e.g_, no
///     `.collect()`ing whatsoever, since collecting items, by definition,
///     expects them to coëxist (within the collection)).
///
///       - For instance, there won't be a `for item in iter {` sugar on these
///         things, since that `for` sugar currently only blesses the stdlib
///         [`Iterator`] trait.
///
///         That being said, `while let Some(item) = iter.next() {` works just
///         as well, to be honest.
///
///   - but the dual / other side of that API restriction is that it is way
///     simpler / less constraining, _for implementors_, to implement this
///     trait.
///
///     The canonical example illustrating this difference is [`windows_mut()`][
///     constructors::windows_mut()], which is both an intuitive "iterator" we
///     can think of, and yet something for which it is _impossible_ to
///     implement [`Iterator`].
///
/// ## A Generic Associated Type
///
/// The core definition of this trait is thus:
///
/**  - ```rust ,ignore
    #![feature(generic_associated_types)]

    trait LendingIterator {
        type Item<'next>
        where
            Self : 'next,
        ;

        fn next<'next> (
            self: &'next mut Self, // <- `Self : 'next` indeed!
        ) -> Option<Self::Item<'next>>
        ;
    }
    ``` */
///
/// As you can see, it involves that more complex `type Item` definition, which
/// is called a _generic associated type_ (GAT for short), and, it _currently_
/// requires the `nightly`-only `feature(generic_associated_types)`.
///
/// –Then how come this crate can work on stable?— you may ask.
///
/// The answer is that [(lifetime)-GATs can actually be emulated in stable Rust
/// through some extra slightly convoluted hoops][`::nougat`].
///
/// [`::nougat`]: https://docs.rs/nougat
///
/// That's why this crate uses those techniques (and the crate featuring them,
/// [`::nougat`]), to achieve Stable Rust support:
///
/**  - ```rust
    #[::nougat::gat] // 👈 Add this and now It Just Works™ on stable.
    trait LendingIterator {
        type Item<'next>
        where
            Self : 'next,
        ;

        fn next<'next> (
            self: &'next mut Self,
        ) -> Option<Self::Item<'next>>
        ;
    }
    ``` */
///
/// It does come with a few caveats, though: **the `LendingIterator::Item` item
/// is no longer really nameable**, at least not _directly_.
///
///   - The current implementation of [`::nougat`] uses a helper _higher-order_
///     super-trait, called
///     <code>for\<\'any\> [LendingIteratorඞItem]\<\'any\></code>, which has,
///     itself, a non-generic associated type, `::T`. That way,
///     `LendingIteratorඞItem<'next>::T` plays the role of
///     `LendingIterator::Item<'next>`.
///
///     **BUT THIS MAY change within semver-compatible changes of `nougat`**
///
///     That's why that path should never be used, directly, by downstream code.
///
///     The only reason I am even talking about it and not having it
///     `#[doc(hidden)]` is that exposing it makes understanding the signatures
///     of the adapters multiple order of magnitude easier.
///
/// Hence the following "rules":
///
///   - Use <code>[Item]\<\'_, I\></code> instead of `I::Item<'_>`.
///
///       - you could technically import the `Gat!` macro from the `::nougat`
///         crate, and then use `Gat!(I::Item<'_>)` (this is how this crate
///         manages to define [`Item`], for instance). But it seems less
///         convenient than a type alias.
///
///       - within a `#[gat]`-annotated `trait` or `impl`, most of the
///         `…::Item<'_>` mentions will automagically be amended by the macro
///         (which is why the previous snippet works, despite its usage
///         of `Self::Item<'next>`).
///
///   - If implementing the trait yourself, you need to apply
///     <code>[#\[gat\]][crate::gat]</code> to the `impl` yourself.
///
///   - If reëxporting the trait yourself, you need to also apply
///     <code>[#\[gat(Item)\]][crate::gat]</code> to the `use` statement as
///     well, so people can implement the trait through the new path.
///
///  - [`LendingIterator`] is not really `dyn`-friendly (although IIUC, with
///     `feature(generic_associated_types)` it wouldn't have been either).
///
///     But you can use <code>dyn [LendingIteratorDyn]\<Item = …\> + …</code>
///     instead, which has been designed with `dyn`-friendlyness in mind 🙂.
///
/// </details>
$($($if_not_better_docs)?
    #[gat]
)?
pub
trait LendingIterator
where
    $($($if_better_docs)?
        Self : for<'next> LendingIteratorඞItem<'next>,
    )?
{
    $($($if_not_better_docs)?
        type Item<'next>
        where
            Self : 'next,
        ;
    )?

    /// Query the `next()` `Item` of this `Self` iterator.
    ///
    /// [`LendingIterator`] counterpart of [`Iterator::next()`].
    fn next (
        self: &'_ mut Self,
    ) -> Option<Item<'_, Self>>
    ;

    /// [`LendingIterator`] counterpart of [`Iterator::filter()`].
    fn filter<F> (
        self: Self,
        should_yield: F,
    ) -> Filter<Self, F>
    where
        Self : Sized,
        F : FnMut(&'_ Item<'_, Self>) -> bool,
    {
        Filter { iter: self, should_yield }
    }

    /// [`LendingIterator`] counterpart of [`Iterator::for_each()`].
    fn for_each<> (
        self: Self,
        mut f: impl FnMut(Item<'_, Self>),
    )
    where
        Self : Sized,
    {
        self.fold((), |(), item| f(item))
    }

    /// [`LendingIterator`] counterpart of [`Iterator::fold()`].
    fn fold<Acc> (
        mut self: Self,
        acc: Acc,
        mut f: impl FnMut(Acc, Item<'_, Self>) -> Acc,
    ) -> Acc
    where
        Self : Sized,
    {
        self.try_fold(acc, |acc, item| Ok(f(acc, item)))
            .unwrap_or_else(|unreachable: ǃ| unreachable)
    }

    /// [`LendingIterator`] counterpart of [`Iterator::try_for_each()`].
    fn try_for_each<Err> (
        self: &'_ mut Self,
        mut f: impl FnMut(Item<'_, Self>) -> Result<(), Err>,
    ) -> Result<(), Err>
    {
        self.try_fold((), |(), item| f(item))
    }

    /// [`LendingIterator`] counterpart of [`Iterator::try_fold()`].
    fn try_fold<Acc, Err> (
        self: &'_ mut Self,
        mut acc: Acc,
        mut f: impl FnMut(Acc, Item<'_, Self>) -> Result<Acc, Err>,
    ) -> Result<Acc, Err>
    {
        while let Some(item) = self.next() {
            acc = f(acc, item)?;
        }
        Ok(acc)
    }

    /// [`LendingIterator`] counterpart of [`Iterator::all()`].
    fn all<> (
        self: &'_ mut Self,
        mut predicate: impl FnMut(Item<'_, Self>) -> bool,
    ) -> bool
    where
        Self : Sized,
    {
        self.try_for_each(
                move |item| if predicate(item) {
                    Ok(())
                } else {
                    Err(())
                },
            )
            .is_ok()
    }

    /// [`LendingIterator`] counterpart of [`Iterator::any()`].
    fn any<> (
        self: &'_ mut Self,
        mut predicate: impl FnMut(Item<'_, Self>) -> bool,
    ) -> bool
    where
        Self : Sized,
    {
        self.all(move |item| predicate(item).not())
            .not()
    }

    /// [`LendingIterator`] counterpart of [`Iterator::by_ref()`].
    fn by_ref<> (self: &'_ mut Self)
      -> &'_ mut Self
    where
        Self : Sized,
    {
        self
    }

    /// [`LendingIterator`] counterpart of [`Iterator::count()`].
    fn count<> (self: Self)
      -> usize
    where
        Self : Sized,
    {
        self.fold(0_usize, |acc, _| acc + 1)
    }

    /// [`LendingIterator`] counterpart of [`Iterator::find()`].
    fn find<'find> (
        self: &'find mut Self,
        mut predicate: impl 'find + FnMut(&Item<'_, Self>) -> bool,
    ) -> Option<Item<'find, Self>>
    where
        Self : Sized,
    {
        use ::polonius_the_crab::prelude::*;
        let mut this = self;
        polonius_loop!(|this| -> Option<Item<'polonius, Self>> {
            let ret = this.next();
            if matches!(ret, Some(ref it) if predicate(it).not()) {
                polonius_continue!();
            }
            polonius_return!(ret);
        })
    }

    /// [`LendingIterator`] counterpart of [`Iterator::fuse()`].
    fn fuse (self: Self)
      -> Fuse<Self>
    where
        Self : Sized,
    {
        Fuse(Some(self))
    }

    /// [`LendingIterator`] counterpart of [`Iterator::nth()`].
    fn nth (
        self: &'_ mut Self,
        n: usize,
    ) -> Option<Item<'_, Self>>
    {
        if let Some(n_minus_one) = n.checked_sub(1) {
            self.skip(n_minus_one);
        }
        self.next()
    }

    /// [`LendingIterator`] counterpart of [`Iterator::position()`].
    fn position<F> (
        self: &'_ mut Self,
        mut predicate: impl FnMut(Item<'_, Self>) -> bool,
    ) -> Option<usize>
    where
        Self : Sized,
    {
        match
            self.try_fold(0, |i, item| if predicate(item) {
                Err(i)
            } else {
                Ok(i + 1)
            })
        {
            | Err(position) => Some(position),
            | Ok(_) => None,
        }
    }

    /// [`LendingIterator`] counterpart of [`Iterator::skip()`].
    fn skip (
        self: Self,
        count: usize,
    ) -> Skip<Self>
    where
        Self : Sized,
    {
        Skip {
            iter: self,
            to_skip: count.try_into().ok(),
        }
    }

    /// [`LendingIterator`] counterpart of [`Iterator::skip_while()`].
    #[cfg(TODO)]
    fn skip_while<F> (
        self: Self,
        predicate: F,
    ) -> SkipWhile<Self, F>
    where
        F : FnMut(Item<'_, Self>) -> bool,
        Self : Sized,
    {
        SkipWhile { iter: self, predicate }
    }

    /// [`LendingIterator`] counterpart of [`Iterator::take()`].
    fn take (
        self: Self,
        count: usize,
    ) -> Take<Self>
    where
        Self : Sized,
    {
        Take {
            iter: self,
            remaining: count,
        }
    }

    /// [`LendingIterator`] counterpart of [`Iterator::take_while()`].
    #[cfg(TODO)]
    fn take_while<F> (
        self: Self,
        f: F,
    ) -> TakeWhile<Self, F>
    where
        F : FnMut(&Self::Item) -> bool,
        Self : Sized,
    {
        TakeWhile(self)
    }

    /// [`LendingIterator`] counterpart of [`Iterator::map()`].
    ///
    ///   - **Turbofishing the `NewItemType` is mandatory**, otherwise you'll
    ///     run into issues with non-higher-order closures.
    ///
    ///     See the module-level documentation of [`crate::higher_kinded_types`]
    ///     for more info.
    ///
    ///     But the TL,DR is that you'd use it as:
    ///
    ///     <code>lending_iter.map::\<[HKT!]\(ReturnType\<\'_\>\), _>\(</code>
    ///
    ///   - the second idiosyncracy is that, for technical reasons[^1] related
    ///     to the maximally generic aspect of this API, the closure itself
    ///     cannot just be a `Self::Item<'_> -> Feed<'_, NewItemType>` closure,
    ///     and instead, requires that an extra `[]` dummy parameter be part
    ///     of the signature:
    ///
    ///     ```rust
    ///     # #[cfg(any)] macro_rules! ignore { /*
    ///     lending_iter.map::<HKT…, _>(|[], item| { … })
    ///                                  👆
    ///     # */ }
    ///     ```
    ///
    /// [^1]: In the case where `Self::Item<'_>` does _not_ depend on `'_`, the
    /// return type then technically can't depend on it either, so Rust
    /// complains about this (in a rather obtuse fashion). We solve this by
    /// requiring that extra `[]` parameter which acts as a convenient-to-write
    /// `PhantomData` which does depend on `'_`.
    fn map<NewItemType : HKT, F> (
        self: Self,
        f: F,
    ) -> Map<Self, F, NewItemType>
    where
        for<'next>
            F : FnMut(
                [&'next Self; 0],
                Item<'next, Self>,
            ) -> A!(NewItemType<'next>)
        ,
        Self : Sized,
    {
        Map { iter: self, map: f, _phantom_ty: <_>::default() }
    }

    pervasive_hkt_choices! {
        (map, Map)(
            /// Convenience method: same as [`.map()`][Self::map()], but for
            /// hard-coding the `HKT` parameter to
            /// <code>[HKTRef]\<R\> = [HKT!]\(\&R\)</code>.
            ///
            /// This alleviates the call-sites (no more turbofishing needed!)
            /// for such pervasive use cases 🙂
            map_to_ref: [R : ?Sized], HKTRef<R>, -> &'any R,
            /// Convenience method: same as [`.map()`][Self::map()], but for
            /// hard-coding the `HKT` parameter to
            /// <code>[HKTRefMut]\<R\> = [HKT!]\(\&mut R\)</code>.
            ///
            /// This alleviates the call-sites (no more turbofishing needed!)
            /// for such pervasive use cases 🙂
            map_to_mut: [R : ?Sized], HKTRefMut<R>, -> &'any mut R,
        ),
    }

    /// Convenience shorthand for
    /// <code>[.map…\(…\)][Self::map()][.into_iter()][Self::into_iter()]</code>.
    ///
    /// When the return type of the `.map()` closure is not lending
    /// / borrowing from `*self`, it becomes possible to call
    /// [.into_iter()][Self::into_iter()] on it right away.
    ///
    /// Moreover, it makes the `[], ` closure arg hack no longer necessary.
    ///
    /// This convenience function encompasses both things, thence returning
    /// an [`Iterator`] (not a [`LendingIterator`]!).
    fn map_into_iter<F, NonLendingItem> (
        self: Self,
        f: F,
    ) -> MapIntoIter<Self, F>
    where
        F : FnMut(Item<'_, Self>) -> NonLendingItem,
        Self : Sized,
    {
        MapIntoIter(self, f)
    }

    /// [`LendingIterator`] counterpart of [`Iterator::filter_map()`].
    ///
    /// All the caveats and remarks of [`.map()`][Self::map()] apply, go check
    /// them up.
    fn filter_map<NewItemType : HKT, F> (
        self: Self,
        f: F,
    ) -> FilterMap<Self, F, NewItemType>
    where
        for<'next>
            F : FnMut(
                [&'next Self; 0],
                Item<'next, Self>,
            ) -> Option<A!(NewItemType<'next>)>
        ,
        Self : Sized,
    {
        FilterMap { iter: self, map: f, _phantom_ty: <_>::default() }
    }

    pervasive_hkt_choices! {
        (filter_map, FilterMap)(
            /// Convenience method: same as
            /// [`.filter_map()`][Self::filter_map()], but for hard-coding the
            /// `HKT` parameter to <code>[HKTRef]\<R\> = [HKT!]\(\&R\)</code>.
            ///
            /// All the caveats and remarks of
            /// [`.map_to_ref()`][Self::map_to_ref()] apply, go check them up.
            filter_map_to_ref: [R : ?Sized], HKTRef<R>, -> Option<&'any R>,

            /// Convenience method: same as
            /// [`.filter_map()`][Self::filter_map()], but for hard-coding the
            /// `HKT` parameter to <code>[HKTRefMut]\<R\> = [HKT!]\(\&mut R\)</code>.
            ///
            /// All the caveats and remarks of
            /// [`.map_to_mut()`][Self::map_to_mut()] apply, go check them up.
            filter_map_to_mut: [R : ?Sized], HKTRefMut<R>, -> Option<&'any mut R>,
        ),
    }

    /// Convenience shorthand for
    /// <code>[.filter_map…\(…\)][Self::filter_map()][.into_iter()][Self::into_iter()]</code>.
    ///
    /// When the return type of the `.filter_map()` closure is not lending
    /// / borrowing from `*self`, it becomes possible to call
    /// [.into_iter()][Self::into_iter()] on it right away.
    ///
    /// Moreover, it makes the `[], ` closure arg hack no longer necessary.
    ///
    /// This convenience function encompasses both things, thence returning
    /// an [`Iterator`] (not a [`LendingIterator`]!).
    fn filter_map_into_iter<F, NonLendingItem> (
        self: Self,
        f: F,
    ) -> FilterMapIntoIter<Self, F>
    where
        F : FnMut(Item<'_, Self>) -> Option<NonLendingItem>,
        Self : Sized,
    {
        FilterMapIntoIter(self, f)
    }

    /// Convert a <code>Self : [LendingIterator]</code> into an [`Iterator`],
    /// **provided `Self::Item<'_>` does not depend on `'_`**.
    fn into_iter<Item> (
        self: Self,
    ) -> IntoIter<Self>
    where
        Self : for<'any> LendingIteratorඞItem<'any, T = Item>,
        Self : Sized,
    {
        IntoIter(self)
    }

    /// Converts this [`LendingIterator`] into a
    /// <code>[Box][::alloc::boxed::Box]\<dyn [LendingIteratorDyn]…\></code>.
    ///
    /// Note that the return `dyn Trait` will not be `Send` or implement any
    /// other auto-traits. For a more general albeit harder-on-type-inference
    /// alternative, see [`.dyn_boxed_auto()`][Self::dyn_boxed_auto()].
    #[apply(cfg_alloc)]
    fn dyn_boxed<'usability> (
        self: Self
    ) -> ::alloc::boxed::Box<dyn
            'usability + LendingIteratorDyn<Item = HKTItem<Self>>
        >
    where
        Self : 'usability,
        Self : Sized,
    {
        ::alloc::boxed::Box::new(self)
    }

    /// Converts this [`LendingIterator`] into a
    /// <code>[Box][::alloc::boxed::Box]\<dyn [LendingIteratorDyn]…\></code>.
    ///
    /// In order for it to work, the `Item` parameter has to be provided
    /// (probably funneled through a [`CanonicalHKT`]), as well as an explicit
    /// "landing type" (inference will probably fail to figure it out!).
    ///
    /// That is, `BoxedDynLendingIterator` is expected to be of the form:
    ///
    /// <code>[Box]\<dyn \'lt \[+ Send\] \[+ Sync\] + [LendingIteratorDyn]\<Item = [CanonicalHKT]\<…\>\>\></code>
    ///
    /// [Box]: ::alloc::boxed::Box
    /// [CanonicalHKT]: crate::prelude::CanonicalHKT
    #[apply(cfg_alloc)]
    fn dyn_boxed_auto<BoxedDynLendingIterator, Item : HKT> (self: Self)
      -> BoxedDynLendingIterator
    where
        Self : Sized + DynCoerce<BoxedDynLendingIterator, Item>,
    {
        Self::coerce(self)
    }
}
)}

macro_rules! pervasive_hkt_choices {(
    ($map:ident, $Map:ident)(
        $(
            $(#[$attr:meta])*
            $fname:ident: [$($R:tt)*], $HKT:ty, -> $Ret:ty,
        )*
    ) $(,)?
) => (
    $(
        $(#[$attr])*
        fn $fname<$($R)*, F> (
            self: Self,
            f: F,
        ) -> $Map<Self, F, $HKT>
        where
            for<'any>
                F : FnMut([&'any Self; 0], Item<'any, Self>) -> $Ret
            ,
            Self : Sized,
        {
            self.$map::<$HKT, F>(f)
        }
    )*
)} use pervasive_hkt_choices;

#[cfg(test)]
mod tests;